Constraining extended Higgs sectors with HiggsSignals

Oscar Stål The Oskar Klein Centre Stockholm University

EPS-HEP Stockholm 2013-07-19

Work done in collaboration with P. Bechtle, S. Heinemeyer, T. Stefaniak, and G. Weiglein

Constraining new physics using LHC Higgs results

Exclusion Limits

Remains an important handle to constrain extended Higgs sectors even after discovery

→ HiggsBounds

Mass/rate measurements

Additional information from the observed signal mass(es) and rates can also be used to constrain BSM theories

→ HiggsSignals

HiggsSignals

Companion program to HiggsBounds.
Uses the same input structure -> Easy to get started

http://higgsbounds.hepforge.org

Tests compatibility of arbitrary models to observed and future *measurements* of signals in Higgs searches

- Currently limited to hadron collider physics, but can easily be extended to e⁺e⁻ if there is an interest
- Current version: 1.0.0 (released May 9, 2013)
- Physics description and user manual published

P. Bechtle, S. Heinemeyer, OS, T. Stefaniak, G. Weiglein, [arXiv:1305.1933]

Experimental data

Basic quantity used in HiggsSignals is the signal strength modifiers

Both historic, present and future (also toy) data can be used.
 User-accessible data format (text files)

Observables included for the LHC 125 GeV signal

Theory input

- To test a model, the user has to provide HiggsSignals with input:
 - Number of neutral (and charged) Higgs bosons
 - Higgs masses
 - Production cross sections
 - Total decay widths (narrow width approximation must be valid)
 - Decay branching ratios
- There are a number of physics options to give these predictions: hadronic cross sections, partonic cross sections, effective couplings
- And a number of technical interfaces to do it: data files, SLHA (for MSSM/NMSSM), library of subroutines ... all documented in the manual and example programs provided

Rate predictions

Signal rate prediction for a single Higgs boson in one analysis:

$$\mu = \sum_{i} c_i \omega_i$$

• Individual channel signal rate $c_i = \frac{[\sigma \times BR]_i}{[\sigma_{SM} \times BR_{SM}]_i}$

• Channel weights (evaluated in the SM) $\omega_i = \frac{\epsilon_i \left[\sigma_{\rm SM} \times BR_{\rm SM}\right]_i}{\sum_j \epsilon_j \left[\sigma_{\rm SM} \times BR_{\rm SM}\right]_j}$

- Narrow width approximation must be applicable
- Predictions for multiple Higgs bosons contributing to the same signal are added incoherently (interference effects neglected)

Peak-Centered χ^2 method

- Tests compatibility of data observed at specified signal mass values, "peaks", against model predictions
- This determines if the model provides one (or more) Higgs bosons that can explain the observed signal(s)
- Example:
 Observed LHC signal around 125 GeV
- Most sane theories would now like to have a reasonably SM-like Higgs boson at this mass
- Test complementary to exclusion limits for multi-Higgs models

Details of peak-centered χ^2 method

 Global χ² function calculated from comparing model to experiment, using Gaussian approximation, including correlations of theory + luminosity unc. included

$$\chi^2_{\mu} = \sum_{\alpha=1}^{N} \chi^2_{\mu,\alpha} = (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})^T \mathbf{C}_{\mu}^{-1} (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})$$

• χ^2 for mass observables added: $\chi^2_{\rm tot} = \chi^2_\mu + \chi^2_m$

Required assignment: $|m_i - \hat{m}_{\alpha}| \leq \Lambda \sqrt{(\Delta m_i)^2 + (\Delta \hat{m}_{\alpha})^2}$

Allowed assignment outside this range only for observables with mass measurement if it improves the overall χ^2

Fit of coupling scale factors

 Fit to universal coupling scale factors κ (SM: κ_i = 1) Assumes structure of couplings unchanged wrt SM

[1209.0040]

 HiggsSignals procedure validated against official ATLAS/CMS fits Here: Full Moriond data from LHC/Tevatron included

Allowing for new decay modes

$$\kappa_u = \kappa_d = \kappa_\ell = \kappa_F$$

$$BR(H \to NP)$$

 $\kappa_W = \kappa_Z = \kappa_V$

 Degeneracy between increased production and invisible decay The total Higgs width is not accessible at the LHC

Including constraint on invisible decays

Observed

ATLAS Preliminary

ZH→II(inv) √s=7TeV, ∫ Ldt=4.7fb⁻¹ √s=8TeV, | Ldt=13.0fb⁻¹

····· Expected

ATLAS 2013-011

8

3

2E 1E

-2InA Assuming new decays are truly invisible (= generate E_{τ} -miss) we can use ATLAS results to constrain $\Gamma_{\rm H}$

MSSM benchmark scenarios

 New benchmark scenarios for LHC MSSM Higgs searches [1302.7033]
 Compatibility with observed 125 GeV Higgs signal (HS/HB) (SM-like lightest Higgs boson h in decoupling limit)

13

Example: Low-M_H MSSM scenario

Heavy CP-even MSSM Higgs at 125 GeV
 Lightest Higgs below (SM) LEP limit, suppressed hZZ couplings

Conclusions

- HiggsBounds is an established and convenient tool to apply exclusion limits from direct Higgs searches to arbitrary models
- A new sister code, HiggsSignals, has been published to take into account LHC/Tevatron *measurements* and evaluate the χ² function for compatibility data <-> theory
- Our general strategy for this code is to take all public information into account, and try to keep the code up to date with latest results
- HiggsSignals has been validated against official coupling fits
 First applications to coupling scale factors and the MSSM

http://higgsbounds.hepforge.org

Backup

Mass-Centered χ^2 method

- Compares model prediction to measured data directly at the *predicted* Higgs mass values
- Combines rate predictions for Higgs bosons that are "nearby" in mass (within exp. resolution)
- Applicability of this method is currently limited by available exp. results, e.g. M_H < 200 GeV

 Can be used simultaneously with peak-centered method for Higgs bosons that have not been assigned to any signal

Validation

 Tree-level couplings kept as in the SM, only loop-induced couplings fitted (probe of new physics contributions)

Higgs coupling scale factors

 Interim framework proposed by LHCXSWG for fitting (small) deviations from the SM Higgs couplings

[1209.0040]

- Assumes structure of couplings unchanged from SM, only coupling strengths modified
- Large deviations from the SM should be interpreted with care

1)
$$\kappa_{u} = \kappa_{d} = \kappa_{\ell} = \kappa_{F}$$
 Optional:
 $\kappa_{W} = \kappa_{Z} = \kappa_{V}$ BR $(H \to NP)$
2) $\kappa_{u}, \kappa_{d}, \kappa_{\ell}$
 $\kappa_{W} = \kappa_{Z} = \kappa_{V}$ BR $(H \to NP)$
 $\kappa_{g}, \kappa_{\gamma}$

Derived scale factors

$$\kappa_{g}^{2}(\kappa_{b},\kappa_{t},m_{H}) = \frac{\kappa_{t}^{2} \cdot \sigma_{ggH}^{tt}(m_{H}) + \kappa_{b}^{2} \cdot \sigma_{ggH}^{bb}(m_{H}) + \kappa_{t}\kappa_{b} \cdot \sigma_{ggH}^{tb}(m_{H})}{\sigma_{ggH}^{tt}(m_{H}) + \sigma_{ggH}^{bb}(m_{H}) + \sigma_{ggH}^{tb}(m_{H})}$$
$$\kappa_{\gamma}^{2}(\kappa_{b},\kappa_{t},\kappa_{\tau},\kappa_{W},m_{H}) = \frac{\sum_{i,j}\kappa_{i}\kappa_{j} \cdot \Gamma_{\gamma\gamma}^{ij}(m_{H})}{\sum_{i,j}\Gamma_{\gamma\gamma}^{ij}(m_{H})}$$

Higgs coupling scale factors

Produc	tion	modes	Detectable decay modes					
$rac{\sigma_{ m ggH}}{\sigma_{ m ggH}^{ m SM}}$	_	$\begin{cases} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) \\ \kappa_{\rm g}^2 \end{cases}$	$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}}$	=	κ_W^2			
$rac{\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}^{\mathrm{SM}}}$	=	$\kappa_{\rm VBF}^2(\kappa_{\rm W},\kappa_{\rm Z},m_{\rm H})$	$\frac{\Gamma_{\rm ZZ^{(*)}}}{\Gamma^{\rm SM}_{\rm ZZ^{(*)}}}$	=	κ_Z^2			
$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}}$	=	$\kappa_{ m W}^2$	$\frac{\Gamma_{b\overline{b}}}{\Gamma^{SM}}$	=	κ_b^2			
$rac{\sigma_{ m ZH}}{\sigma_{ m ZH}^{ m SM}}$	=	$\kappa_{\rm Z}^2$	$\frac{\Gamma_{b\overline{b}}}{\Gamma_{\tau^{-}\tau^{+}}}$	=	κ^2			
$rac{\sigma_{ m t\bar{t}H}}{\sigma^{ m SM}}$	=	κ_t^2	$\Gamma^{SM}_{\tau^-\tau^+}$		'τ			
$O_{t\overline{t}}H$			$\frac{\Gamma_{\gamma\gamma}}{\Gamma^{SM}_{\gamma\gamma}}$	=	$\begin{cases} \kappa_{\gamma}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{\gamma}^{2} \end{cases}$			
			$\frac{\Gamma_{Z\gamma}}{\Gamma^{SM}_{Z\gamma}}$	=	$\begin{cases} \kappa_{(Z\gamma)}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{(Z\gamma)}^{2} \end{cases}$			

Parameter values for MSSM benchmark scenarios

Parameter	$m_h^{ m max}$	$m_h^{ m mod+}$	$m_h^{ m mod}-$	$light\ stop$	light stau	au-phobic	$low-M_H$			
m_t	173.2	173.2	173.2	173.2	173.2	173.2	173.2			
M_A	varied	varied	varied	varied	varied	varied	110			
aneta	varied	varied	varied	varied	varied	varied	varied			
$M_{ m SUSY}$	1000	1000	1000	500	1000	1500	1500			
$M_{ ilde{l}_3}$	1000	1000	1000	1000	245~(250)	500	1000			
$X_t^{\rm OS}/M_{ m SUSY}$	2.0	1.5	-1.9	2.0	1.6	2.45	2.45			
$X_t^{\overline{\mathrm{MS}}}/M_{\mathrm{SUSY}}$	$\sqrt{6}$	1.6	-2.2	2.2	1.7	2.9	2.9			
A_t	Given by $A_t = X_t + \mu \cot \beta$									
A_b	$=A_t$	$= A_t$	$= A_t$	$=A_t$	$= A_t$	$= A_t$	$=A_t$			
$A_{ au}$	$=A_t$	$= A_t$	$= A_t$	$=A_t$	0	$= A_t$	$=A_t$			
μ	200	200	200	350	500 (450)	2000	varied			
M_1	Fixed by GUT relation to M_2									
M_2	200	200	200	350	200(400)	200	200			
$m_{ ilde{g}}$	1500	1500	1500	1500	1500	1500	1500			
$M_{ ilde{q}_{1,2}}$	1500	1500	1500	1500	1500	1500	1500			
$M_{ ilde{l}_{1,2}}$	500	500	500	500	500	500	500			
$A_{f eq t,b, au}$	0	0	0	0	0	0	0			