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The CLIC detector and physics study

• Pre-collaboration structure based on “Memorandum of Cooperation” (MoC):
http://lcd.web.cern.ch/lcd/Home/MoC.html
• CERN acts as host laboratory
• At the moment 17 institutes from 14 countries, more contributors most welcome!

http://lcd.web.cern.ch/lcd/Home/MoC.html
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CLIC in one slide

• Based on 2-beam acceleration scheme
• Operated at room temperature
• Gradient: 100 MV/m
• Staged construction: ≈350 GeV up to 3 TeV
• High luminosity (a few 1034 cm-2s-1) 

CLIC is the most mature option for a multi-TeV future e+e- collider
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CLIC energy stages
• CLIC will be implemented in stages: optimised running conditions
over a wide energy range
• The energy stages are defined by physics with additional
technical considerations
→ strategy can be adapted to discoveries at the LHC

 
Example scenario:

• Stage 1: 350 / 375 GeV
Higgs & top mass measurement

• Stage 2: 1.4 TeV
BSM physics, precision Higgs 
measurements

• Stage 3: 3 TeV
BSM physics, precision Higgs
measurements
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Top mass at Linear Colliders
1.) From reconstructed invariant mass
(500 GeV, L

int
 = 100 fb-1)

+ Experimentally well defined
+ Can be performed at any energy 
above threshold → large statistics
- Difficult to translate the result into 
a theoretically well-defined quantity

2.) From threshold scan
(350 GeV, L

int
 = 10 ˣ 10 fb-1)

+ Theoretically well understood, can be 
calculated to higher orders
- Needs dedicated running of 
the accelerator (but ≈ 350 GeV also very
important for Higgs physics)
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Top reconstruction at lepton colldiers

• Top quarks produced in pairs 
in electron-positron annihilation

• Top quark pairs 
(relatively) easy to identify

→ Focus on fully hadronic and
semi-leptonic final states:

- large available statistics

- the four vectors of both
top quarks can be reconstructed
(neutrino = missing momentum
for semi-leptonic events)
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MC samples and event reconstruction

• PYTHIA and WHIZARD 
for event generation

• Full detector simulation 
using Geant4

• Event reconstruction using
particle flow analysis (Pandora PFA)

• Key challenge at CLIC: 
pileup from γγ → hadrons interactions
→ rejected by combined 
timing & p

T
 cuts 

for reconstructed 
particles and using 
hadron-collider type 
jet reconstruction algorithms

( () )
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Analysis strategy (1)
1.) Group events using the number 
of isolated leptons (electrons or muons):
• fully-hadronic: no leptons
• semi-leptonic: 1 lepton
• 2 leptons → rejected here

2.) Jet reconstruction using 
the exclusive k

T
 algorithm:

→ 4 jets for semi-leptonic events, 
6 jets for fully-hadronic events

3.) Flavour tagging: the two most 
likely b-jet candidates are identified

4.) W pairing: grouping jets and 
leptons into W candidates
→ unique for the semi-leptonic case, 
use combination with 
minimal deviations from nominal 
W mass for all-hadronic final state

500 GeV
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Analysis strategy (2)
5.) Kinematic fit → use energy &
momentum conservation 
to constrain the event

• Association of W candidates and 
b-jets to top candidates 
performed in this step
• Enforces equal t and t mass 
→ only one mass measurement per event
• Already good rejection 
of non-tt background

6.) Further background 
rejection using likelihood
based on event variables (sphericity, b-tags, multiplicity, W masses, max. distance 
for which 4 or 6 jets are found, difference of the two top masses without kinematic fit)

High selection efficiencies:
• 34% (44%) for fully-hadronic (semi-leptonic) events at 500 GeV
• 92% at threshold

500 GeV
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Results from invariant mass

500 GeV, L
int

 = 100 fb-1

• Non-tt background very small

• Width less well constrained 
than mass 
(peak width ≈5 GeV larger than 
top width of 1.4 GeV)
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Threshold scan

• NNLO cross section from 
TOPPIK (Hoang & Teubner)

• Initial-state radiation (ISR) 
and luminosity spectrum (LS) affect the 
cross section as a function 
of the centre-of-mass energy

• Selection efficiency and background 
levels from full detector simulation
→ expected precision for measured
data points
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Results from threshold scan

• The cross section in the 
threshold region depends 
on the strong 
coupling constant α

s

• The 1S top mass and α
s
 are 

simultaneously extracted in a 2D fit 

Δ
stat

(m
t
) 34 MeV

Δ
stat

(α
s
) 0.0009

• Impact of 3% and 1% 
uncertainties on the 
normalisation of the 
theory calculation:

1% norm. uncert. 3% norm. uncert.

Δ
theo

(m
t
) 5 MeV 8 MeV

Δ
theo

(α
s
) 0.0008 0.0022
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Comparison to the ILC
Same analysis, but using the ILC luminosity 
spectrum with narrower main peak
→ Steeper rise of the cross section 
at the threshold

Compared to CLIC:
≈20% smaller uncertainty on m

t

≈10% smaller uncertainty on α
s

Theoretical uncert. unchanged

Luminosity
spectra for
CLIC and IlC

Δ
stat

(m
t
) 27 MeV

Δ
stat

(α
s
) 0.0008

ILC
CLIC detector
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Systematic uncertainties: invariant mass

No full study of systematic uncertainties yet, but key issues were
investigated:

• Possible bias from top mass and width assumptions in detector
resolutions: below statistical uncertainty if varied → no bias found

• Jet energy scale: can be constrained in-situ to better than 1% for 
light quark jets using the reconstructed W mass, similar performance 
expected for b-jets using Z and ZZ events
→ resulting uncertainties smaller than statistical precision of the 
measurement

The interpretation of the measurement currently leads to 
theoretical uncertainties large compared to 
the experimental error
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Systematic uncertainties: threshold scan

In addition to the theory normalisation uncertainty other sources of
systematic uncertainty were studied:

• Shift of measurement points to higher energies by 0.5 GeV:
results unchanged → precision of LHC sufficient to define range

• Normalisation of non-tt background: 5% variation leads to 18 MeV
shift in top mass

• Beam energy: 10-4 uncertainty on the centre-of-mass energy leads 
to a 30 MeV uncertainty on the mass

• Luminosity spectrum: 20% uncertainty of the RMS width of the 
main luminosity peak leads to 75 MeV uncertainty on top mass,
realistic studies of the uncertainties on the CLIC luminosity spectrum
ongoing
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Summary
• A linear collider operated at and above the tt threshold allows to 
perform two complementary measurements of the top mass:

- Direct reconstruction using the invariant mass distribution
- Threshold scan

• For both techniques total experimental uncertainties on the level
of 100 MeV are within reach for 100 fb-1 of data

• Only small differences in precision found between CLIC and ILC

More information:
• K. Seidel et al., Top quark mass measurements at and above 
threshold at CLIC, arXiv:1303.3758
• CLIC CDR Vol. 3, The CLIC programme: towards a staged e+e- 
Linear Collider exploring the Terascale, arXiv:1209.2543
• CLIC CDR Vol. 2, Physics and Detectors at CLIC, arXiv:1202.5904
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Backup slides
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Selected CLIC parameters

Drive timing
requirements
for CLIC detector

CLIC at 3 TeV

L (cm-2s-1) 5.9 · 1034

Bunch separation 0.5 ns

#Bunches / train 312

Train duration 156 ns

Train rep. rate 50 Hz

Crossing angle 20 mrad

Particles / bunch 3.72 · 109

σ
x
/σ

y
 (nm) ≈ 45 / 1

σ
z 
(μm) 44

Very small beam profile
at the interaction point
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Beam related backgrounds

• e+e- pairs
• γγ → hadrons
• Beam halo muons

Coherent e+e- pairs:
7 · 108 per BX, very forward
Incoherent e+e- pairs:
3 · 105 per BX, rather forward
→ Detector design issue
(high occupancies)

γγ → hadrons
• “Only” 3.2 per BX at 3 TeV
• Main background
in calorimeters and trackers
→ Impact on physics BX = bunch crossing
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Luminosity spectrum

Significant energy loss at the interaction point due to Beamstrahlung

Full luminosity: L = 5.9 · 1034 cm-2s-1

In the most energetic 1%:
(“peak luminosity”) L

0.01
 = 2.0 · 1034 cm-2s-1

Most physics processes are studies
well above the production threshold
→ Profit from (almost) full luminosity

s '=4⋅E 1⋅E 2
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CLIC detector concepts

CLIC_ILD CLIC_SiD

All benchmark studies are based on full detector simulations (Geant4)

Based on ILC concepts (ILD and SiD), adapted to CLIC conditions
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Background suppression

Triggerless readout of full bunch train:

t
0
 of physics event

1.) Identify t
0
 of physics event in offline event filter

• Define reconstruction window around t
0

• All hits and tracks in this window are passed to the reconstruction
→ Physics objects with precise p

T
 and cluster time information

2.) Apply cluster-based timing cuts
• Cuts depend on particle-type, p

T
 and detector region

→ Protects physics objects at high p
T

tCluster
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Time windows and hit resolutions

Used in the reconstruction software for CDR simulations:

• CLIC hardware requirements
• Achievable in the calorimeters with a
sampling every ≈ 25 ns
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Impact of the timing cuts

e+e- → H+H- → tbbt (8 jet final state)

1.2 TeV background
in the reconstruction
window

100 GeV background
after (tight) timing cuts
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Jet reconstruction at CLIC I

Timing
cuts

Two jets + missing energy

• Using Durham k
T
 à la LEP

→ Timing cuts are effective,
but not sufficient
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Jet reconstruction at CLIC II

Timing
cuts

Two jets + missing energy

• Using Durham k
T
 à la LEP

→ Timing cuts are effective,
but not sufficient

• “hadron collider” k
T
, R = 0.7

→ Background significantly
reduced further
→ Need timing cut + jet finding
for background reduction 
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W+W- and ZZ
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Test of the di-jet mass reconstruction

Chargino and neutralino pair production:

82%

17%

Reconstruct W±/Z/h in hadronic decays
→ four jets and missing energy

Precision on the measured
gaugino masses (few hundred GeV):
1 - 1.5%
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Test of the lepton reconstruction

• Slepton production very clean at CLIC
• SUSY “model II”: slepton masses ≈ 1 TeV
• Investigated channels include:

• Leptons and
missing energy
• Masses from
endpoints of
energy spectra

Example: Smuons
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Complex final states
Heavy Higgs bosons: Flavour tagging crucial!
e+e- → HA → bbbb
e+e- → H+H- → tbbt

Accuracy of the heavy Higgs mass measurements: ≈ 0.3%
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