

Measurement of the Mass of the W boson at DØ

- Motivation for the precise W mass measurement
- Signatures, Observables, Measurement strategy
- Data sample
- Electron Energy Response Model
- Hadron Recoil Model
- Measurement Results, Prospects
- Summary

T. Kurča on behalf of DØ collaboration IPNL, Université Lyon 1, CNRS/IN2P3

Motivation for precise W mass measurement

• In SM there is a relationship between $M_W, M_t, M_H \rightarrow W$ mass can be expressed:

$$M_W = \sqrt{\frac{\pi \alpha}{\sqrt{2}G_F}} \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$$

- Radiative corrections Δr recieve large contributions from top quark and Higgs loops
- \rightarrow Precise M_W an M_t measurements constrain M_H (and vice-versa...)
- $\Delta r \sim M_t^2 \qquad \Delta r \sim \ln(M_H)$
- Additional loops can be generated in SM extensions, e.g. SUSY
 - → Sensitive to new physics

Motivation continued

- Constraints inconsistent with direct searches would indicate new physics
- For equal contribution to M_H constraints the precision needed: $\Delta M_W \sim 5 \text{ MeV}$

 $\Delta M_W \sim 0.006 \Delta M_t$

World average 2012: $\Delta M_W = 15 \text{ MeV}$

- The limiting factor here is ΔM_W not ΔM_t !!!
- Improving the M_W measurement is an important contribution to our understanding of EW interactions
- one of the Tevatron legacy measurements

Event Signatures

- Isolated, high pT leptons
- Hadronic recoil energy

But the required measurement precision is of the $\mathcal{O}(0.01\%)$ resp. $\mathcal{O}(1\%)$!!!

Experimental Observables

extract W mass from 3 observables transversal to the beam direction:

Electron p_T W transverse mass M_T Missing E_T $M_T = \sqrt{2E_T^e E_T^{\nu} (1 - \cos \Delta \phi_{e\nu})}$

complementary observables, not completely correlated

 $p_T(e)$ most affected by $p_T(W)$

 M_{T}

less sensitive to transverse motion of W

- sensitive to detector resolution effects

Measurement Strategy

• Compare M_T , $p_T(e)$, E_T data with MC templates generated with different M_W hypotheses

◆ Templates generation: Parametrized MC Simulation (~10 9 events)
 → detector efficiencies, energy response and resolutions

Generator:

ResBos - W, Z/γ^* production and decay kinematics perturbative NLO at high boson p_T , gluon resummation at low p_T

Photos - FSR radiations up to 2 photons

WGRAD, ZGRAD - for full QED corrections estimation

Detector simulation:

parametric functions, binned look-up tables based on detailed GEANT simulations + fine-tuning on control data samples Z→ee, Zero Bias, Minimum Bias

- Blinded analysis: M_W from binned likelihood fits common offset for all observables by some hidden value
 - results were unblinded after completing all consistency checks for W/Z events
- Combination of results from different distributions

Data Taking Periods

Analysis 4.3 fb⁻¹ of data collected 2006-2009 in W \rightarrow e ν decay mode

(DØ calorimeter well-suited for a precise electron energy measurements)

+ combination with results from Run IIa

Event Selection

Event selection

- CAL only trigger (single EM)
- vertex $z < 60 \, cm$

Electron selection

- $p_T > 25 GeV$
- HMatrix7 < 12, emf > 0.9 and iso < 0.15
- $\eta_{\rm det} < 1.05$ in the calorimeter fiducial region
- In the calorimeter ϕ fiducial region, as determined from the track
- ullet Spatial track match, track with $p_T>10GeV$ and at least one SMT hit

$Z \rightarrow ee$ selection

- At least two good electrons
- Hadronic recoil transverse momentum $u_T < 15 \, GeV$
- Invariant mass $70 < m_{ee} < 110 \, GeV$

$W \to e \nu$ selection

- At least one good electron
- Hadronic recoil transverse momentum $u_T < 15 \, GeV$
- Transverse mass $50 < m_T < 200 \, GeV$
- $E_T > 25 GeV$

Number of candidates after selection: 54,512 (Z \rightarrow e e) 1,677,394 (W \rightarrow e ν)

Electron Energy Response Model

- $Z \rightarrow$ ee used to calibrate the EM calorimeter response Z (m, Γ) known with high precision from LEP
- model corrections for dead material, underlying event, noise etc.
- $E_{meas} = \alpha E_{true} + \beta$ use energy spread of electrons in $Z \rightarrow ee$ decays to constrain scale α , offset β
- consistency checkse.g. at different luminosities
- closure test with full MC.

Electron Energy Resolution

• driven by two components:

sampling fluctuations (S) and constant term (C)

$$\frac{\sigma_{\text{EM}}(E)}{E} = \sqrt{C_{EM}^2 + \frac{S_{EM}^2(E,\theta)}{E}}$$

correct simulation verified by Z mass peak from the data

constant term C=(2.00+- 0.07)%
 essentially fit to observed width of Z peak
 Run II design goal (2%)

Z-mass from the fit corresponds to the input that was used in the determination of the calorimeter response

Compare to PDG: MZ = 91.188 ± 0.002 GeV

Hadronic Recoil Model

- ullet $ec{u}_T^{
 m HARD}$ models the hadronic energy from the W recoil.
- $\vec{u}_T^{\rm SOFT}$ models the soft hadronic activity from zero bias and minimum bias activity. $\vec{u}_T^{\rm ELEC} = -\sum_e \Delta u_\parallel \cdot \hat{p}_T(e) + \vec{p}_T^{\rm LEAK}$ models the recoil energy that was reconstructed under the electron cone, as well as any energy form the electron that leaked outside the cone.
- \vec{u}_T^{FSR} models the out-of-cone FSR that is reconstructed as hadronic recoil.

Recoil Calibration

• tuning of the momentum imbalance η_{lmb} with standard UA2 observables

 η_{lmb} : $\vec{p}_T(ee) + \vec{u}_T$ projection on the axis bisecting the dielectron opening angle

W Mass Measurement Results

PRL 108, 151804 (2012) arXiv:1203.0293

Method $(4.3 fb^{-1})$	M_W (MeV)
$m_T(e, \nu)$	$80371 \pm 13 ({\sf stat})$
$p_T(e)$	$80343 \pm 14 (stat)$
$ \rlap{/}E_T(e,\nu) $	$80355 \pm 15 ({\sf stat})$
Combination $m_T \oplus p_T \ (4.3 fb^{-1})$	$80367 \pm 26 (\text{syst} + \text{stat})$
Combination $(5.3 fb^{-1})$	$80375 \pm 23 (ext{syst} + ext{stat})$

Further Improvements: 10 fb⁻¹

- Central electrons only: $\Delta M_W = 19 \text{ MeV}$ improvements due to the higher statistics
 - electron shower model, electron energy loss based still on 1fb⁻¹ analysis but higher instantaneous luminosity → bigger pileup, underlying events better estimation of QED corrections (Powheg generator)
- Central + end cap electrons $\eta \rightarrow 2.5 : \Delta M_w = 15 \text{ MeV}$
 - strong reduction of PDF uncertainty detector instrumentation, pileup \rightarrow very challenging analysis:
 - material tune and calorimeter calibration
 - →new electron shower, energy, reconstruction and efficiency models

Status - Projections

Source	Public. 2009 (1.0 fb^{-1})	Public. 2012 (4.3 fb^{-1})	Proj. 10 fb^{-1}	Proj. $10 \text{ fb}^{-1} \text{ improv.}$	Proj. 10 fb^{-1} improv. $+ \text{ EC}$
Statistical	23	13	9	9	8
Experimental syst.					
Electron energy scale	34	16	11	11	10
Electron energy resolution	2	2	2	2	2
EM shower model	4	4	4	2	2
Electron energy loss	4	4	4	2	2
Hadronic recoil	6	5	3	3	2
Electron ID efficiency	5	1	1	1	1
Backgrounds	2	2	2	2	2
Subtotal experimental syst.	35	18	13	12	11
$oldsymbol{W}$ production					
and decay model					
PDF	9	11	11	11	5
QED	7	7	7	3	3
boson p_T	2	2	2	2	2
Subtotal W model	12	13	13	12	6
Total systematic uncert.	37	22	19	17	13
Total	44	26	21	19	15

combination: 23

Summary

- W boson mass measured in W $\rightarrow e\nu$ channel with 4.3 fb⁻¹ of D0 data with the precision of $\Delta M_w = 26 \text{ MeV}$
- combined with data from Runlla 1 fb⁻¹ $\Delta M_W = 43 \text{ MeV}$ -achieved the precision of the previous world average $\Delta M_W = 23 \text{ MeV}$
- DØ-only prospects to improve the precision:
 - analysis with full dataset (central electrons only) $\rightarrow \Delta M_W = 19 \text{ MeV}$
 - plus inclusion of end cap electrons $(\eta \rightarrow 2.5)$ $\rightarrow \Delta M_W = 15 \text{ MeV}$ dramatical reduction of PDF uncertainties
- Current world average ΔM_W = 15 MeV
 → The experimental precision on m(W) continues to be the limiting factor in the test of the standard model (compare to ~5 MeV)
- Not the final word from Tevatron yet
 - work in progress on further improvements of the precision

Backup slides

Backgrounds

Z→ee ~ 1.08%, QCD ~ 1.02%, W→ $\tau\nu$ →e $\nu\nu\nu$ ~1.67%

Hadronic Recoil Model

Variables useful to study the recoil system and the e-direction correlations:

$$u_{II} = \vec{u}_T \cdot \hat{p}_T^e \qquad u_{\perp} = \vec{u}_T \cdot (\hat{p}_T^e \times \hat{z})$$

$$\vec{u}_T = \vec{u}_T^{\mathrm{HARD}} + \vec{u}_T^{\mathrm{SOFT}} + \vec{u}_T^{\mathrm{ELEC}} + \vec{u}_T^{\mathrm{FSR}}$$

- $m{u}_T^{
 m HARD}$ models the hadronic energy from the W recoil.
- ullet $ec{u}_T^{
 m SOFT}$ models the soft hadronic activity from zero bias and minimum bias activity.
- $\vec{u}_T^{\,\mathrm{ELEC}} = -\sum_e \Delta u_\parallel \cdot \hat{p}_T(e) + \vec{p}_T^{\,\mathrm{LEAK}}$ models the recoil energy that was reconstructed under the electron cone, as well as any energy form the electron that leaked outside the cone.
- ullet $ec{u}_T^{
 m FSR}$ models the out-of-cone FSR that is reconstructed as hadronic recoil.

Energy Flows

Hard Recoil

- EM calorimeter provides very good electron Energy measurement
 - → Energy resolution 3.3% (at E=45 GeV)
 - → Energy scale calibration focus
 - → Detailed calorimeter, E flow model

Energy flow $\mathcal{O}()$:

Electron	50 GeV
Hadronic recoil	5 GeV
Hadronic energy under cone	200 MeV
Final state radiation	100 MeV
Electron shower leakage	50 MeV