The search for top-antitop-Higgs production at CMS

Fabrizio Margaroli (Sapienza and INFN)
on behalf of the CMS collaboration
Higgs and Fermions

- We know there is a Higgs boson in LHC data
Higgs and Fermions

- We know there is a Higgs boson in LHC data
- It first appeared decaying into two bosons
Higgs and Fermions

- We know there is a Higgs boson in LHC data
- It first appeared decaying into two bosons

See morning session talks
Higgs and Fermions

• We know there is a Higgs boson in LHC data
• it first appeared decaying into two bosons
• the big picture is still far from clear, as there are a multitude of loops where new physics might be hiding
Higgs and Fermions

- We know there is a Higgs boson in LHC data.
- It first appeared decaying into two bosons.
- The big picture is still far from clear, as there are a multitude of loops where new physics might be hiding.
- Not to mention interference between diagrams...
Higgs and Fermions

- We know there is a Higgs boson in LHC data
- it first appeared decaying into two bosons
- the big picture is still far from clear, as there are a multitude of loops where new physics might be hiding
- not to mention interference between diagrams...

 See Biswas’s at the poster session

S.Biswas et al. JHEP 01 (2013) 088
M.Farina et al. JHEP 05 (2013) 022
S.Biswas et al. JHEP 07 (2013) 073
A SPECIAL RELATIONSHIP

- Higgs coupling to fermions proceeds via a different lagrangian - interesting!
 - but also very hard to measure See H to bb/tautau talks in this session
- Observing ttH is the only way to directly measure the magnitude of top-Higgs coupling, i.e. Y_t
- Our current indirect knowledge: $Y_t = \sqrt{2M_t/\text{vev}} = 0.996\pm0.005$ using latest Tevatron and/or LHC M_{top}

- Does $Y_t=1$ mean a special role of the top quark in EWSB?
- ttH sensitive to several natural new physics scenarios (little Higgs, composite Higgs, Extra Dimensions) where new vector-like quarks decay to top and Higgs: ttH+more
 - early ttH discovery could signal new physics! See Devdatta, Antonella’s talks
Higgs and top cross sections at 8 TeV pp collisions

Higgs @8 TeV

- H
- qqH
- WH
- ZH
- ttH

Top @8 TeV

- tt
- ttg
- ttW
- ttZ
- ttH

ttH is the next goal in Higgs physics, and in top physics
A VERY COMPLEX FINAL STATE

• Cross section is only ~1/200 of the inclusive Higgs production cross section
• Large multiplicity of objects in the final state (signature is dominated by the t/t\bar{t} decays)
• Need to find the best combination of top and Higgs decays to isolate the small signal (130fb)
A VERY COMPLEX FINAL STATE

• Cross section is only ~1/200 of the inclusive Higgs production cross section
• Large multiplicity of objects in the final state (signature is dominated by the t/tbar decays)
• Need to find the best combination of top and Higgs decays to isolate the small signal (130fb)
A **VERY** COMPLEX FINAL STATE

- Cross section is only \(\sim 1/200 \) of the inclusive Higgs production cross section
- Large multiplicity of objects in the final state (signature is dominated by the t/tbar decays)
- Need to find the best combination of top and Higgs decays to isolate the small signal (130fb)
A **VERY COMPLEX FINAL STATE**

- Cross section is only $\sim 1/200$ of the inclusive Higgs production cross section
- Large multiplicity of objects in the final state (signature is dominated by the $t/t\bar{t}$ decays)
- Need to find the best combination of top and Higgs decays to isolate the small signal (130fb)

In the following, will show CMS results on several ttH decay modes:
- $ttH, H \to bb$, $ttbar \to$ lepton+jets and dilepton
- $ttH, H \to tautau$, $ttbar \to$ lepton+jets
- $ttH, H \to gammagamma$, $ttbar \to$ all decay modes
The CMS detector

Inner tracker: charged particles, vertex, isolation

EM and Hadron calorimeters
photons, isolation

The search for ttH requires all subdetectors!
\(H \rightarrow BB, \ TT \rightarrow LJETS \ OR \ DILEPTON \)

- Identify tops and Higgs via multiple b-tagged jets, leptons (ele/muons) and light flavor jets
- Split into Njet/Nbtag categories to further increase sensitivity
- For each category, use machine learning techniques to discriminate signal from dominant tt +bb/cc/b backgrounds

- Fit over resulting shapes, systematics modify relative normalization and shapes themselves
 - largest systematic is on the poorly known tt+bb/cc/b background
TT\(H, \ H \rightarrow \text{tautau}\)

- Select hadronically decaying taus, coming from the Higgs decay, reconstructed via a Particle Flow algorithm

- Select additional b-jets, leptons, light flavor jets consistent with ttbar decays, split into Njets and Nbtags categories

<table>
<thead>
<tr>
<th></th>
<th>4 jets 1 b-tag</th>
<th>5 jets 1 b-tag</th>
<th>(\geq) 6 jets 1 b-tag</th>
<th>4 jets 2 b-tags</th>
<th>5 jets 2 b-tags</th>
<th>(\geq) 6 jets 2 b-tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ttH}(125))</td>
<td>0.4 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>0.6 ± 0.2</td>
<td>0.1 ± 0.0</td>
<td>0.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>(\text{tt})</td>
<td>225 ± 69</td>
<td>119 ± 38</td>
<td>64 ± 22</td>
<td>48 ± 15</td>
<td>38 ± 12</td>
<td>27.0 ± 9.1</td>
</tr>
<tr>
<td>(\text{ttV})</td>
<td>1.1 ± 0.3</td>
<td>1.3 ± 0.3</td>
<td>1.4 ± 0.4</td>
<td>0.4 ± 0.1</td>
<td>0.6 ± 0.2</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td>Single t</td>
<td>11.2 ± 4.0</td>
<td>3.0 ± 1.4</td>
<td>1.1 ± 1.0</td>
<td>1.9 ± 1.1</td>
<td>0.9 ± 0.6</td>
<td>0.6 ± 0.7</td>
</tr>
<tr>
<td>V+jets</td>
<td>33 ± 17</td>
<td>11.7 ± 6.8</td>
<td>3.8 ± 2.8</td>
<td>1.4 ± 0.9</td>
<td>0.4 ± 0.3</td>
<td>0.5 ± 0.6</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.9 ± 0.2</td>
<td>0.7 ± 0.2</td>
<td>0.1 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>0.1 ± 0.0</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Total bkg</td>
<td>271 ± 82</td>
<td>135 ± 41</td>
<td>71 ± 24</td>
<td>52 ± 16</td>
<td>40 ± 12</td>
<td>29.2 ± 9.4</td>
</tr>
</tbody>
</table>

- Data: 292

- Here \(\text{tt+jets}\) is again dominant background
 - multivariate discriminants exploit mostly tau-related informations

- Total Ns~2.5 evts
 - \(\times 10\) (H \(\rightarrow\) bb, ttbar \(\rightarrow\) dilepton)
 - \(\times 100\) (H \(\rightarrow\) bb, ttbar \(\rightarrow\) l+jets)
A PARTIAL COMBINATION

- No statistically significant excess over background predictions
- \(ttH, \, H \rightarrow bb \) and \(H \rightarrow \text{tautau} \) have been combined to produce statements on sensitivity to this production mode

<table>
<thead>
<tr>
<th>ttH decay mode</th>
<th>Exp</th>
<th>Ob</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \rightarrow bb, , tt \rightarrow \text{lepton+jets})</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>(H \rightarrow bb, , tt \rightarrow \text{dilepton})</td>
<td>8.2</td>
<td>9.1</td>
</tr>
<tr>
<td>(H \rightarrow \text{tautau}, , tt \rightarrow \text{ljets or dilepton})</td>
<td>14.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Combination</td>
<td>4.1</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Systematics already taking a hit on the most sensitive channels
HIGGS TO GAMMA GAMMA

- Very low rate, but distinctive signature of the Higgs peak. Backgrounds are coming from top(s) + photon(s), or photons+(b)jets, latter poorly known at theoretical level

- Split into events with leptons and few jets (leptonic) or no leptons and many jets (hadronic)

Event selection minimizes contamination from other Higgs sources

<table>
<thead>
<tr>
<th>Process</th>
<th>Hadronic Channel</th>
<th>Leptonic Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttH</td>
<td>0.567 (87%)</td>
<td>0.429 (97%)</td>
</tr>
<tr>
<td>$gg \rightarrow H$</td>
<td>0.059 (9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>VBF H</td>
<td>0.006 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>WH/ZH</td>
<td>0.019 (3%)</td>
<td>0.013 (3%)</td>
</tr>
<tr>
<td>Total signal</td>
<td>0.65</td>
<td>0.44</td>
</tr>
</tbody>
</table>

fitting the diphoton peak greatly reduce sensitivity to background systematics
HIGGS TO GAMMA GAMMA RESULTS

• No significant excess found, combine the two (statistically independent) channels to increase sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Expected</th>
<th>Expected (No Syst.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic Channel</td>
<td>6.8</td>
<td>9.2</td>
<td>8.8</td>
</tr>
<tr>
<td>Leptonic Channel</td>
<td>10.7</td>
<td>8.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Combined</td>
<td>5.4</td>
<td>5.3</td>
<td>5.1</td>
</tr>
</tbody>
</table>

• Extract upper limits on ttH cross section

• Interpret the data as a cross section measurement
 – keep in mind that precision on Yt is twice better than on sigma(ttH)!
CONCLUSIONS

• Measurement of Higgs coupling to top quarks especially interesting
• Deviations of top-Higgs coupling from SM, are very possible as our current knowledge comes only from loop-induced diagrams
• Increasing our sensitivity to ttH by combining multiple channels

<table>
<thead>
<tr>
<th>ttH decay mode</th>
<th>Exp</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → bb, tt → lepton+jets</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>H → bb, tt → dilepton</td>
<td>8.2</td>
<td>9.1</td>
</tr>
<tr>
<td>H → tautau, tt → jets or dilepton</td>
<td>14.2</td>
<td>13.2</td>
</tr>
<tr>
<td>H → gamma gamma, tt → all jets</td>
<td>9.2</td>
<td>6.8</td>
</tr>
<tr>
<td>H → gamma gamma, tt → leptons</td>
<td>8.0</td>
<td>10.7</td>
</tr>
</tbody>
</table>

– already beating benchmark extrapolations for top-Higgs coupling
– still lots can be said before LHC run at higher energies

Here MH = 125 GeV
CONCLUSIONS

- Measurement of Higgs coupling to top quarks especially interesting
- Deviations of top-Higgs coupling from SM, are very possible as our current knowledge comes only from loop-induced diagrams
- Increasing our sensitivity to ttH by combining multiple channels

<table>
<thead>
<tr>
<th>ttH decay mode</th>
<th>Exp</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>H→bb, tt→lepton+jets</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>H→bb, tt→dilepton</td>
<td>8.2</td>
<td>9.1</td>
</tr>
<tr>
<td>H→tautau, tt→jets or dilepton</td>
<td>14.2</td>
<td>13.2</td>
</tr>
<tr>
<td>H→gamma gamma, tt→all jets</td>
<td>9.2</td>
<td>6.8</td>
</tr>
<tr>
<td>H→gamma gamma, tt→leptons</td>
<td>8.0</td>
<td>10.7</td>
</tr>
</tbody>
</table>

- already beating benchmark extrapolations for top-Higgs coupling
- still lots can be said before LHC run at higher energies

Here MH = 125 GeV

Exploring top-Higgs relation at 360 degrees: stay tuned!
BACKUP
HIGGS PRODUCTION AND DECAY

![Graphs and diagrams showing Higgs boson production processes and branching ratios.](image-url)
HIGGS AND FERMIONS
HIGGS BRANCHING RATIOS

• It is interesting to interpret ttH results on the C_t, C_V plane.
• $\sigma(ttH)$ proportional to $Y_t^2 \rightarrow C_t^2$
• Higgs decays have a complex dependence on C_t and C_V
• The different decay modes explored here probe different regions of the C_t and C_V plane

Taken from S. Biswas et al, compatible results from HDECAY
Systematics on ttH, H→bb

Uncertainties on the sum of tt+lf, tt+b, tt + bb, and tt + c+c events with ≥ 6 jets and ≥ 4 b-tags

<table>
<thead>
<tr>
<th>Source</th>
<th>Rate</th>
<th>Shape?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD Scale (all tt+hf)</td>
<td>35%</td>
<td>No</td>
</tr>
<tr>
<td>QCD Scale (tt + bb)</td>
<td>17%</td>
<td>No</td>
</tr>
<tr>
<td>b-Tag hf contamination</td>
<td>17%</td>
<td>Yes</td>
</tr>
<tr>
<td>QCD Scale (tt + cc)</td>
<td>11%</td>
<td>No</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>11%</td>
<td>Yes</td>
</tr>
<tr>
<td>b-Tag lf contamination</td>
<td>9.6%</td>
<td>Yes</td>
</tr>
<tr>
<td>b-Tag hf stats (linear)</td>
<td>9.1%</td>
<td>Yes</td>
</tr>
<tr>
<td>QCD Scale (tt+b)</td>
<td>7.1%</td>
<td>No</td>
</tr>
<tr>
<td>Madgraph Q^2 Scale (tt + bb)</td>
<td>6.8%</td>
<td>Yes</td>
</tr>
<tr>
<td>b-Tag Charm Uncertainty (quadratic)</td>
<td>6.7%</td>
<td>Yes</td>
</tr>
<tr>
<td>Top Pt Correction</td>
<td>6.7%</td>
<td>Yes</td>
</tr>
<tr>
<td>b-Tag hf stats (quadratic)</td>
<td>6.4%</td>
<td>Yes</td>
</tr>
<tr>
<td>b-Tag lf stats (linear)</td>
<td>6.4%</td>
<td>Yes</td>
</tr>
<tr>
<td>Madgraph Q^2 Scale(tt + 2 partons)</td>
<td>4.8%</td>
<td>Yes</td>
</tr>
<tr>
<td>b-Tag lf stats (quadratic)</td>
<td>4.8%</td>
<td>Yes</td>
</tr>
<tr>
<td>Luminosity</td>
<td>4.4%</td>
<td>No</td>
</tr>
<tr>
<td>Madgraph Q^2 Scale (tt + cc)</td>
<td>4.3%</td>
<td>Yes</td>
</tr>
<tr>
<td>Madgraph Q^2 Scale (tt+b)</td>
<td>2.6%</td>
<td>Yes</td>
</tr>
<tr>
<td>Lepton ID/Trig</td>
<td>1.4 (2.8)%</td>
<td>No</td>
</tr>
<tr>
<td>QCD Scale (tt)</td>
<td>3%</td>
<td>No</td>
</tr>
<tr>
<td>pdf (gg)</td>
<td>2.6%</td>
<td>No</td>
</tr>
<tr>
<td>Jet Energy Resolution</td>
<td>1.5%</td>
<td>No</td>
</tr>
<tr>
<td>Pileup</td>
<td>1%</td>
<td>No</td>
</tr>
<tr>
<td>b-Tag Charm Uncertainty (linear)</td>
<td>0.6%</td>
<td>Yes</td>
</tr>
</tbody>
</table>
EVENT DISPLAY $H \rightarrow bb$
PRE AND POST FIT

Pre-fit

Post-fit
EVENT DISPLAY H→PHOTONS

CMS Experiment at LHC, CERN
Data recorded: Sat Nov 24 19:16:36 2012 CEST
Run/Event: 207889 / 771018991
Lumi section: 783
EVENT DISPLAY $H \rightarrow \text{PHOTONS}$

CMS Experiment at LHC, CERN
Data recorded: Thu Nov 1 02:13:01 2012 CEST
Run/Event: 206446 / 1072391444
Lumi section: 784
TECHNICALITIES

Signal and background modeling

- \(ttH, WW, WZ, ZZ \) Pythia
- \(ttW/ttZ/ttgamma/ttgamgamama/gamma+jets/ gammagamma+jets \) MadGraph
- \(tq/tW \) Powheg

btagging

- Combined secondary vertex, medium OP
- \(H->bb \) also uses full CSV spectrum

Triggers used:

- Diphoton trigger
- Electron trigger
- Muon trigger
- \(ee/emu/mumu \) triggers