Measurements of the properties of the Higgs boson-like resonance in the di-photon channel using the ATLAS detector

Outline

- > Introduction
- > Analysis strategy
- ➤ Couplings, mass and spin
- > Differential cross-sections
- > Prospects

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTG

J.-B. de Vivie (Laboratoire de l' Accélérateur Linéaire) on behalf of the ATLAS Collaboration

The relevance of the yy channel

➤ Main production processes and decay through loops : good probe for new physics

Sensitivity to relative sign of couplings to fermion and boson through interference

- > Small branching ratio, but still relatively high yield : expect
 - ~ 1175 produced events in the 7 + 8 TeV (4.7 + 20.3 fb⁻¹) data sets
 - ~ 400 selected events
- \triangleright Excellent mass resolution : $\sim 1.8 \text{ GeV/c}^2 \Rightarrow \text{mass measurement}$
- > Exclude a spin 1 resonance (on-shell)
- \triangleright Determine Charge Conjugation quantum number : C = +1
- ➤ Start to probe the underlying QCD dynamics

The main tool: ATLAS Liquid Argon calorimeter

- Crack-less accordion geometry
- Uniform by construction
- Very stable operation
- ~ 200K channels

$$\frac{\sigma_E}{E} \sim \frac{10\%}{\sqrt{E}} \oplus 0.007$$

(0.7% nominal constant term : not there yet)

- ✓ longitudinal segmentation (pointing)
- ✓ Fine η granularity in first layer (γ /jet separation)

Very simple analysis selection:

Trigger: di-photon (threshold (8 TeV) 35/25 GeV, loose shower shape requirements)

Selection : 2 tightly identified photons, $p_T > 40 / 30 \text{ GeV/c}$, $|\eta| < 1.37 \text{ or } 1.56 < |\eta| < 2.37$

142681 candidate events, 14025 in window around 126.5 GeV/c²

Large background but narrow mass peak: key ingredients

- ★ Understand fake photon rejection
- ► Precise photon energy and direction measurements for m_{γγ} estimation

 m_{yy} estimation

$$m_{\gamma\gamma}^2 = 2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta_{12})$$

 \rightarrow accurate photon energy scale : from $Z \rightarrow e^+e^-$ data and extrapolation $e \rightarrow \gamma$ require excellent material budget knowledge

(+ control from radiative decays $Z \rightarrow e^+e^-\gamma$, limited by statistics and to low energy)

Also very good stability w.r.t. Number of interactions / bunch crossing

→ accurate direction: choice of primary vertex with a NN combining calorimeter pointing (longitudinal segmentation) + photon conversion (if any) + information from recoiling tracks

If no measured PV, would add $\sim 1.3~\text{GeV/c}^2$ to the mass resolution instead: negligible contribution from direction to mass resolution driven by energy resolution (sampling term $\sim 10\%/\sqrt{E}$ + constant term $\sim 1\%$ not at design yet)

Signal shape used everywhere : *Crystal Ball* + *Gaussian*

Strategy: from discovery to property measurements

Events with rather different purity are mixed together

⇒ Categories can increase the sensitivity and disentangle production modes

Purest category: high mass two-jet tight Boosted Decision Tree $\eta_j, m_{jj}, \Delta \eta_{jj}, p_{\text{Tt}}$

Expected signal composition in each category Expected S/B and resolutions σ **(GeV/c**²) ■ggF ■VBF WH ■ZH ■ttH ATLAS Simulation $H\rightarrow \gamma\gamma$ Inclusive Unconv. central low p Unconv. central high p_ Unconv. rest low p_ Unconv. rest high p_ Conv. central low p_ 0.3 Conv. central high p_ Conv. rest low p_, Conv. rest high p_ 0.2 Conv. transition Loose high-mass two-jet Tight high-mass two-jet 0.5 0.1 Low-mass two-jet E_{τ}^{miss} significance One-lepton UCH URL CRL CRH СТ VBFL VBFT CCH 80 100 category signal composition (%) ggF dedicated Associated prod. Local $\mathsf{p}_{_{\scriptscriptstyle{0}}}$ ATLAS Preliminary Observed p_(category) Expected p (category) $H \rightarrow \gamma \gamma$ Observed p (inclusive) Expected p (inclusive) 1σ 2σ 10⁻² 3σ Largest significance @ 126.5 GeV/c² 10⁻⁴ Data 2011, $\sqrt{s} = 7 \text{ TeV}$ 10⁻⁶ 5σ $Ldt = 4.8 \text{ fb}^{-1}$ 10⁻⁸ 7.4 sigmas $(4.1\sigma \exp)$ 6σ Standalone discovery! Data 2012, \(\sigma = 8 \text{ TeV}\) 10⁻¹⁰ 7σ $Ldt = 20.7 \text{ fb}^{-1}$ 10-12

125

110

115

120

130

135

140

m_⊢ [GeV]

Signal strength and cross-section

Signal strength
$$(m_H = 125.5 \text{ GeV/c}^2)$$

$$\mu = \frac{\sigma \cdot BR}{(\sigma \cdot BR)_{SM}} = 1.55 \pm 0.23_{stat} \pm 0.15_{sys} \pm 0.15_{theo}$$

(slight decrease w.r.t. Moriond2013 due to H $\rightarrow \gamma ff~$ Dalitz decay treatment)

Compatibility with SM Higgs hypothesis $\sim 2\sigma$

Fiducial cross-section

for $|\eta| < 2.37$, $p_T(\gamma) > 30/40 \text{ GeV/c}$

(inclusive analysis to reduce model dependency):

ATLAS

 $H \rightarrow \gamma \gamma$

High p_{Tt} 2 jet high mass (VBF)

 $m_{H} = 125.5 \text{ GeV}$

VH categories $\mu = 1.3^{+1.2}_{-1.1} \pm 0.9$

Total uncertainty

± 1σ on μ

→ σ(stat)

±0.23

σ(sys)

σ(theo)

Sensitivity to VBF and VH production modes thanks to the dedicated categories

(VH : lepton, E_t miss significance, low mass two jets

VBF: high mass two jets)

Sensitivity to VBF and VH production modes thanks to the dedicated categories

(VH : lepton, E_t miss significance, low mass two jets

VBF: high mass two jets)

VBF significance $Z(126.8) \sim 2.0\sigma$

 $\mu_{\mathsf{VBF+VH}} \times \mathsf{B/B}_{\mathsf{SM}}$ Sensitivity to VBF and VH production modes thanks to the dedicated categories

(VH : lepton, E_t miss significance, low mass two jets

VBF: high mass two jets)

⇒ signal model separated in production modes

 $\mu_{\mathsf{VBF+VH}} \times \mathsf{B/B}_{\mathsf{SM}}$ Sensitivity to VBF and VH production modes thanks to the dedicated categories

(VH : lepton, E_t miss significance, low mass two jets

VBF : high mass two jets)

⇒ signal model separated in production modes

$$\mu_{VH} \cdot B/B_{SM} = 1.7^{+1.5}_{-1.3}(stat) \pm 0.3(syst)$$

$$\mu_{VBF} \cdot B/B_{SM} = 1.6 \pm 0.8(stat)^{+0.5}_{-0.4}(syst)$$

$$\mu_{ggF+ttH} \cdot B/B_{SM} = 1.5 \pm 0.3(stat)^{+0.3}_{-0.2}(syst)$$

Mass measurement

⊐.

Systematic uncertainties	(%)
Absolute energy scale (Z→e ⁺ e ⁻)	±0.3
Upstream material simulation accuracies	±0.3
Presampler scale	±0.1
Additional (relative layer calibration, non linearity, etc)	±0.32

 $\Rightarrow \sim 0.7 \text{ GeV/c}^2$

 $m_{\rm H} = 126.8 \pm 0.2_{\rm stat} \pm 0.7_{\rm syst} \, \text{GeV/c}^2$

Mass resolution uncertainty \sim 20 %, with Gaussian constrain in the fit Removing the constraint, the "measured" resolution is better by \sim 30%, and the signal strength decreases by \sim 10%: $\mu=1.49\pm0.33$

m_⊢ [GeV]

dedicated investigations revealed no obvious problem might be a statistical effect from background fluctuation...

Spin studies

Sensitivity through (cosine of) photon production angle in di-photon (Collins Soper) rest frame

Try to disentangle the SM Higgs boson from a singly produced spin J resonance

- → Only J = 2 (J = 1 highly disfavoured from Landau/Yang, higher J not very reasonable
- → Only (pseudo-)minimal model for the time being, no assumption on signal yield

Expected distributions before cuts : SM Higgs boson \rightarrow flat $\cos \theta^*$ distribution

minimal spin 2 :
$$\frac{dN/d\cos\theta^*(gg \to X_2) \sim 1 + 6\cos^2\theta^* + \cos^4\theta^*}{dN/d\cos\theta^*(q\bar{q} \to X_2) \sim 1 - \cos^4\theta^*}$$
 (gg / q \bar{q} = 96 / 4 % for minimal model at LO)

Use inclusive analysis with modified p_T cuts : $p_T^{1,2}/m_{yy} > 0.35 / 0.25$

 \Rightarrow better handling on background shape $\cos \theta^*$ and $m_{\gamma\gamma}$ almost decorrelated shape from side band

 $\cos \theta^*$ shape highly distorted by p_T cuts

Fit assuming SM Events / 0.1 = 0+ Expected ATLAS = 0⁺ Data L dt = 20.7 fb^{-1} $\sqrt{s} = 8 \text{ TeV}$ 200 Bkg. syst. uncertainty 150 100 50

@ spin 2 100% gluon fusion production :

✓ compatibility data / SM : 58.8% (0.5% expected if spin 2 true)

 $|\cos \theta^*|$

✓ spin 2 model p-value : 0.3% (1.2% expected if SM) \Rightarrow minimal spin 2 strongly disfavoured

> Large decrease of sensitivity for large quark annihilation fraction in initial state ⇒ recovered with WW channel

Differential cross-sections

Relatively high signal yield (~ 400 expected, ~ 620 fitted)

⇒ can be used to probe the underlying kinematic properties of production and decay

	$p_{ m T}^{\gamma\gamma} \ y^{\gamma\gamma} $	$ y^{\gamma\gamma} $ Fundamental kinematics, pdf	
Inclusive	$N_{jets} \ \sigma_i/\sigma_{\geq i} \ \cos heta^* $	VH , VBF, $t\bar{t}H$ vs ggH , H.O. H.O. Spin	
	$p_{\mathrm{T}}^{leading\ jet}$	H.O.	
2-jet	$\Delta\phi_{jj}$	Spin-Parity, VBF, H.O.	
z-jet	$p_{\mathrm{T}}^{\gamma\gamma jj}$	VBF, H.O.	

Methodology:

✓ Choose a binning for variable X

Differential cross-sections

Relatively high signal yield (~ 400 expected, ~ 620 fitted)

⇒ can be used to probe the underlying kinematic properties of production and decay

	$p_{ m T}^{\gamma\gamma}$	Fundamental kinematics, H.O.		
	$ y^{\gamma\gamma} $	Fundamental kinematics, pdf		
Inclusive	N_{jets}	VH , VBF, $t\bar{t}H$ vs ggH , H.O.		
	$\sigma_i/\sigma_{\geq i}$	H.O.		
	$ \cos heta^* $	Spin		
1-jet	$p_{ m T}^{leading~jet}$	H.O.		
2-jet	$\Delta\phi_{jj}$	Spin-Parity, VBF, H.O.		
	$p_{\mathrm{T}}^{\gamma\gamma jj}$	VBF, H.O.		

Methodology:

- ✓ Choose a binning for variable X
- ✓ For each bin, extract signal yield from fit to m_{yy} distribution

Differential cross-sections

Relatively high signal yield (~ 400 expected, ~ 620 fitted)

⇒ can be used to probe the underlying kinematic properties of production and decay

	$p_{\mathrm{T}}^{\gamma\gamma}$	Fundamental kinematics, H.O.	
		•	
	$ y^{\gamma\gamma} $	Fundamental kinematics, pdf	
Inclusive	N_{jets}	VH , VBF, $t\bar{t}H$ vs ggH , H.O.	
	$\sigma_i/\sigma_{\geq i}$	H.O.	
	$ \cos heta^* $	Spin	
1-jet	$p_{ m T}^{leading~jet}$	H.O.	
2-jet	$\Delta\phi_{jj}$	Spin-Parity, VBF, H.O.	
2 -jet	$p_{\mathrm{T}}^{\gamma\gamma jj}$	VBF, H.O.	

Methodology:

- ✓ Choose a binning for variable X
- ✓ For each bin, extract signal yield from fit to m_{yy} distribution

Example for N_{jets}

Relatively high signal yield (~ 400 expected, ~ 620 fitted)

⇒ can be used to probe the underlying kinematic properties of production and decay

$ y^{\gamma\gamma} \qquad ext{Fu} \ ext{Inclusive} \qquad N_{jets} \qquad VI \ \sigma_i/\sigma_{\geq i}$		Fundamental kinematics, H.O. Fundamental kinematics, pdf VH , VBF, $t\bar{t}H$ vs ggH , H.O. H.O.	
	$ \cos heta^* $	Spin	
1-jet	$p_{ m T}^{leading~jet}$	H.O.	
2-jet	$\Delta\phi_{jj}$	Spin-Parity, VBF, H.O.	
	$p_{\mathrm{T}}^{\gamma\gamma jj}$	VBF, H.O.	

Methodology:

- ✓ Choose a binning for variable X
- ✓ For each bin, extract signal yield from fit to m_{yy} distribution

Relatively high signal yield (~ 400 expected, ~ 620 fitted)

⇒ can be used to probe the underlying kinematic properties of production and decay

Inclusive	$p_{ ext{T}}^{\gamma\gamma} \ y^{\gamma\gamma} \ N_{jets}$	Fundamental kinematics, H.O. Fundamental kinematics, pdf VH , VBF, $t\bar{t}H$ vs ggH , H.O.	
	$\sigma_i/\sigma_{\geq i} \ \cos heta^* $	H.O. Spin	
1-jet	$p_{ m T}^{leading~jet}$	H.O.	
2-jet	$\Delta\phi_{jj}$	Spin-Parity, VBF, H.O.	
	$p_{\mathrm{T}}^{\gamma\gamma jj}$	VBF, H.O.	

Example for N_{jets} > 9 2500 ATLAS Preliminary $pp \rightarrow H \rightarrow \gamma \gamma$, $\sqrt{s} = 8 \text{ TeV}$ Events / 2000 $\int L \, dt = 20.3 \, \text{fb}^{-1}$ 1500 1000 500 Sig+Bkg Fit Data-Bkg 200 100 -100 110 120 130 140 150 160 m_{yy} [GeV]

Methodology:

- ✓ Choose a binning for variable X
- ✓ For each bin, extract signal yield from fit to m_{yy} distribution
- ✓ Correct raw yields for acceptance, efficiency, resolution : bin-by-bin unfolding

- Same inclusive selection as spin analysis + jet definition : anti- k_t , $\Delta R = 0.4$, $p_T > 30 \text{ GeV/c}$, |y| < 4.4 (same definition at *particle level* μ and ν excluded from clusterisation)
- ► Unfolding to particle level : 2 isolated photons with $p_T/m_{\gamma\gamma} > 0.35/0.25$, $|\eta| < 2.37$ photon isolation : $\sum_{\Delta R(\gamma,p)<0.4} p_T < 14 \text{GeV (sum over stable particles but } \mu \text{ and } \nu)$
 - ⇒ Statically limited but yet already valuable
 No significant deviation from SM predictions

(beyond overall slight excess)

Di-photon p_T spectrum:

Compatibility with SM predictions (shape)

- $P_{\gamma 2} = 0.55$ (POWHEG)
- $P_{\chi 2} = 0.39$ (Hres 1.0)
- → Still very large uncertainties (125% in first bin)
- → Nothing fancy (beyond the overall slight excess)

 $|\cos heta^*|$

$\Delta \phi_{jj}$

Sensitive to parity (and spin)

(e.g. Figy et al, hep-ph/0609075)

Difference w.r.t. spin analysis: (almost-) *model-independent*(whereas spin hypothesis folded in in spin fit)

→ Slight excess for back-to-back topology but nothing significant and predictions not easy...

Conclusions

Signal strength evolution with integrated luminosity:

	Lumi (fb ⁻¹)	$m_H~({ m GeV/c^2})$	$\hat{\mu}$	SM compatibility (σ)
ICHEP 2012	4.8 + 5.9	126.5	1.9 ± 0.5	-
Council 2012	4.8 + 13.0	126.6	$1.80 \pm 0.30 (stat)^{+0.21}_{-0.15} (sys)^{+0.20}_{-0.14} (theo)$	2.4
Moriond 2013	4.8 + 20.7	126.8	$1.65 \pm 0.24 (stat)^{+0.25}_{-0.18} (allsys)$	2.3
July 2013	4.8 + 20.7	125.5 (combined)	$1.55 \pm 0.23(stat) \pm 0.15(sys) \pm 0.15(theo)$	1.9

Prospects

Waiting final calibration for final LHC-runI mass measurement

Coming soon: limits on ttH, resonance width, additional resonances with mass in [70,600] GeV/c2 decaying to γγ

Search for new physics, e.g. FCNC in top quark decay $t \rightarrow cH$, $H \rightarrow \gamma\gamma$

After shutdown: Improved mass and coupling precision CP asymmetries in VBF approaching ttH, constraint on tH

Entering the real era of precision Higgs physics!

References

Couplings : http://inspirehep.net/record/1241574 1307.1427 [hep-ex]

Spin combination: http://inspirehep.net/record/1241575 1307.1432 [hep-ex]

Di-photon Moriond 2013:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-012

Di-photon spin Moriond 2013:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-029

Di-photon differential cross-sections EPS 2013:

To be updated...

backup

Spin vs diff xs

Nominal resolution larger than data resolution ⇒ might over-estimate signal strength

Nominal resolution better than data resolution ⇒ might under-estimate signal strength

Parameterising the most general $X_2 \rightarrow VV$ decay amplitude :

$$A(X \to V_{1}V_{2}) = \Lambda^{-1} \left[2g_{1}^{(2)}t_{\mu\nu}f^{*(1)\mu\alpha}f^{*(2)\nu\alpha} + 2g_{2}^{(2)}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*(1)\mu\alpha}f^{*(2)\nu\beta} + g_{3}^{(2)}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}\left(f^{*(1)\mu\nu}f_{\mu\alpha}^{*(2)} + f^{*(2)\mu\nu}f_{\mu\alpha}^{*(1)}\right) + g_{4}^{(2)}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}f_{\alpha\beta}^{*(2)} + m_{V}^{2}\left(2g_{5}^{(2)}t_{\mu\nu}\epsilon_{1}^{*\mu}\epsilon_{2}^{*\nu} + 2g_{6}^{(2)}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon_{1}^{*\nu}\epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha}\epsilon_{2}^{*\nu}\right) + g_{7}^{(2)}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon_{1}^{*\epsilon}\epsilon_{2}^{*}\right) + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}\tilde{f}_{\alpha\beta}^{*(2)} + m_{V}^{2}\left(g_{9}^{(2)}\frac{t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{*\nu}\epsilon_{2}^{*\rho}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{4}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon_{1}^{*\nu}(q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu}(q\epsilon_{1}^{*})\right)\right],$$

$$(18)$$

$$q \sim = q_1 - q_2$$

 $t_{uv} \sim X_2$ wave function

 \Rightarrow 10 complex coupling constants

(in fact using only polarisation vectors, only seven independent terms)

- \Rightarrow for the gg \rightarrow X₂ \rightarrow $\gamma\gamma$ channel: "only" 5 relevant
- \Rightarrow For a 2⁺ particle, $g_{1-7}(g_{8-10})$ are parity conserving (violating)

Parameterising the most general $X_2 \rightarrow q\bar{q}$ decay amplitude :

$$A(X_{J=2} o qar{q}) = rac{1}{\Lambda} t^{\mu
u} ar{u}_{q_1} \left(\gamma_{\mu} ilde{q}_{
u} \left(
ho_{_1}^{(2)} +
ho_{_2}^{(2)} \gamma_5
ight) + rac{m_q ilde{q}_{\mu} ilde{q}_{
u}}{\Lambda^2} \left(
ho_{_3}^{(2)} +
ho_{_4}^{(2)} \gamma_5
ight)
ight) v_{q_2}$$

Too many degrees of freedom to study spin model-independently: concentrate on the most simple, well motivated model

a spin 2 particle 2⁺_m with minimal coupling, inspired from Gravitation:

- → replacing the Planck scale by the Electroweak scale
- → assigning a mass ~ 126 GeV to the graviton (e.g. the first graviton KK excitation in Randall-Sundrum type models)

$$\Rightarrow$$
 Keep only the term $\propto g_1/\Lambda$ $\qquad \mathcal{L}_2 = \frac{1}{\Lambda} \sum_{i=V,\gamma,q,\psi} k_i \mathcal{T}^i_{\mu\nu} X^{\mu\nu}$

 $T_{\mu\nu}$: energy-momentum tensor Minimal: all k_i identical

For a "true" minimal model, ρ_1/Λ is fixed once g_1/Λ is (there is a single gravitational constant) $\Rightarrow \sigma(qq \to X_2)/\sigma(gg \to X_2) \sim 0.042 \ (\text{@ LO}_{QCD} \ \text{and using CTEQ6L1})$

In Atlas, the fraction of events produced via $q\overline{q}$ annihilation has been scanned (resulting in *a priori "bad"* p_T behaviour : not easy to build a consistent Spin 2 model deviating from minimal...)

This *minimal coupling* scenario is in fact already excluded at a high confidence level from the coupling analysis, since it predicts e.g.

✓
$$\Gamma(gg) = 8\Gamma(\gamma\gamma)$$
 whereas HCP data $\Rightarrow \Gamma(gg) \sim (29\pm13) \Gamma(\gamma\gamma)$

$$\checkmark \kappa_{V} \sim O(35) \kappa_{\gamma}$$
 whereas HCP data $\Rightarrow \kappa_{V} \sim (175\pm25) \kappa_{\gamma}$ (in RS type models)

