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Introduction

Scalar mesons f
0
(500) and f

0
(980) were a long time subject to a controversy, 

appearing, disappearing and reappearing in PDG tables under different names: σ, 
f
0
(400-1200), f

0
(600), … Presently the existence of the two particles seems to be well 

experimentally established with, however, important uncertainties1. We propose a 
theoretical approach based on a model independent pion scalar form factor analysis 
which allows to determine the parameters of these two mesons. 

1 J. Beringer et al. (PDG), Phys. Rev. D 86, 010001 (2012)

Pion scalar form factor Γπ(t)

Γ
π
(t): scalar function in the matrix element parametrization

with

It has following properties:

● Is analytic in the whole complex t-plane besides the cut on the positive real axis 
above t = 4m

π
2.

● Obeys the so-called reality condition Γ
π
(t*) = Γ

π
*(t).

● Normalization Γ
π
(0) = 1 is adopted.

● Asymptotic behavior is Γ
π
(t)

|t|→∞
1/∼ t.

● In the elastic region 4m
π

2 ≤ t ≤ 16m
π

2 form factor respects so-called elastic unitary 
condition Im Γ

π
(t) = M

0
0 Γ

π
*(t).

In the last point M
0

0 denotes I=J=0 partial wave ππ scattering amplitude. In phase 
representation one obtains

Our method

Dispersion relations with no and with one subtraction derived from Cauchy formula:

Dispersion relations + elastic unitary condition ⇒ Omnes-Muskelishvili integral 
equation. Solution is known:

with P
n
(t) an arbitrary but normalized (for t = 0) polynomial.

If the phase shift δ0
0 is known, one can find explicit form of the scalar pion 

form factor Γπ(t) and its poles f
0
(500) and f

0
(980).

Phase shift δ0
0 determination

We describe the existing data points on δ
0

0

by performing a conformal mapping into q variable:

Form factor Γ
π
(q) possesses in the q-plane poles and zeros only. Therefore and 

appropriate description can be achieved by a rational function (Padè type 
approximation):

Poles q
i
: 1) on imaginary axis

2) pair of poles symmetric according to imaginary axis

Γ
π
(t*) - real analytic function ⇒ a

2i
 is real, a

2i+1
 is pure imaginary.

Taking into account:
● all previous statements
● threshold behavior of δ

0
0

It can be show that the phase shift takes the form:

where A
i
 are real coefficients (and A

1
 is S-wave iso-scalar ππ scattering length a

0
0). 

Good fit (Χ2/ndf = 1.41) achieved with 5-coefficient formula:

A
1
 = 0.2351 ± 0.0107; A

2
 = 0.2137 ± 0.0283;  A

3
 = 0.2706 ± 0.0162;

A
4
 = -0.0443 ± 0.0048; A

5
 = -0.0248 ± 0.0007;

From                            ⇒ one-subtraction phase representation has to be used.

Determination of form factor Γπ(t) poles

Inserting δ
0

0 expression into dispersion relation, using the fact that integrand is a 

pair function and using complex identity                                      one gets

Now theory of residues is used. Logarithm generates branch points ⇒ roots of its 
denominator polynomial need to be found. Numerical analysis leads to:

q
1
 = -1.863 i;

q
2
 = -3.583 + 0.283 i;

q
3
 = -1.333 + 1.280 i;

q
4
 = 3.583 + 0.283 i;

q
5
 = 1.333 + 1.280 i;

Integral (I) can be split and
evaluated separately for the upper and lower half-planes: I = I

1 
+ I

2

The contour related to the first integral is closed around upper half-plane, for the 
second integral it is closed around lower half-plane. To evaluate the integral we go 
around branch points q

i
 and calculate residuum in singular points (i, ib). So, in 

addition to the integral along the real axis, we get 5 integrals around cuts 
originating in branch points and two residua. The result than can be schematically 
written (analogically for I

2
) :

Results

As the last step, the integral previously evaluated  is inserted into the expression of 
the form factor:

We get our final results by identifying the (-q
3
) and (-q

2
)  poles of this expression as 

the scalar mesons f
0
(500) and f

0
(980):
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