Vector-boson pair production at the LHC

Tobias Kasprzik

In collaboration with A. Bierweiler, S. Gieseke, H. Kühn

Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik (TTP)

EPSHEP 2013 Stockholm, Sweden, 18-24 July, 2013

INLO EW Corrections

4 Electroweak Corrections in HERWIG++

5 Summary & Outlook

- ZZ/WW/ $\gamma\gamma$ production important irreducible background to inclusive SM Higgs-boson production
- Probe non-abelian structure of the Standard Model (SM) at high energies
- Search for anomalous couplings
- Backgrounds to new-physics searches, i.e. leptons + $\not{\!\! E}_T$ signatures
 - → SUSY-particle pair production

Extensive study of production of WW, WZ, ZZ, W γ , Z γ , $\gamma\gamma$ at NLO QCD [Campbell, Ellis, Williams

'05; Campbell, Ellis '99; Dixon, Kunszt, Signer '98]

- On-shell leptonic decays of the vector bosons taken into account (narrow-width approximation) retaining all spin information
- Corrections dominated by the $q \bar{q}$ channels
 - Significant contributions of the channels $gg \rightarrow V_1 V_2 \sim 10$ % to LO, although formally at $\mathcal{O}(\alpha_8^2)$ [Glover, van der Bij '89; Kao, Dicus '91; Duhrssen et al. '05]

 Even larger corrections of 30% if event selection for Higgs searches is applied (Binoth et al. '06)

Huge NLO K-factors at high $p_{\rm T}$ in V-pair production, large residual uncertainties

→ need NNLO for accurate predictions!

✓ NNLO QCD for pp→ $\gamma\gamma$ known fully differentially [Bern, de Freitas, Dixon '01; Catani, Cieri, de Florian, Ferrera, Grazzini '12]

- Two-loop matrix elements known for $V\gamma$ [Gehrmann, Tancredi, Weihs, '12/13] and WW (high-energy approx.) [Chachamis, Czakon, Eiras '08] **Recently:** Two-loop master integrals for $q \bar{q} \rightarrow VV$ (planar topologies) [Gehrmann, Tancredi, Weihs '13]
- pp -> VV+jet known at NLO [Dittmaier, Kallweit, Uwer '08; Campanario, Englert, Spannowsky, Zeppenfeld '09/10/11, . . .]
- Missing:
 - non-planar topologies at 2 loop
 - oduble-real radiation with 2 soft/collinear partons
 - pp→ VV+jet at one loop with one soft/collinear parton
- Approximate NNLO result for WZ production provided recently [Campanario, Sapeta '12] using the LOOPSim method [Rubin, Salam, Sapeta '10] (caveat: only reliable at high p T)

QCD at NNLO - Numerical Results

[Campanario, Sapeta [arXiv:1209.4595v1]]

- Huge NLO K-factors at high p_T
- Prominent shift going from NLO to nNLO (larger than NLO scale uncertainty!)
- Reduction of scale uncertainty
- Residual uncertainty due to missing NNLO terms small!
- Low p_T: method does not work, full NNLO still needed!

Electroweak Corrections – Theory Status

• $\mathcal{O}(\alpha)$ high-energy approximation known for all channels, vector bosons treated in pole-approximation \rightarrow final-state leptons phenomenologically accessible [Accomando et al. '02-'06]

- Full O(α) corrections known for Wγ and Zγ production in single-pole approximation [Accomando, Denner, Maier '05]
- NNLL effects at two loops published for the WW channel [Kühn, Metzler, Uccirati, Penin '11]
- We have calculated the full one-loop corrections to on-shell VV production at the LHC [Bierweiler, TK, Kühn, Uccirati '12/13]
- Detailed NLO analysis of massive V-pair production [Baglio, Le Duc Ninh, Weber '13]

Consider anomalous WWZ coupling in $pp \rightarrow W^{\pm}Z \rightarrow I\bar{\nu}_{I}I'\bar{I}'$ at LHC14: ($p_{T,I} > 70 \text{ GeV}$) [Accomando, Kaiser [arXiv:hep-ph/0511088]],

$\Delta y(Z, I)$ and y(Z) distribution

Significant distortion of distributions through aTGCs and EW corrections

- EW corrections may be misinterpreted as signal of aTGCs
 - → EW corrections have to be included in aTGC analysis!

Include leptonic decays → physical final states phenomenologically accessible

Setup

Renormalization:

On-shell scheme (G_{μ}, M_{W}, M_{Z}) to obtain UV finite

Virtual corrections:

IR divergent (regularized by m_{γ} , m_q), compensated by

Real radiation:

remaining collinear singularities to be absorbed in PDFs

Practical implementation:

use MSTW2008LO PDFs [Martin et al. '09] (impact of QED and factorization scheme small, in general sub-percent)

Numerical Results for WW/WZ/ZZ/ $\gamma\gamma$ Production

LHC at 8 TeV, default cuts: $p_{T,V} > 15$ GeV, $|y_V| < 2.5$

- LO: Drastically decreasing cross sections for large p_T
- NLO:
 - Full result, i.e. virtual, soft, hard, and collinear photons included
 - All mass effects included
 - Corrections largest for ZZ, smallest for γγ
- Results published in arXiv:1208.3147, arXiv:1208.3404

W-Pair production at Tree-Level

• Partonic LO contributions at $\mathcal{O}(\alpha^2)$

• Photon-induced contributions at $\mathcal{O}(\alpha^2)$

- Adopt MRST2004ged PDF set [Martin et al. '05]
 - c no error estimate
 - In no input from data for photon PDF
- Potentially large contribution at high invariant masses!
- Now possible: Comparison to NNPDF2.3qed [Carrazza '13], determined from DIS data

[Plots by Juan Rojo (thanks!)]

- Significant discrepancy between MRST2004qed and NNPDF2.3qed for photon PDFs
- $\gamma\gamma \rightarrow$ WW at LHC14: Huge relative corrections at high invariant masses
 - Different predictions for MRST2004qed (+20%) and NNPDF2.3qed (+70%)
 - $\bullet\,$ Huge error (~ $\pm 50\%)$ on <code>NNPDF2.3qed</code> cross section
 - → further constrain photon PDFs through LHC WW production and DY [Carrazza '13 [arXiv: 1307.1131]]
 - Potentially large effects from $q\gamma$ channels [Baglio, Le Duc Ninh, Weber '13]

Purely weak corrections well defined in ZZ production \rightarrow contributions of QED in general below 1%

• compute purely weak corrections to $pp \rightarrow (Z/\gamma^*)(Z/\gamma^*) \rightarrow e^+e^-\mu^+\mu^-$

- LO: full calculation, non-resonant and off-shell effects included.
 - naive fixed-width scheme
 - Complex-Mass Scheme (CMS) [Denner, Dittmaier, Roth, Wieders 2005]
- NLO: Two different approaches, including full spin correlations
 - Double-Pole Approximation (DPA): only doubly resonant contributions included, finite width taken into account (On-shell projection, caveat: non-factorizable corrections neglected)
 - Narrow-Width Approximation (NWA): particles strictly on shell

$$\frac{1}{(\mathsf{Q}^2 - \mathsf{M}^2)^2 + \mathsf{M}^2 \mathsf{\Gamma}^2} \to \frac{\pi}{\mathsf{M} \mathsf{\Gamma}} \delta(\mathsf{Q}^2 - \mathsf{M}^2) \,,$$

valid if $\Gamma/M \to 0$.

$\mathrm{pp} ightarrow (\mathrm{Z}/\gamma^*)(\mathrm{Z}/\gamma^*) + \mathrm{X} ightarrow \mathrm{e}^+\mathrm{e}^-\mu^+\mu^- + \mathrm{X}, \; \Delta y_{\mathrm{ZZ}} < 3$								
$M_{\rm inv}^{\rm cut}(4I)/{\rm GeV}$	$\sigma_{ m LO}^{ m naive}/ m pb$	$\sigma_{ m LO}^{ m CMS}/ m pb$	$\sigma_{ m LO}^{ m DPA}/ m pb$	$\sigma_{ m LO}^{ m NWA}/ m pb$	$\delta_{\rm weak}^{\rm DPA}$ /%			
LHC14								
500	$0.326 imes 10^{-3}$	$0.326 imes 10^{-3}$	$0.319 imes 10^{-3}$	$0.343 imes 10^{-3}$	-15.9			
600	$0.168 imes 10^{-3}$	$0.168 imes 10^{-3}$	$0.164 imes10^{-3}$	$0.177 imes 10^{-3}$	-19.3			
700	$0.962 imes 10^{-4}$	$0.962 imes 10^{-4}$	$0.941 imes10^{-4}$	$1.017 imes10^{-4}$	-22.3			
800	$0.587 imes10^{-4}$	$0.587 imes10^{-4}$	$0.575 imes10^{-4}$	$0.621 imes10^{-4}$	-24.9			
900	$0.374 imes10^{-4}$	$0.374 imes10^{-4}$	$0.367 imes10^{-4}$	$0.397 imes10^{-4}$	-27.4			
1000	$0.247 imes10^{-4}$	$0.247 imes10^{-4}$	$0.242 imes 10^{-4}$	$0.262 imes 10^{-4}$	-29.7			

LHC14, standard leptonic cuts

- LO: DPA works well, NWA: discrepancy of 5–10%
- NLO: Good agreement (~ 1%) with K-factors obtained in Sudakov approximation [Accomando, Denner, Kaiser 2004]
- → QED contributions (real-photon radiation, photon loops, non-factorizable contributions, corrections to Z-boson decay) only at the 1% level

Conclusion: weak *K*-factors of hard process sufficient to describe resonant 4-lepton production at reasonable accuracy

Tobias Kasprzik (KIT)

V-pair production at the LHC

Our strategy

Factorization of EW and QCD corrections:

$$\mathrm{d}\sigma_{\mathrm{QCD} imes\mathrm{EW}} = \textit{K}_{\mathrm{weak}}(\hat{\mathbf{s}},\hat{t}) imes \mathrm{d}\sigma_{\mathrm{QCD}}$$

 $\sigma_{\rm QCD}$: best prediction available for QCD-corrected cross section

- Assumption: bulk of EW effects properly described by weak *K*-factor $K_{\text{weak}}(\hat{s}, \hat{t})$ derived from 2 \rightarrow 2 process.
- FSR included in YFS formalism (SOPHTY) [Hamilton, Richardson 2006] (only dressed leptons)
- $K_{\text{weak}}(\hat{s}, \hat{t})$ computed once and for all, data provided as grid files.

Some caveats:

- factorization assumption only sensible without additional hard jets;
 - \rightarrow EW corrections to ZZ+jet would have to be included in this configuration.
- Ansatz does not include corrections to non-resonant or off-shell contributions.

Simulation for $pp \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^- + X$ at 8 TeV, M_{ZZ} and $p_{T,Z}$ distributions

Standard Herwig++ setup used

(v2.6.2, with simple add-on for EW corrections, 10M events), ZZ at NLO QCD matched with parton showers, hadronization included, underlying event switched off

- huge QCD corrections at large p_{T,Z}, factorized ansatz not justified
 - \rightarrow jet veto, cut on $p_{T,ZZ}$

Tobias Kasprzik (KIT)

Problem:

- In WW and WZ production no gauge-invariant separation of dominant weak corrections and QED possible
- QED contributions inevitably lead to IR singularities
- Real radiation has to be included: numerical integration has to deal with singular integrands, check cancellation of divergences, check that slicing cuts drop out, ...
- Finally, QED effects at the level of 1% (α/π).

Possible solution:

- V + E approximation: Endpoint from subtraction contributions

 virtual corrections
 gives IR finite result [Dittmaier 1999]
- Completely avoid computation of real photon radiation

- Fantastic approximation of full result (better than 1% in WW, WZ production)
- Approximation works well at high $p_{\rm T}$, high invariant masses and near threshold.
- NNLO EW corrections at the level of 5–10% at high p_T [Kühn, Metzler, Penin, Uccirati '11]

Conclusion: Corresponding K-factor should be used for MC implementation.

Tobias Kasprzik (KIT)

4-Lepton Production – Test of our Approach

 $pp \rightarrow (W^+ \rightarrow) e^+ \nu_e \ (Z \rightarrow) \mu^- \mu^+$ at LHC14, standard event-selection cuts (Preliminary results!)

- LO: NWA and DPA work at the level of $\pm 5\%$
- NLO:
 - $\bullet~\delta_{EW};$ Full NLO EW corrections to production process in NWA, spin correlations for decay process included
 - δ_{V+E} : LO in NWA multiplied with $K_{EW}(\hat{s}, \hat{t})$ (unpolarized K-factor used!)
 - → Good agreement at the 1% level for relative corrections
 - → Spin correlations well reproduced!

HERWIG++ Analysis for WW Production – Preliminary!

Simulation for $pp \rightarrow (W^+ \rightarrow)e^+\nu_e (W^- \rightarrow)\mu^-\bar{\nu}_{\mu} + X$ at 8 TeV, M_{WW} and $p_{\Gamma,W}$ distributions

• Standard Herwig++ setup used

(v2.6.2, with simple add-on for EW corrections, 10M events), WW at LO QCD \oplus parton shower, hadronization included, underlying event switched off

V+E approximate results consistent with arXiv:1208.3147

- ✓ Precise predictions for vector-boson pair production at NLO QCD & EW exist.
- ✓ Approximate results at NNLO available → large corrections at high $p_{\rm T}$, reduction of residual theoretical uncertainties
- Photon-induced contributions potentially large → further constrain photon PDFs using LHC data
- $\checkmark~$ We have computed the full EW corrections to $pp \rightarrow~\textit{VV}$ at hadron colliders
 - Leptonic decays have been implemented for WW, ZZ, WZ production, including
 - spin correlations
- EW corrections to ZZ production will be implemented in the ATLAS analysis of the 8 TeV data set \rightarrow anomalous gauge couplings
- We have proposed a straight-forward MC implementation in the <code>HERWIG++</code> setup, relying on 2 \rightarrow 2 K-factors.
 - Claim: predictions match the "true" NLO EW result at the level of a few %.
 - QCD uncertainties (PDFs, hadronization, missing higher orders, . . .) presumably much larger
 - Approach could easily be applied to V+jet, tt production in the future.

Thank you!

Reminder: Calculation of Hadronic Cross Sections

Schematic illustration for $pp \rightarrow V_1 V_2(+\gamma) + X$ $\rightarrow \ell_1 \ell_2 \overline{\ell}_1 \overline{\ell}_2(+\gamma) + X$

Hadronic cross sections

$$d\sigma_{AB}(\boldsymbol{p}_{A},\boldsymbol{p}_{B}) = \sum_{a,b} \int_{0}^{1} d\boldsymbol{x}_{a} \int_{0}^{1} d\boldsymbol{x}_{b} \ \boldsymbol{f}_{a/A}(\boldsymbol{x}_{a},\boldsymbol{\mu}_{F}) \ \boldsymbol{f}_{b/B}(\boldsymbol{x}_{b},\boldsymbol{\mu}_{F}) \ d\hat{\sigma}_{ab}^{\mathrm{NLO}}(\boldsymbol{p}_{a},\boldsymbol{p}_{b},\boldsymbol{\mu}_{F},\boldsymbol{\mu}_{R})$$
$$\times \mathcal{F}^{(4\ell+\gamma)}(\{\mathcal{O}_{\mathrm{FS}}\}), \qquad \boldsymbol{p}_{\{a,b\}}^{\mu} = \boldsymbol{x}_{\{a,b\}} \boldsymbol{P}_{\{A,B\}}^{\mu}$$

Dependence on μ_R, μ_F reduced by inclusion of higher perturbative orders

 F^(4ℓ+γ) incorporates definition of observables + phase-space cuts

Tobias Kasprzik (KIT)

V-pair production at the LHC

Reminder: Calculation of Hadronic Cross Sections

Schematic illustration for $pp \rightarrow \frac{V_1 V_2(+\gamma) + X}{\rightarrow \ell_1 \ell_2 \overline{\ell_1} \overline{\ell_2}(+\gamma) + X}$

Hadronic cross sections

$$d\sigma_{AB}(p_{A}, p_{B}) = \sum_{a,b} \int_{0}^{1} dx_{a} \int_{0}^{1} dx_{b} f_{a/A}(x_{a}, \mu_{F}) f_{b/B}(x_{b}, \mu_{F}) d\hat{\sigma}_{ab}^{\text{NLO}}(p_{a}, p_{b}, \mu_{F}, \mu_{R}) \\ \times \mathcal{F}^{(4\ell+\gamma)}(\{\mathcal{O}_{\text{FS}}\}), \qquad p_{\{a,b\}}^{\mu} = x_{\{a,b\}} P_{\{A,B\}}^{\mu}$$

NLO partonic cross section:

 $\hat{\sigma}_{\textit{ab}}^{\text{NLO}} = \hat{\sigma}_{\textit{ab}}^{\text{LO}} + \hat{\sigma}_{\textit{ab}}^{\text{virt}} + \hat{\sigma}_{\textit{ab}}^{\text{real}}$

LHC at 14 TeV, default cuts: $p_{T,V} > 15$ GeV, $|y_V| < 2.5$

- LO: Drastically decreasing cross sections for large p_T
 NLO:
 - Full result, i.e. virtual, soft, hard, and collinear photons included
 - corrections largest for ZZ, smallest for γγ

LHC at 14 TeV, high-energy cuts: $p_{T,V} > 15$ GeV, $|y_V| < 2.5$, $M_{VV} > 1000$ GeV

- significant distortion of rapidity distributions at large invariant masses
- Corrections could be misinterpreted as signal of anomalous couplings.

■ Lowest order: Amplitude given as a product of on-shell (OS) production amplitude ⊗ on-shell decay amplitude ⊗ Breit–Wigner:

$$\mathcal{M}_{\text{Born,DPA}}^{\tilde{q}_{1}q_{2} \rightarrow V_{1}V_{2} \rightarrow 4f} = \frac{1}{k_{1}^{2} - M_{1}^{2} + iM_{1}\Gamma_{1}} \frac{1}{k_{2}^{2} - M_{2}^{2} + iM_{2}\Gamma_{2}} \times \sum_{\lambda_{1},\lambda_{2}} \mathcal{M}_{\text{Born}}^{\tilde{q}_{1}q_{2} \rightarrow V_{1,\lambda_{1}}V_{2,\lambda_{2}}} \mathcal{M}_{\text{Born}}^{V_{1,\lambda_{1}} \rightarrow f_{3}\tilde{f}_{4}} \mathcal{M}_{\text{Born}}^{V_{2,\lambda_{2}} \rightarrow f_{5}\tilde{f}_{6}}$$

• Use OS-projected momenta \hat{k} [Denner, Dittmaier, Roth, Wackeroth 2000] in the OS matrix elements:

$$\hat{k}_{1,0} = \frac{1}{2}\sqrt{\hat{s}}, \quad \hat{\mathbf{k}}_1 = \frac{\mathbf{k}_1}{|\mathbf{k}_1|}\beta_{\mathrm{W}}\frac{\sqrt{\hat{s}}}{2}, \quad \dots$$

• NLO: EW corrections consist of factorizable and non-factorizable contributions, e.g.

$$\mathcal{M}_{\text{fact}} = \frac{R(k_1, k_2, \theta)}{(k_1^2 - M_1^2 + iM_1\Gamma_1)(k_2^2 - M_2^2 + iM_2\Gamma_2)}$$

Caution: Gauge invariance!

EW corrections to $pp \rightarrow W^+W^- \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu$ (DPA)

- Standard LHC event selection cuts applied to final-state leptons and missing transverse momentum; additionally $M_{e^+\mu^-} > 500$ GeV required
- Large negative corrections at large transverse momenta
- Substantial negative corrections to inclusive observables
- Error due to DPA about 10% in the relative corrections
- EW corrections significantly larger than experimental error throughout the whole energy range (for $L \sim 30 \ {\rm fb}^{-1}$)

[Accomando, Denner, Kaiser: arXiv:0409247 [hep-ph]]

Photon PDFs (MRST2004QED)

• Simple LL ansatz for $f_{\gamma/p}(x, Q_0^2)$

$$f_{\gamma/p}(x, Q_0^2) = \frac{\alpha}{2\pi} \left[\frac{4}{9} \ln \left(\frac{Q_0^2}{m_u^2} \right) f_{u/p,v}(x, Q_0^2) + \frac{1}{9} \ln \left(\frac{Q_0^2}{m_d^2} \right) f_{d/p,v}(x, Q_0^2) \right] \otimes \frac{1 + (1 - x)^2}{x}$$

• Running of $f_{q/p}(x, Q^2)$ at $\mathcal{O}(\alpha)$ affected by photon PDFs!

$$\frac{\partial f_{q/p}(\boldsymbol{x},\mu^2)}{\partial \ln \mu^2} = \frac{\alpha}{2\pi} \int_{\boldsymbol{x}}^1 \frac{\mathrm{d}\boldsymbol{y}}{\boldsymbol{y}} \left[\boldsymbol{P}_{qq}(\boldsymbol{y}) \ \boldsymbol{Q}_q^2 \ f_{q/p}(\boldsymbol{x}/\boldsymbol{y},\mu^2) + \boldsymbol{P}_{q\gamma}(\boldsymbol{y}) \ \boldsymbol{Q}_q^2 \ f_{\gamma/p}(\boldsymbol{x}/\boldsymbol{y},\mu^2) \right]$$

Momentum conservation

$$\int_{0}^{1} \mathrm{d}x \, x \left[\sum_{q} f_{q/p}(x, \mu^{2}) + f_{g/p}(x, \mu^{2}) + f_{\gamma/p}(x, \mu^{2}) \right] = 1$$

- \Rightarrow QED effects on $f_{q/p}(x, \mu^2)$ small!
- \Rightarrow Still large conceptual uncertainties in $f_{\gamma,0}$

Measure Photon PDFs?

Consider the DIS process

$$ep \rightarrow e\gamma + X$$

with high- $p_{\rm T}$ back-to-back e, γ in the final state

$$\sigma(\mathbf{e}\mathrm{p}
ightarrow\mathbf{e}\gamma+X)=\int\mathrm{d}x^{\gamma}f_{\gamma/\mathrm{p}}(x^{\gamma},\mu^{2})\hat{\sigma}(\mathbf{e}\gamma
ightarrow\mathbf{e}\gamma)\,,$$

related to Compton scattering

•
$$\mathbf{X}^{\gamma} = \frac{E_{\mathrm{T}}^{\gamma} E_{\mathrm{e}} \exp(\eta^{\gamma})}{2E_{\mathrm{p}} E_{\mathrm{e}} - E_{\mathrm{T}}^{\gamma} E_{\mathrm{e}} \exp(-\eta^{\gamma})}$$

• $f_{\gamma/p}(x^{\gamma}, \mu^2)$ could be in principle extracted from HERA data!

- $\alpha(0)$: On-shell definition in the Thomson-limit (zero momentum transfer) $\bar{u}(p)\Gamma_{\mu}^{Ae\bar{e}}(p,p)u(p)|_{p^2=m_{\mu}^2} = e(0)\bar{u}(p)\gamma_{\mu}u(p), \alpha(0) = e(0)^2/4\pi$
- $\alpha(M_Z)$ obtained via renormalization-group running from 0 to weak scale M_Z

$$\alpha(M_{\rm Z}) = \frac{\alpha(0)}{1 - \Delta \alpha(M_{\rm Z})}, \quad \Delta \alpha(M_{\rm Z}) = \Pi^{AA}_{f \neq t}(0) - \operatorname{Re} \Pi^{AA}_{f \neq t}(M^2_{\rm Z})$$

• $\alpha_{G_{\mu}}$ defined through the Fermi constant related to the muon lifetime

$$\alpha_{G_{\mu}} = \frac{\sqrt{2}G_{\mu}M_{\mathrm{W}}^{2}s_{\mathrm{w}}^{2}}{\pi} = \frac{\alpha(0)}{1-\Delta r}$$

 Δr includes corrections to muon lifetime not contained in QED-improved Fermi model

• light-fermion mass logs contained in $\prod_{t \neq t}^{AA}(0)$ resummed in effective couplings $\alpha(M_Z)$ and $\alpha_{G_{\mu}}$

Virtual EW Corrections to $\mathrm{pp} \to \mathrm{W}^-\mathrm{W}^+ + X$

- On-shell renormalization of SM parameters
- We use the Fermi scheme to calculate the loop corrections.
 - \rightarrow universal corrections to Δr absorbed in effective LO coupling
- $V_{ij}^{\text{CKM}} = \delta_{ij}$ within the loops \rightarrow no renormalization of V_{ij}^{CKM}

Real EW Corrections – Infrared Singularities

Real photon radiation at $\mathcal{O}(\alpha^3)$ (generic diagrams): $q\bar{q} \rightarrow W^-W^+ + \gamma$

- Soft singularities due to soft photons
- Initial-state collinear singularities due to collinear photon radiation off initial-state quarks → renormalization of PDFs
- Introduce small quark mass m_q and infinitesimal photon mass λ to regularize divergences \rightarrow results exhibit unphysical ln m_q and ln λ terms

Apply phase-space slicing for numerically-stable evaluation of phase-space integral

Two-cut-off phase-space slicing

• Definition of bremsstrahlung phase space:

$$\sigma_{
m real} = \int {
m dPS}({
m W}^-{
m W}^+\gamma) |{\cal M}^\gamma|^2$$

Phase-space decomposition:

$$\sigma_{\rm real} = \sigma_{\rm hard} + \sigma_{\rm soft} + \sigma_{\rm coll}$$

Phase-Space Slicing

• Soft limit: $E_{\gamma} < \Delta E \ll M_{\rm W}$

$$\sigma_{\text{soft}}(\Delta \boldsymbol{E}) = -\sigma_{\text{LO}} \left[\frac{e^2}{(2\pi)^3} \int_{|\mathbf{k}_{\gamma}| < \Delta \boldsymbol{E}} \frac{\mathrm{d}^3 \mathbf{k}_{\gamma}}{2\sqrt{\mathbf{k}_{\gamma}^2 + \lambda^2}} \sum_{ij} \frac{\pm Q_i Q_j(\boldsymbol{p}_i \boldsymbol{p}_j)}{(\boldsymbol{p}_i \boldsymbol{k}_{\gamma})(\boldsymbol{p}_j \boldsymbol{k}_{\gamma})} \right]$$

• Collinear limit: $\theta_{q\gamma} < \Delta \theta \ll 1$, $E_{\gamma} > \Delta E$

$$\sigma_{\operatorname{coll},q}(\Delta \boldsymbol{E}, \Delta \theta) = \frac{\alpha \, \mathsf{Q}_q^2}{2\pi} \int_0^{1-2\Delta \boldsymbol{E}/\sqrt{\$}} \mathrm{d} z \, \frac{(1+z^2)}{1-z} \left(\ln \frac{\hat{\mathsf{s}}(\Delta \theta)^2}{4m_q^2} - \frac{2z}{1+z^2} \right) \sigma_{\operatorname{LO}}(z\hat{\mathsf{s}})$$

- Hard bremsstrahlung: $\theta_{q\gamma} > \Delta \theta$, $E_{\gamma} > \Delta E$; numerical evaluation of $\sigma_{hard}(\Delta E, \Delta \theta)$ without regulators
- Numerical result independent of $\ln \Delta E$ and $\ln \Delta \theta$

$\ln m_q$ and $\ln \lambda$ terms cancel in the sum $\sigma_{virt} + \sigma_{soft} + \sigma_{coll}$ in infrared-safe observables

A problem with unstable particles

Naive implementation of finite width in gauge-boson propagator:

$$rac{-\mathrm{i}g^{\mu
u}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}\epsilon}
ightarrow rac{-\mathrm{i}g^{\mu
u}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}}}$$

 Γ_W includes Dyson summation of self energies, mixing of perturbative orders \rightarrow might destroy gauge invariance (even at leading order!)

[Denner, Dittmaier, Roth, Wieders 2005]

A problem with unstable particles

Naive implementation of finite width in gauge-boson propagator:

$$\frac{-\mathrm{i}g^{\mu\nu}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}\epsilon} \rightarrow \frac{-\mathrm{i}g^{\mu\nu}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}}}$$

 Γ_W includes Dyson summation of self energies, mixing of perturbative orders \rightarrow might destroy gauge invariance (even at leading order!)

 \rightarrow CMS universal solution that

respects gauge invariance

• is valid in all phase-space regions

Straightforward implementation:

• LO:
$$M_V^2 \rightarrow \mu_V^2 = M_V^2 - iM_V\Gamma_V$$
, $\cos^2\Theta_W = \frac{\mu_W^2}{\mu_Z^2}$, $V = W, Z$

NLO:

- Complex renormalization: $\mathcal{L}_0 \rightarrow \mathcal{L} + \delta \mathcal{L}$, bare (real) Lagrangian unchanged!
- Evaluate loop integrals with complex masses

Tobias Kasprzik (KIT)

Low energies: Phase-space and perturbative suppression of $pp \to V_1 V_2 + (W/Z)$ \Rightarrow contribution below 1%

High energies: Logarithmic enhancement of additional soft/collinear W- or Z-boson radiation

 \Rightarrow Investigation of $V_1 V_2 + W/Z$ production as background to V pairs at large p_T , M_{VV}

- invisible decay of $Z \rightarrow \nu \bar{\nu}$
- collinear emission
- Ο...

Simplified approach (details depend on experimental analysis), e.g. W-Pair production:

- Include $pp \rightarrow W^-W^+Z$ with totally inclusive Z
- ② Include $pp \rightarrow W^-W^+W^{\pm}$; treat W^{\pm} with lowest p_T totally inclusively

o corrections below 5% even for large transverse momenta and invariant masses

• corrections to W⁻Z production enhanced due to W⁻ZW⁺ final states (PDFs!)

LHC at 8 TeV, default cuts: $p_{T,V}$ > 15 GeV, $|y_V|$ < 2.5, $p_{T,\gamma}$ > 15 GeV, $|y_{\gamma}|$ < 2.5

- real radiation of hard photons marginal (< 2%)
 - \rightarrow neglect in MC implementation
- corrections largest for WW production

Virtual corrections computed in the FeynArts/FormCalc/LoopTools(FF)

framework [(FA): Küblbeck, Böhm, Denner 1990; (FC,LT): Hahn, Pérez Victoria 1999; Hahn 2001; (FF): van Oldenborgh, Vermaseren 1990]

FeynArts-3.5:

- Automatic generation of diagrams
- Calculation of amplitudes

FormCalc-6.1:

- Algebraical simplification of amplitudes, introduction of tensor coefficients
- Analytical calculation of squared amplitudes
- Spin-, colour- and polarization sums
- Generation of Fortran code

LoopTools-2.5:

- Numerical Passarino–Veltman reduction within Fortran
- Numerically-stable evaluation of scalar integrals

Bremsstrahlung amplitudes computed with FeynArts/FeynCalc \oplus

Madgraph [Alwall et al.], numerical phase-space integration within Fortran using the Vegas algorithm

$pp \rightarrow ZZ + X$								
ZZ polarizations	summed	LL	L+	++	+-			
LHC8								
$\sigma_{\rm LO}/{\rm pb}$ $\delta\sigma_{\rm weak}/{\rm pb}$	3.810 -0.179(-0.155)	0.223 -0.009(-0.008)	0.396 -0.016(-0.014)	$10^{-1} \times [0.559 \\ -0.002(-0.002)]$	2.676 -0.134(-0.117)			
$p_{\mathrm{T,Z}} > 500 \mathrm{GeV}$ $\sigma_{\mathrm{LO}}/\mathrm{pb}$ $\delta \sigma_{\mathrm{weak}}/\mathrm{pb}$	$10^{-2} \times [0.101 \\ -0.039(-0.030)]$	$10^{-7} \times [0.202 \\ -0.975(+0.748)]$	$10^{-5} \times [0.779 \\ -0.204(-0.157)]$	$10^{-8} \times [0.504 \\ -0.895(-0.425)]$	$10^{-3} \times [0.996 \\ -0.383(-0.293)]$			
$ ho_{T,Z} > 1000 \text{ GeV}$ σ_{LO}/pb $\delta \sigma_{weak}/pb$	$10^{-5} \times [0.919 \\ -0.557(-0.387)]$	$10^{-10} \times [0.121 \\ -2.599(+14.909)]$	$10^{-7} \times [0.231 \\ -0.098(-0.070)]$	$10^{-11} \times [0.303 \\ -1.742(+1.043)]$	$10^{-5} \times [0.915 - 0.555(-0.387)]$			

- small transverse momenta: 70% from (+-), similar *K*-factors for all polarizations.
- large transverse momenta: 99% from (+-), other contributions negligible.
- Note: One-loop squared term (given in brackets) contributes at $\sim 10\%$
 - → large uncertainties due to missing EW higher orders.

Conclusion: One *K*-factor sufficient to describe polarized ZZ production

$pp \rightarrow W^-W^+(\gamma)$ – Numerical Results

No cuts

- LO cross section dominated by qq̄ contributions
- Rapid decrease of cross section for increasing invariant masses

- EW corrections small even for large values of *M*_{WW}
- Large contributions (+80%!) from $\gamma\gamma \rightarrow WW$ at high invariant masses
- ⇒ Leptonic decays?

LHC acceptance cuts

- LO cross section dominated by qq
 q
 contributions
- Rapid decrease of cross section for increasing invariant masses
- Employ LHC cuts on decay products: $p_{T,l} > 20$ GeV, $|y_l| < 3$, $p_{T,miss} > 25$ GeV
- ⇒ relative effect of $\gamma\gamma \rightarrow WW$ reduced by factor 2 at large M_{WW}

Default cuts: $p_{\mathrm{T,W}\pm}$ > 15 GeV, $y_{\mathrm{W}\pm}$ < 2.5

- WW production dominated by events near threshold, isotropic production at small Δy_{WW}
- 5% increase of cross section by gg channel

- EW corrections at the percent level
- Sizable contributions from $\gamma\gamma$ at large $|\Delta y_{WW}|$

Default cuts: $p_{\mathrm{T,W^{\pm}}} >$ 15 GeV, $|y_{\mathrm{W^{\pm}}}|$ < 2.5

- assume $\int \mathcal{L} dt = 200 \text{ fb}^{-1}$ $\Rightarrow 1000 \text{ WW events with } p_{\text{T}} > 500 \text{ GeV}$
- decreasing admixture of gg, increasing admixture of $\gamma\gamma$

- large admixture of $\gamma\gamma$ (10%!)
- large negative EW corrections (-45%), comparable to QCD corrections

No compensation between $\gamma \gamma \rightarrow WW$ and weak corrections! \implies Different angular distributions!

•
$$\sigma(\gamma\gamma \to WW) \to \frac{8\pi\alpha^2}{M_W^2}$$
 for large \hat{s}

⇒ strong enhancement in forward & backward directions

weak corrections:

negative Sudakov logs for large \hat{s} and \hat{t}

- ⇒ negative corrections for large scattering angles
- gg small, isotropic
- implications for $d\sigma/d\Delta y_{WW}$ with $\Delta y_{WW} = y_{W^+} y_{W^-}$ (for fixed M_{WW} this corresponds to the angular distribution in the W-W rest frame!)

Numerical Results (II) – pp \rightarrow W⁻W⁺(γ)

High-energy cuts: $p_{T,W^{\pm}} > 15$ GeV, $y_{W^{\pm}} < 2.5$, $M_{WW} > 1$ TeV

- WW production dominated by small scattering angles
- drastic forward-backward peaking of $\gamma\gamma \rightarrow WW$
- drastic distortion of angular distribution
- $\Sigma \delta$ varies from -30% and +45% for $M_{WW} > 1$ TeV!

Very-high-energy cuts: $p_{T,W^{\pm}} > 15$ GeV, $y_{W^{\pm}} < 2.5$, $M_{WW} > 3$ TeV

- NLO EW as important as QCD
- extreme distortion due to $\gamma\gamma$ (caveat: high uncertainty in photon PDFs)

Transverse-momentum distribution at the LHC8

Invariant-mass distribution at the LHC8

Transverse-momentum distribution at the Tevatron

Invariant-mass distribution at the Tevatron

Simulation for $pp \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^- + X$ at 8 TeV, $M_{e^+\mu^-}$ and $p_{T,I}$ distributions

- Standard Herwig++ setup used (v2.6.2, with simple add-on for EW corrections, 10M events), ZZ at NLO QCD matched with parton showers, hadronization included, underlying event switched off
- Implementation seems to work fine