3 - Mass-Induced Neutrino Flavor Oscillations

Neutrino Flavor change can arise out of several different mechanisms. The simplest one is to appreciate that, once **neutrinos have mass**, leptons can mix. This turns out to be the correct mechanism (certainly the dominant one), and **only** explanation that successfully explains **all** long-baseline data consistently.

Neutrinos with a well defined mass:

$$\nu_1, \nu_2, \nu_3, \ldots$$
 with masses m_1, m_2, m_3, \ldots

How do these states (neutrino mass eigenstates) relate to the neutrino flavor eigenstates $(\nu_e, \nu_\mu, \nu_\tau)$?

$$\nu_{\alpha} = \underline{U_{\alpha i}}\nu_i \qquad \alpha = e, \mu, \tau, \quad i = 1, 2, 3$$

U is a unitary mixing matrix. I'll talk more about it later.

March 25,26,28, 2013 ______ Neutrino Physics

The Propagation of Massive Neutrinos

Neutrino mass eigenstates are eigenstates of the free-particle Hamiltonian: $|\nu_i\rangle = e^{-iE_it}|\nu_i\rangle, \qquad E_i^2 - |\vec{p_i}|^2 = m_i^2$

The neutrino flavor eigenstates are linear combinations of ν_i 's, say:

$$|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle.$$
$$|\nu_{\mu}\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle.$$

If this is the case, a state produced as a ν_e evolves in vacuum into

$$|\nu(t,\vec{x})\rangle = \cos\theta e^{-ip_1x}|\nu_1\rangle + \sin\theta e^{-ip_2x}|\nu_2\rangle.$$

It is trivial to compute $P_{e\mu}(L) \equiv |\langle \nu_{\mu} | \nu(t, z = L) \rangle|^2$. It is just like a two-level system from basic undergraduate quantum mechanics! In the ultrarelativistic limit (always a good bet), $t \simeq L$, $E_i - p_{z,i} \simeq (m_i^2)/2E_i$, and

$$P_{e\mu}(L) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

$$\pi \frac{L}{L_{\text{osc}}} \equiv \frac{\Delta m^2 L}{4E} = 1.267 \left(\frac{L}{\text{km}}\right) \left(\frac{\Delta m^2}{\text{eV}^2}\right) \left(\frac{\text{GeV}}{E}\right)$$

- amplitude $\sin^2 2\theta$

There is a long (and oftentimes confused and confusing) history behind this derivation and several others. A comprehensive discussion can be found, for example, in

E.K. Akhmedov, A. Yu. Smirnov, 0905.1903 [hep-ph]

In a nutshell, neutrino oscillations as described above occur whenever

- Neutrino Production and Detection are Coherent \rightarrow cannot "tell" ν_1 from ν_2 from ν_3 but "see" ν_e or ν_μ or ν_τ .
- Decoherence effects due to wave-packet separation are negligible → baseline not too long that different "velocity" components of the neutrino wave-packet have time to physically separate.
- The energy released in production and detection is large compared to the neutrino mass → so we can assign all of the effect to the neutrino propagation, independent from the production process. Also assures ultra-relativistic approximation good.

Figure 4. Zenith angle distribution for fully-contained single-ring *e*-like and μ -like events, multi-ring μ -like events, partially contained events and upward-going muons. The points show the data and the solid lines show the Monte Carlo events without neutrino oscillation. The dashed lines show the best-fit expectations for $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations. From M. Ishitsuka [Super-Kamiokande Collaboration], hep-ex/0406076. March 25,26,28, 2013 _______ Neutrino Physics

Northwestern

André de Gouvêa _

K2K	$ u_{\mu}$ at KEK	SK	L=250 km
MINOS	$ u_{\mu} $ at Fermilab	Soundan	L=735 km
Opera/Icarus	$ u_{\mu}$ at CERN	Gran Sasso	L=740 km

Confirmation of ATM oscillations

MINOS 2006: spectral distortion

Confirmation of ATM oscillations

[Gonzalez-Garcia, PASI 2006]

Neutrino Physics

Matter Effects

The neutrino propagation equation, in the ultra-relativistic approximation, can be re-expressed in the form of a Shrödinger-like equation. In the mass basis:

$$i \frac{\mathrm{d}}{\mathrm{d}L} |\nu_i\rangle = \frac{m_i^2}{2E} |\nu_i\rangle,$$

up to a term proportional to the identity. In the weak/flavor basis

$$i \frac{\mathrm{d}}{\mathrm{d}L} |\nu_{\beta}\rangle = U_{\beta i} \frac{m_i^2}{2E} U_{i\alpha}^{\dagger} |\nu_{\alpha}\rangle.$$

In the 2×2 case,

$$i\frac{\mathrm{d}}{\mathrm{d}L}\left(\begin{array}{c}|\nu_e\rangle\\|\nu_\mu\rangle\end{array}\right) = \frac{\Delta m^2}{2E}\left(\begin{array}{cc}\sin^2\theta&\cos\theta\sin\theta\\\cos\theta\sin\theta&\cos^2\theta\end{array}\right)\left(\begin{array}{c}|\nu_e\rangle\\|\nu_\mu\rangle\end{array}\right),$$

(again, up to additional terms proportional to the 2×2 identity matrix).

Fermi Lagrangian, after a Fiertz rearrangement of the charged-current terms:

$$\mathcal{L} \supset \bar{\nu}_{eL} i \partial_{\mu} \gamma^{\mu} \nu_{eL} - 2\sqrt{2} G_F \left(\bar{\nu}_{eL} \gamma^{\mu} \nu_{eL} \right) \left(\bar{e}_L \gamma_{\mu} e_L \right) + \dots$$

Equation of motion for one electron neutrino state in the presence of a non-relativistic electron background, in the rest frame of the electrons:

$$\langle \bar{e}_L \gamma_\mu e_L \rangle = \delta_{\mu 0} \frac{N_e}{2}$$

where $N_e \equiv e^{\dagger} e$ is the average electron number density (at rest, hence $\delta_{\mu 0}$ term). Factor of 1/2 from the "left-handed" half.

Dirac equation for a one neutrino state inside a cold electron "gas" is (ignore mass)

$$(i\partial^{\mu}\gamma_{\mu} - \sqrt{2}G_F N_e \gamma_0) |\nu_e\rangle = 0.$$

In the ultrarelativistic limit, (plus $\sqrt{2}G_F N_e \ll E$), dispersion relation is

$$E \simeq |\vec{p}| \pm \sqrt{2} G_F N_e, \qquad + \text{ for } \nu, \quad - \text{ for } \bar{\nu}$$

$$i\frac{\mathrm{d}}{\mathrm{d}L}\left(\begin{array}{c}|\nu_e\rangle\\|\nu_\mu\rangle\end{array}\right) = \left[\frac{\Delta m^2}{2E}\left(\begin{array}{cc}\sin^2\theta&\cos\theta\sin\theta\\\cos\theta\sin\theta&\cos^2\theta\end{array}\right) + \left(\begin{array}{cc}A&0\\0&0\end{array}\right)\right]\left(\begin{array}{c}|\nu_e\rangle\\|\nu_\mu\rangle\end{array}\right),$$

 $A = \pm \sqrt{2}G_F N_e$ (+ for neutrinos, - for antineutrinos).

Note: Similar effect from neutral current interactions common to all (active) neutrino species \rightarrow proportional to the identity.

In general, this is hard to solve, as A is a function of L: two-level non-relativistc quantum mechanical system in the presence of time dependent potential.

In some cases, however, the solution is rather simple.

Constant A: good approximation for neutrinos propagating through matter inside the Earth [exception: neutrinos that see Earth's internal structure (the crust, the mantle, the outer core, the inner core)]

$$i\frac{\mathrm{d}}{\mathrm{d}L} \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \end{pmatrix} = \begin{pmatrix} A & \Delta/2\sin 2\theta \\ \Delta/2\sin 2\theta & \Delta\cos 2\theta \end{pmatrix} \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \end{pmatrix}, \quad \Delta \equiv \Delta m^2/2E.$$
$$P_{e\mu} = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta_M L}{2}\right),$$

where

$$\Delta_M = \sqrt{(A - \Delta \cos 2\theta)^2 + \Delta^2 \sin^2 2\theta},$$

$$\Delta_M \sin 2\theta_M = \Delta \sin 2\theta,$$

$$\Delta_M \cos 2\theta_M = A - \Delta \cos 2\theta.$$

The presence of matter affects neutrino and antineutrino oscillation differently. Nothing wrong with this: CPT-theorem relates the propagation of neutrinos in an electron background to the propagation of antineutrinos in a positron background.

March 25,26,28, 2013 ______ Neutrino Physics

March 25,26,28, 2013 ____

Enlarged parameter space in the presence of matter effects.

For example, can tell whether $\cos 2\theta$ is positive or negative.

The MSW Effect

Curiously enough, the oldest neutrino puzzle is the one that is most subtle to explain. This is because solar neutrinos traverse a strongly varying matter density on their way from the center of the Sun to the surface of the Earth.

For the Hamiltonian

$$\left[\Delta \left(\begin{array}{cc} \sin^2\theta & \cos\theta\sin\theta\\ \cos\theta\sin\theta & \cos^2\theta \end{array}\right) + A \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right)\right],$$

it is easy to compute the eigenvalues as a function of A:

(remember, $\Delta = \Delta m^2/2E$)

March 25,26,28, 2013 _

_ Neutrino Physics

A decreases "slowly" as a function of $L \Rightarrow$ system evolves adiabatically.

$$|\nu_e\rangle = |\nu_{2M}\rangle$$
 at the core $\rightarrow |\nu_2\rangle$ in vacuum,
 $P_{ee}^{\text{Earth}} = |\langle \nu_e | \nu_2 \rangle|^2 = \sin^2 \theta.$

Note that $P_{ee} \simeq \sin^2 \theta$ applies in a wide range of energies and baselines, as long as the approximations mentioned above apply —ideal to explain the energy independent suppression of the ⁸B solar neutrino flux!

Furthermore, large average suppressions of the neutrino flux are allowed if $\sin^2 \theta \ll 1$. Compare with $\bar{P}_{ee}^{\text{vac}} = 1 - 1/2 \sin^2 2\theta > 1/2$.

One can expand on the result above by loosening some of the assumptions. $|\nu_e\rangle$ state is produced in the Sun's core as an *incoherent* mixture of $|\nu_{1M}\rangle$ and $|\nu_{2M}\rangle$. Introduce adiabaticity parameter P_c , which measures the probability that a $|\nu_{iM}\rangle$ matter Hamiltonian state will not exit the Sun as a $|\nu_i\rangle$ mass-eigenstate.

$$|\nu_e\rangle \longrightarrow |\nu_{1M}\rangle$$
, with probability $\cos^2 \theta_M$,
 $\rightarrow |\nu_{2M}\rangle$, with probability $\sin^2 \theta_M$,

where θ_M is the matter angle at the neutrino production point.

$$|\nu_{1M}\rangle \rightarrow |\nu_{1}\rangle$$
, with probability $(1 - P_{c})$,
 $\rightarrow |\nu_{2}\rangle$, with probability P_{c} ,
 $|\nu_{2M}\rangle \rightarrow |\nu_{1}\rangle$ with probability P_{c} ,
 $\rightarrow |\nu_{2}\rangle$ with probability $(1 - P_{c})$.

 $P_{1e} = \cos^2 \theta$ and $P_{2e} = \sin^2 \theta$ so

$$P_{ee}^{\text{Sun}} = \cos^2 \theta_M \left[(1 - P_c) \cos^2 \theta + P_c \sin^2 \theta \right] + \sin^2 \theta_M \left[P_c \cos^2 \theta + (1 - P_c) \sin^2 \theta \right].$$

For $N_e = N_{e0}e^{-L/r_0}$, P_c , (crossing probability), is exactly calculable

$$P_c = \frac{e^{-\gamma \sin^2 \theta} - e^{-\gamma}}{1 - e^{-\gamma}}, \quad \gamma = 2\pi r_0 \Delta.$$
(1)

Adiabatic condition: $\gamma \gg 1$, when $P_c \rightarrow 0$.

March 25,26,28, 2013 _____ Neutrino Physics

Solar Neutrino Survival Probability

 $\Delta\chi^2$

March 25,26,28, 2013 _

Neutrino Physics

André de Gouvêa

Survival Probability

Solar oscillations confirmed by Reactor experiment: KamLAND

[arXiv:1303.4667]

March 25,26,28, 2013 _

 ν_e oscillation parameters compatible with $\overline{\nu}_e$: Sensible to assume CPT: $P_{ee} = P_{\overline{e}\overline{e}}$

$$\Delta m_{\odot}^{2} = \left(8^{+0.4}_{-0.5}\right) \times 10^{-5} \text{ eV}^{2} \quad (1\sigma)$$
$$\tan^{2} \theta_{\odot} = 0.45^{+0.05}_{-0.05}$$

[Gonzalez-Garcia, PASI 2006]

Neutrino Physics

Atmospheric Oscillations in the Electron Sector: Daya Bay, RENO, Double Chooz

Summarizing:

Both the solar and atmospheric puzzles can be properly explained in terms of two-flavor neutrino oscilations:

- solar: $\nu_e \leftrightarrow \nu_a$ (linear combination of ν_μ and ν_τ): $\Delta m^2 \sim 10^{-4} \text{ eV}^2$, $\sin^2 \theta \sim 0.3$.
- atmospheric: $\nu_{\mu} \leftrightarrow \nu_{\tau}$: $\Delta m^2 \sim 10^{-3} \text{ eV}^2$, $\sin^2 \theta \sim 0.5$ ("maximal mixing").
- short-baseline reactors: $\nu_e \leftrightarrow \nu_a$ (linear combination of ν_{μ} and ν_{τ}): $\Delta m^2 \sim 10^{-3} \text{ eV}^2$, $\sin^2 \theta \sim 0.02$.

Putting it all together -3 flavor mixing:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{e\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Definition of neutrino mass eigenstates (who are ν_1, ν_2, ν_3 ?):

- $m_1^2 < m_2^2$ $\Delta m_{13}^2 < 0$ Inverted Mass Hierarchy
- $m_2^2 m_1^2 \ll |m_3^2 m_{1,2}^2|$ $\Delta m_{13}^2 > 0$ Normal Mass Hierarchy

$$\tan^2 \theta_{12} \equiv \frac{|U_{e2}|^2}{|U_{e1}|^2}; \quad \tan^2 \theta_{23} \equiv \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2}; \quad U_{e3} \equiv \sin \theta_{13} e^{-i\delta}$$

[For a detailed discussion see AdG, Jenkins, PRD78, 053003 (2008)]

March 25,26,28, 2013 _____

_____ Neutrino Physics

It Turns Out That ...

- Two Mass-Squared Differences Are Hierarchical, $\Delta m_{12}^2 \ll |\Delta m_{13}^2|$;
- One of the Mixing Angles Is Small, $\sin^2 \theta_{13} \sim 0.02$.
- \Rightarrow Two Puzzles Decouple, and Two-Flavor Interpretation Captures Almost All the Physics:
 - Atmospheric Neutrinos Determine $|\Delta m_{13}^2|$ and θ_{23} ;
 - Solar Neutrinos Determine Δm_{12}^2 and θ_{12} .

(small θ_{13} guarantees that $|\Delta m_{13}^2|$ effects governing electron neutrinos are small, while $\Delta m_{12}^2 \ll |\Delta m_{13}^2|$ guarantees that Δm_{12}^2 effects are small at atmospheric and accelerator experiments).

Three Flavor Mixing Hypothesis Fits All^{*} Data Really Well.

parameter	best fit $\pm 1\sigma$	2σ	3σ
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	7.62 ± 0.19	7.27-8.01	7.12-8.20
$\Delta m_{31}^2 [10^{-3} \text{eV}^2]$	$2.53^{+0.08}_{-0.10}\\-(2.40^{+0.10}_{-0.07})$	2.34 - 2.69 -(2.25 - 2.59)	2.26 - 2.77 -(2.15 - 2.68)
$\sin^2 \theta_{12}$	$0.320^{+0.015}_{-0.017}$	0.29 - 0.35	0.27 - 0.37
$\sin^2 \theta_{23}$	$\begin{array}{c} 0.49\substack{+0.08\\-0.05}\\ 0.53\substack{+0.05\\-0.07} \end{array}$	0.41 – 0.62 0.42 – 0.62	0.39 – 0.64
$\sin^2 \theta_{13}$	$0.026^{+0.003}_{-0.004}$ $0.027^{+0.003}_{-0.004}$	0.019 - 0.033 0.020 - 0.034	0.015 - 0.036 0.016 - 0.037
δ	$(0.83^{+0.54}_{-0.64}) \pi$ $0.07\pi^{\ a}$	$0-2\pi$	$0-2\pi$

* Modulo short-baseline anomalies. March 25,26,28, 2013

[Forero, Tórtola, Valle, 1205.4018] _____ Neutrino Physics

4– What We Know We Don't Know: Missing Oscillation Parameters

- What is the ν_e component of ν_3 ? $(\theta_{13} \neq 0!)$
- Is CP-invariance violated in neutrino oscillations? $(\delta \neq 0, \pi?)$
- Is ν_3 mostly ν_{μ} or ν_{τ} ? $(\theta_{23} > \pi/4, \theta_{23} < \pi/4, \text{ or } \theta_{23} = \pi/4?)$
- What is the neutrino mass hierarchy? $(\Delta m_{13}^2 > 0?)$

 \Rightarrow All of the above can "only" be addressed with new neutrino oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)

We need to do $\underline{\text{this}}$ in the lepton sector!

Neutrino Physics

March 25,26,28, 2013.

$$\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_{1}\\\nu_{2}\\\nu_{3}\end{array}\right)$$

What we have **really measured** (very roughly):

- Two mass-squared differences, at several percent level many probes;
- $|U_{e2}|^2$ solar data;
- $|U_{\mu 2}|^2 + |U_{\tau 2}|^2 \text{solar data};$
- $|U_{e2}|^2 |U_{e1}|^2 \text{KamLAND};$
- $|U_{\mu3}|^2 (1 |U_{\mu3}|^2)$ atmospheric data, K2K, MINOS;
- $|U_{e3}|^2(1-|U_{e3}|^2)$ Double Chooz, Daya Bay, RENO;
- $|U_{e3}|^2 |U_{\mu3}|^2$ (upper bound \rightarrow hint) MINOS, T2K.

We still have a ways to go!

Why Don't We Know the Neutrino Mass Hierarchy?

Most of the information we have regarding θ_{23} and Δm_{13}^2 comes from atmospheric neutrino experiments (SuperK). Roughly speaking, they measure

$$P_{\mu\mu} = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E}\right) + \text{ subleading.}$$

It is easy to see from the expression above that the leading term is simply not sensitive to the sign of Δm_{13}^2 .

On the other hand, because $|U_{e3}|^2 < 0.05$ and $\frac{\Delta m_{12}^2}{\Delta m_{13}^2} < 0.06$ are both small, we are yet to observe the subleading effects.

Determining the Mass Hierarchy via Oscillations – the large U_{e3} route

Again, necessary to probe $\nu_{\mu} \rightarrow \nu_{e}$ oscillations (or vice-versa) governed by Δm_{13}^{2} . This is the oscillation channel that (almost) all next-generation, accelerator-based experiments are concentrating on, including the next generation experiments T2K and NO ν A.

In vaccum

$$P_{\mu e} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E}\right) + \text{ "subleading"},$$

so that, again, this is insensitive to the sign of Δm_{13}^2 at leading order. However, in this case, matter effects may come to the rescue.

As I discussed already, neutrino oscillations get modified when these propagate in the presence of matter. Matter effects are sensitive to the neutrino mass ordering (in a way that I will describe shortly) and different for neutrinos and antineutrinos.

March 25,26,28, 2013 _____

If $\Delta_{12} \equiv \frac{\Delta m_{12}^2}{2E}$ terms are ignored, the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability is described, in constant matter density, by

$$P_{\mu e} \simeq P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13}^{\text{eff}} \sin^2 \left(\frac{\Delta_{13}^{\text{eff}} L}{2}\right),$$
$$\sin^2 2\theta_{13}^{\text{eff}} = \frac{\Delta_{13}^2 \sin^2 2\theta_{13}}{(\Delta_{13}^{\text{eff}})^2},$$
$$\Delta_{13}^{\text{eff}} = \sqrt{(\Delta_{13} \cos 2\theta_{13} - A)^2 + \Delta_{13}^2 \sin^2 2\theta_{13}},$$
$$\Delta_{13} = \frac{\Delta m_{13}^2}{2E},$$

 $A \equiv \pm \sqrt{2}G_F N_e$ is the matter potential. It is positive for neutrinos and negative for antineutrinos.

 $P_{\mu e}$ depends on the relative sign between Δ_{13} and A. It is different for the two different mass hierarchies, and different for neutrinos and antineutrinos.

March 25,26,28, 2013 _____

Requirements:

- $\sin^2 2\theta_{13}$ large enough otherwise there is nothing to see!
- $|\Delta_{13}| \sim |A|$ matter potential must be significant but not overwhelming.
- $\Delta_{13}^{\text{eff}}L$ large enough matter effects are absent near the origin.

The "Holy Graill" of Neutrino Oscillations – CP Violation In the old Standard Model, there is only one^a source of CP-invariance violation:

 \Rightarrow The complex phase in V_{CKM} , the quark mixing matrix.

Indeed, as far as we have been able to test, all CP-invariance violating phenomena agree with the CKM paradigm:

- ϵ_K ;
- ϵ'_K ;
- $\sin 2\beta;$
- etc.

Recent experimental developments, however, provide strong reason to believe that this is not the case: neutrinos have mass, and leptons mix!

^amodulo the QCD θ -parameter, which will be "willed away" henceforth.