

Top quark mass measurements at and above threshold in e⁺e⁻ collisions at Linear Colliders

Philipp Roloff (CERN) on behalf of the CLIC detector and physics study

The CLIC detector and physics study

• Pre-collaboration structure based on "Memorandum of Cooperation" (MoC): http://lcd.web.cern.ch/lcd/Home/MoC.html

- CERN acts as host laboratory
- At the moment 17 institutes from 14 countries, more contributors most welcome!

CLIC in one slide

CLIC is the most mature option for a multi-TeV future e⁺e⁻ collider

- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Staged construction: ≈350 GeV up to 3 TeV
- High luminosity (a few 10³⁴ cm⁻²s⁻¹)

Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5].

CLIC energy stages

- CLIC will be implemented in stages: optimised running conditions over a wide energy range
- The energy stages are defined by physics with additional technical considerations
- \rightarrow strategy can be adapted to discoveries at the LHC

Top mass at Linear Colliders

cLC

- **1.) From reconstructed invariant mass** (500 GeV, $L_{int} = 100 \text{ fb}^{-1}$)
- + Experimentally well defined
 + Can be performed at any energy above threshold → large statistics
 - Difficult to translate the result into a theoretically well-defined quantity
- **2.) From threshold scan** (350 GeV, $L_{int} = 10 \times 10 \text{ fb}^{-1}$)
- + Theoretically well understood, can be calculated to higher orders
 Needs dedicated running of the accelerator (but ≈ 350 GeV also very important for Higgs physics)

- Top quarks produced in pairs in electron-positron annihilation
- Top quark pairs (relatively) easy to identify
- \rightarrow Focus on fully hadronic and semi-leptonic final states:
 - large available statistics
 - the four vectors of both
 top quarks can be reconstructed
 (neutrino = missing momentum
 for semi-leptonic events)

e+jets 15%

'dilepto

u+jets 15%

"lepton+jets"

 PYTHIA and WHIZARD 		type		final	σ	σ
for event generation				state	(500 GeV)	(352 GeV)
ior event generation						
. Full data star size dation		Signal ($m_{top} = 174 \text{ GeV}$)		$t\bar{t}$	530 fb	450 fb
		Background		WW	7.1 pb	11.5 pb
using Geant4		Background		ZZ	410 fb	865 fb
		Background		$q\bar{q}$	2.6 pb	25.2 pb
 Event reconstruction using 		Background		WWZ	40 fb	10 fb
particle flow analysis (Pane	dora PFA)					•
• Key challenge at CLIC: pileup from $\gamma\gamma \rightarrow$ hadrons \rightarrow rejected by combined timing & p _T cuts for reconstructed particles and using hadron-collider type jet reconstruction algorithm	interaction γ/γ^* γ/γ^* γ/γ^*	s q q	electron	pt ne	noton Manufacture	pion
Jet reconstruction algorithms			electron		y 1 4 1/1 1/1	111

Analysis strategy (1)

1.) Group events using the number of isolated leptons (electrons or muons):

- fully-hadronic: no leptons
- semi-leptonic: 1 lepton
- 2 leptons \rightarrow rejected here

2.) Jet reconstruction using the exclusive k_{T} algorithm:

 \rightarrow 4 jets for semi-leptonic events, 6 jets for fully-hadronic events

3.) Flavour tagging: the two most likely b-jet candidates are identified

4.) W pairing: grouping jets and leptons into W candidates
→ unique for the semi-leptonic case, use combination with minimal deviations from nominal W mass for all-hadronic final state

5.) Kinematic fit \rightarrow use energy & momentum conservation ନ ଅପ୍ତ ଅପ୍ତର tt fully-hadronic decay to constrain the event ·····w/o kinematic fit entries / (2 with kinematic fit 800 Association of W candidates and b-jets to top candidates 600 500 GeV performed in this step Enforces equal t and t mass 400 \rightarrow only one mass measurement per event Already good rejection CLIC 200 of non-tt background **1**00 150 250 200 top mass [GeV] 6.) Further background

6.) Further background rejection using likelihood

based on event variables (sphericity, b-tags, multiplicity, W masses, max. distance for which 4 or 6 jets are found, difference of the two top masses without kinematic fit)

High selection efficiencies:

- 34% (44%) for fully-hadronic (semi-leptonic) events at 500 GeV
- 92% at threshold

Results from invariant mass

500 GeV, L_{int} = 100 fb⁻¹

channel	$m_{\rm top}$	$\Delta m_{\rm top}$	$\Gamma_{\rm top}$	$\Delta\Gamma_{ m top}$
fully-hadronic	174.049	0.099	1.47	0.27
semi-leptonic	174.293	0.137	1.70	0.40
combined	174.133	0.080	1.55	0.22

- Non-tt background very small
- Width less well constrained than mass

(peak width ≈5 GeV larger than top width of 1.4 GeV)

Threshold scan

- NNLO cross section from TOPPIK (Hoang & Teubner)
- Initial-state radiation (ISR) and luminosity spectrum (LS) affect the cross section as a function of the centre-of-mass energy

 Selection efficiency and background levels from full detector simulation
 → expected precision for measured data points

Results from threshold scan

 The cross section in the പ്പ threshold region depends 0.120 on the strong coupling constant α_{α} 0.118 • The 1S top mass and α_{e} are simultaneously extracted in a 2D fit 0.116 34 MeV $\Delta_{\text{stat}}(m_{t})$ 173.95 $\Delta_{\rm stat}(\alpha_{\rm s})$ 0.0009

 Impact of 3% and 1% uncertainties on the normalisation of the theory calculation:

	1% norm. uncert.	3% norm. uncert.
$\Delta_{_{theo}}(m_{_t})$	5 MeV	8 MeV
$\Delta_{_{theo}}(\alpha_{_{s}})$	0.0008	0.0022

174.00

 2σ

CLIC

174.05

top mass [GeV]

 1σ

[174.00 GeV: 0.1179]

Comparison to the ILC

Compared to CLIC:

≈20% smaller uncertainty on m_t^{t} ≈10% smaller uncertainty on α_s^{t} Theoretical uncert. unchanged

No full study of systematic uncertainties yet, but key issues were investigated:

- Possible bias from top mass and width assumptions in detector resolutions: below statistical uncertainty if varied \rightarrow no bias found
- Jet energy scale: can be constrained in-situ to better than 1% for light quark jets using the reconstructed W mass, similar performance expected for b-jets using Z and ZZ events
 → resulting uncertainties smaller than statistical precision of the measurement

The interpretation of the measurement currently leads to theoretical uncertainties large compared to the experimental error

de

In addition to the theory normalisation uncertainty other sources of systematic uncertainty were studied:

- Shift of measurement points to higher energies by 0.5 GeV: results unchanged \rightarrow precision of LHC sufficient to define range
- Normalisation of non-tt background: 5% variation leads to 18 MeV shift in top mass
- Beam energy: 10⁻⁴ uncertainty on the centre-of-mass energy leads to a 30 MeV uncertainty on the mass
- Luminosity spectrum: 20% uncertainty of the RMS width of the main luminosity peak leads to 75 MeV uncertainty on top mass, realistic studies of the uncertainties on the CLIC luminosity spectrum ongoing

Summary

- A linear collider operated at and above the $t\bar{t}$ threshold allows to perform two complementary measurements of the top mass:
 - Direct reconstruction using the invariant mass distribution
 - Threshold scan
- For both techniques total experimental uncertainties on the level of 100 MeV are within reach for 100 fb⁻¹ of data
- Only small differences in precision found between CLIC and ILC

More information:

• K. Seidel et al., *Top quark mass measurements at and above threshold at CLIC*, arXiv:1303.3758

- CLIC CDR Vol. 3, *The CLIC programme: towards a staged* e⁺e⁻ *Linear Collider exploring the Terascale*, arXiv:1209.2543
- CLIC CDR Vol. 2, *Physics and Detectors at CLIC*, arXiv:1202.5904

Backup slides

Selected CLIC parameters

Beam related backgrounds

Coherent e^+e^- pairs: 7 · 10⁸ per BX, very forward Incoherent e^+e^- pairs: 3 · 10⁵ per BX, rather forward \rightarrow Detector design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- "Only" 3.2 per BX at 3 TeV
- Main background in calorimeters and trackers
- \rightarrow Impact on physics

Significant energy loss at the interaction point due to **Beamstrahlung**

Based on ILC concepts (ILD and SiD), adapted to CLIC conditions

All benchmark studies are based on full detector simulations (Geant4)

- Define reconstruction window around t
- All hits and tracks in this window are passed to the reconstruction \rightarrow Physics objects with precise p_r and cluster time information

2.) Apply cluster-based timing cuts

- Cuts depend on particle-type, p_{τ} and detector region
- \rightarrow Protects physics objects at high p₁

tCluster

Used in the reconstruction software for CDR simulations:

Subdetector	Reconstruction window	hit resolution		
ECAL	10 ns	1 ns		
HCAL Endcaps	10 ns	1 ns		
HCAL Barrel	100 ns	🖊 1 ns		
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns		
TPC	entire bunch train	n/a		
	 • CLIC hardware requirements • Achievable in the calorimeters with a sampling every ≈ 25 ns 			

Impact of the timing cuts

$e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (8 jet final state)

1.2 TeV background in the reconstruction window

100 GeV background after (tight) timing cuts

Jet reconstruction at CLIC I

Jet reconstruction at CLIC II

 $e^+e^- \to \tilde{q}_R \tilde{q}_R \to q \overline{q} \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$

Two jets + missing energy

- Using Durham k_⊤ à la LEP
 → Timing cuts are effective, but not sufficient
- "hadron collider" k_{T} , R = 0.7
- \rightarrow Background significantly reduced further

 \rightarrow Need timing cut + jet finding for background reduction

Figure 19: Separation of *W* and *Z* from the chargino decay without overlay (left) and with 60 BX of background (right) for CLIC_SiD.

Test of the di-jet mass reconstruction

Chargino and neutralino pair production:

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} W^{+} W^{-}$$

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow hh \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \qquad 82\%$$

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \rightarrow Zh \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \qquad 17\%$$

Reconstruct $W^{\pm}/Z/h$ in hadronic decays \rightarrow four jets and missing energy

Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

Test of the lepton reconstruction

- Slepton production very clean at CLIC
- SUSY "model II": slepton masses ≈ 1 TeV
- Investigated channels include:

$$\begin{split} e^+e^- &\rightarrow \tilde{\mu}_R^+\tilde{\mu}_R^- \rightarrow \mu^+\mu^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \\ e^+e^- &\rightarrow \tilde{e}_R^+\tilde{e}_R^- \rightarrow e^+e^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \\ e^+e^- &\rightarrow \tilde{\nu}_e\tilde{\nu}_e \rightarrow e^+e^-W^+W^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \end{split}$$

$m(\tilde{\mu}_{\rm R})$	•	$\pm 5.6 \text{GeV}$
$m(\tilde{e}_{R})$	•	$\pm 2.8\text{GeV}$
$m(\tilde{v}_{e})$	•	$\pm 3.9 \text{GeV}$
$m(\tilde{\chi}_1^0)$	•	$\pm 3.0 \text{GeV}$
$m(\tilde{\chi}_1^{\pm})$	•	$\pm 3.7 \text{GeV}$

Flavour tagging crucial!

Heavy Higgs bosons: $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$

Accuracy of the heavy Higgs mass measurements: $\approx 0.3\%$