3 - Mass-Induced Neutrino Flavor Oscillations

Neutrino Flavor change can arise out of several different mechanisms. The simplest one is to appreciate that, once neutrinos have mass, leptons can mix. This turns out to be the correct mechanism (certainly the dominant one), and only explanation that successfully explains all long-baseline data consistently.

Neutrinos with a well defined mass:

$$
\nu_{1}, \nu_{2}, \nu_{3}, \ldots \quad \text { with masses } m_{1}, m_{2}, m_{3}, \ldots
$$

How do these states (neutrino mass eigenstates) relate to the neutrino flavor eigenstates $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$?

$$
\nu_{\alpha}=U_{\alpha i} \nu_{i} \quad \alpha=e, \mu, \tau, \quad i=1,2,3
$$

U is a unitary mixing matrix. I'll talk more about it later.
\qquad

The Propagation of Massive Neutrinos

Neutrino mass eigenstates are eigenstates of the free-particle Hamiltonian:

$$
\left|\nu_{i}\right\rangle=e^{-i E_{i} t}\left|\nu_{i}\right\rangle, \quad E_{i}^{2}-\left|\vec{p}_{i}\right|^{2}=m_{i}^{2}
$$

The neutrino flavor eigenstates are linear combinations of ν_{i} 's, say:

$$
\begin{aligned}
\left|\nu_{e}\right\rangle & =\cos \theta\left|\nu_{1}\right\rangle+\sin \theta\left|\nu_{2}\right\rangle \\
\left|\nu_{\mu}\right\rangle & =-\sin \theta\left|\nu_{1}\right\rangle+\cos \theta\left|\nu_{2}\right\rangle
\end{aligned}
$$

If this is the case, a state produced as a ν_{e} evolves in vacuum into

$$
|\nu(t, \vec{x})\rangle=\cos \theta e^{-i p_{1} x}\left|\nu_{1}\right\rangle+\sin \theta e^{-i p_{2} x}\left|\nu_{2}\right\rangle .
$$

It is trivial to compute $P_{e \mu}(L) \equiv\left|\left\langle\nu_{\mu} \mid \nu(t, z=L)\right\rangle\right|^{2}$. It is just like a two-level system from basic undergraduate quantum mechanics! In the ultrarelativistic limit (always a good bet), $t \simeq L, E_{i}-p_{z, i} \simeq\left(m_{i}^{2}\right) / 2 E_{i}$, and

$$
P_{e \mu}(L)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E_{\nu}}\right)
$$

\qquad
oscillation parameters: $\left\{\begin{array}{l}\pi \frac{L}{L_{\mathrm{osc}}} \equiv \frac{\Delta m^{2} L}{4 E}=1.267\left(\frac{L}{\mathrm{~km}}\right)\left(\frac{\Delta m^{2}}{\mathrm{eV}^{2}}\right)\left(\frac{\mathrm{GeV}}{E}\right) \\ \text { amplitude } \sin ^{2} 2 \theta\end{array}\right.$

March 25,26,28, 2013 \qquad

CHOOZ experiment

There is a long (and oftentimes confused and confusing) history behind this derivation and several others. A comprehensive discussion can be found, for example, in
E.K. Akhmedov, A. Yu. Smirnov, 0905.1903 [hep-ph]

In a nutshell, neutrino oscillations as described above occur whenever

- Neutrino Production and Detection are Coherent \rightarrow cannot "tell" ν_{1} from ν_{2} from ν_{3} but "see" ν_{e} or ν_{μ} or ν_{τ}.
- Decoherence effects due to wave-packet separation are negligible \rightarrow baseline not too long that different "velocity" components of the neutrino wave-packet have time to physically separate.
- The energy released in production and detection is large compared to the neutrino mass \rightarrow so we can assign all of the effect to the neutrino propagation, independent from the production process. Also assures ultra-relativistic approximation good.
\qquad

Figure 4. Zenith angle distribution for fully-contained single-ring e-like and μ-like events, multi-ring μ-like events, partially contained events and upward-going muons. The points show the data and the solid lines show the Monte Carlo events without neutrino oscillation. The dashed lines show the best-fit expectations for $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations. From M. Ishitsuka [Super-Kamiokande Collaboration], hep-ex/0406076.
March 25,26,28, 2013 \qquad

K2K	ν_{μ} at KEK	SK	$\mathrm{L}=250 \mathrm{~km}$
MINOS	ν_{μ} at Fermilab	Soundan	$\mathrm{L}=735 \mathrm{~km}$
Opera/Icarus	ν_{μ} at CERN	Gran Sasso	$\mathrm{L}=740 \mathrm{~km}$

K2K 2004: spectral distortion

Confirmation of ATM oscillations

MINOS 2006: spectral distortion

Confirmation of ATM oscillations

[Gonzalez-Garcia, PASI 2006]
\qquad

Matter Effects

The neutrino propagation equation, in the ultra-relativistic approximation, can be re-expressed in the form of a Shrödinger-like equation. In the mass basis:

$$
i \frac{\mathrm{~d}}{\mathrm{~d} L}\left|\nu_{i}\right\rangle=\frac{m_{i}^{2}}{2 E}\left|\nu_{i}\right\rangle,
$$

up to a term proportional to the identity. In the weak/flavor basis

$$
i \frac{\mathrm{~d}}{\mathrm{~d} L}\left|\nu_{\beta}\right\rangle=U_{\beta i} \frac{m_{i}^{2}}{2 E} U_{i \alpha}^{\dagger}\left|\nu_{\alpha}\right\rangle .
$$

In the 2×2 case,

$$
i \frac{\mathrm{~d}}{\mathrm{~d} L}\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}=\frac{\Delta m^{2}}{2 E}\left(\begin{array}{cc}
\sin ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \cos ^{2} \theta
\end{array}\right)\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}
$$

(again, up to additional terms proportional to the 2×2 identity matrix).
\qquad

Fermi Lagrangian, after a Fiertz rearrangement of the charged-current terms:

$$
\mathrm{L} \supset \bar{\nu}_{e L} i \partial_{\mu} \gamma^{\mu} \nu_{e L}-2 \sqrt{2} G_{F}\left(\bar{\nu}_{e L} \gamma^{\mu} \nu_{e L}\right)\left(\bar{e}_{L} \gamma_{\mu} e_{L}\right)+\ldots
$$

Equation of motion for one electron neutrino state in the presence of a non-relativistic electron background, in the rest frame of the electrons:

$$
\left\langle\bar{e}_{L} \gamma_{\mu} e_{L}\right\rangle=\delta_{\mu 0} \frac{N_{e}}{2}
$$

where $N_{e} \equiv e^{\dagger} e$ is the average electron number density (at rest, hence $\delta_{\mu 0}$ term). Factor of $1 / 2$ from the "left-handed" half.

Dirac equation for a one neutrino state inside a cold electron "gas" is (ignore mass)

$$
\left(i \partial^{\mu} \gamma_{\mu}-\sqrt{2} G_{F} N_{e} \gamma_{0}\right)\left|\nu_{e}\right\rangle=0
$$

In the ultrarelativistic limit, (plus $\sqrt{2} G_{F} N_{e} \ll E$), dispersion relation is

$$
E \simeq|\vec{p}| \pm \sqrt{2} G_{F} N_{e}, \quad+\text { for } \nu, \quad-\text { for } \bar{\nu}
$$

\qquad
$i \frac{\mathrm{~d}}{\mathrm{~d} L}\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}=\left[\frac{\Delta m^{2}}{2 E}\left(\begin{array}{cc}\sin ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \cos ^{2} \theta\end{array}\right)+\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)\right]\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}$,
$A= \pm \sqrt{2} G_{F} N_{e}$ (+ for neutrinos, - for antineutrinos).
Note: Similar effect from neutral current interactions common to all (active) neutrino species \rightarrow proportional to the identity.

In general, this is hard to solve, as A is a function of L : two-level non-relativistc quantum mechanical system in the presence of time dependent potential.

In some cases, however, the solution is rather simple.
\qquad

Constant A : good approximation for neutrinos propagating through matter inside the Earth [exception: neutrinos that see Earth's internal structure (the crust, the mantle, the outer core, the inner core)]

$$
\begin{gathered}
i \frac{\mathrm{~d}}{\mathrm{~d} L}\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}=\left(\begin{array}{cc}
A & \Delta / 2 \sin 2 \theta \\
\Delta / 2 \sin 2 \theta & \Delta \cos 2 \theta
\end{array}\right)\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}, \quad \Delta \equiv \Delta m^{2} / 2 E \\
P_{e \mu}=\sin ^{2} 2 \theta_{M} \sin ^{2}\left(\frac{\Delta_{M} L}{2}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
\Delta_{M} & =\sqrt{(A-\Delta \cos 2 \theta)^{2}+\Delta^{2} \sin ^{2} 2 \theta} \\
\Delta_{M} \sin 2 \theta_{M} & =\Delta \sin 2 \theta \\
\Delta_{M} \cos 2 \theta_{M} & =A-\Delta \cos 2 \theta
\end{aligned}
$$

The presence of matter affects neutrino and antineutrino oscillation differently.
Nothing wrong with this: CPT-theorem relates the propagation of neutrinos in an electron background to the propagation of antineutrinos in a positron background.
\qquad

Enlarged parameter space in the presence of matter effects.
For example, can tell whether $\cos 2 \theta$ is positive or negative.

March 25,26,28, 2013 \qquad

The MSW Effect

Curiously enough, the oldest neutrino puzzle is the one that is most subtle to explain. This is because solar neutrinos traverse a strongly varying matter density on their way from the center of the Sun to the surface of the Earth.

For the Hamiltonian

$$
\left[\Delta\left(\begin{array}{cc}
\sin ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \cos ^{2} \theta
\end{array}\right)+A\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right]
$$

it is easy to compute the eigenvalues as a function of A :

$$
\left(\text { remember }, \Delta=\Delta m^{2} / 2 E\right)
$$

\qquad

A decreases "slowly" as a function of $L \Rightarrow$ system evolves adiabatically.

$$
\begin{gathered}
\left|\nu_{e}\right\rangle=\left|\nu_{2 M}\right\rangle \text { at the core } \rightarrow\left|\nu_{2}\right\rangle \text { in vacuum }, \\
P_{e e}^{\text {Earth }}=\left|\left\langle\nu_{e} \mid \nu_{2}\right\rangle\right|^{2}=\sin ^{2} \theta .
\end{gathered}
$$

Note that $P_{e e} \simeq \sin ^{2} \theta$ applies in a wide range of energies and baselines, as long as the approximations mentioned above apply -ideal to explain the energy independent suppression of the ${ }^{8} \mathrm{~B}$ solar neutrino flux!

Furthermore, large average suppressions of the neutrino flux are allowed if $\sin ^{2} \theta \ll 1$. Compare with $\bar{P}_{e e}^{\text {vac }}=1-1 / 2 \sin ^{2} 2 \theta>1 / 2$.

One can expand on the result above by loosening some of the assumptions. $\left|\nu_{e}\right\rangle$ state is produced in the Sun's core as an incoherent mixture of $\left|\nu_{1 M}\right\rangle$ and $\left|\nu_{2 M}\right\rangle$. Introduce adiabaticity parameter P_{c}, which measures the probability that a $\left|\nu_{i M}\right\rangle$ matter Hamiltonian state will not exit the Sun as a $\left|\nu_{i}\right\rangle$ mass-eigenstate.
\qquad

$$
\begin{aligned}
\left|\nu_{e}\right\rangle & \rightarrow\left|\nu_{1 M}\right\rangle, \text { with probability } \cos ^{2} \theta_{M} \\
& \rightarrow\left|\nu_{2 M}\right\rangle, \text { with probability } \sin ^{2} \theta_{M}
\end{aligned}
$$

where θ_{M} is the matter angle at the neutrino production point.

$$
\begin{aligned}
\left|\nu_{1 M}\right\rangle & \rightarrow\left|\nu_{1}\right\rangle, \text { with probability }\left(1-P_{c}\right) \\
& \rightarrow\left|\nu_{2}\right\rangle, \text { with probability } P_{c} \\
\left|\nu_{2 M}\right\rangle & \rightarrow\left|\nu_{1}\right\rangle \text { with probability } P_{c} \\
& \rightarrow\left|\nu_{2}\right\rangle \text { with probability }\left(1-P_{c}\right)
\end{aligned}
$$

$$
P_{1 e}=\cos ^{2} \theta \text { and } P_{2 e}=\sin ^{2} \theta \text { so }
$$

$$
\begin{aligned}
P_{e e}^{\text {Sun }}= & \cos ^{2} \theta_{M}\left[\left(1-P_{c}\right) \cos ^{2} \theta+P_{c} \sin ^{2} \theta\right] \\
& +\sin ^{2} \theta_{M}\left[P_{c} \cos ^{2} \theta+\left(1-P_{c}\right) \sin ^{2} \theta\right] .
\end{aligned}
$$

For $N_{e}=N_{e 0} e^{-L / r_{0}}, P_{c},($ crossing probability $)$, is exactly calculable

$$
\begin{equation*}
P_{c}=\frac{e^{-\gamma \sin ^{2} \theta}-e^{-\gamma}}{1-e^{-\gamma}}, \quad \gamma=2 \pi r_{0} \Delta \tag{1}
\end{equation*}
$$

Adiabatic condition: $\gamma \gg 1$, when $P_{c} \rightarrow 0$.
\qquad

We need:

- $P_{e e} \sim 0.3\left({ }^{8} \mathrm{~B}\right.$ neutrinos)
- $P_{e e} \sim 0.6\left({ }^{7} \mathrm{Be}, p p\right.$ neutrinos $)$
$\Rightarrow \sin ^{2} \theta \sim 0.3$
$\Rightarrow \Delta m^{2} \sim 10^{-(5}$ to 4$) \mathrm{eV}^{2}$
for a long time, there were many
other options!
(LMA, LOW, SMA, VAC)

Solar Neutrino Survival Probability

\qquad

Solar oscillations confirmed by Reactor experiment: KamLAND

Solar
$\nu_{e} \rightarrow \nu_{\text {active }}$

+ KamLAND
$\bar{\nu}_{e} \nrightarrow \bar{\nu}_{e}$

ν_{e} oscillation parameters compatible with $\bar{\nu}_{e}$: Sensible to assume CPT: $P_{e e}=P_{\bar{e} \bar{e}}$

$$
\begin{aligned}
& \Delta m_{\odot}^{2}=\left(8_{-0.5}^{+0.4}\right) \times 10^{-5} \mathrm{eV}^{2} \\
& \tan ^{2} \theta_{\odot}=0.45_{-0.05}^{+0.05}
\end{aligned}
$$

Atmospheric Oscillations in the Electron Sector: Daya Bay, RENO, Double Chooz

Summarizing:
Both the solar and atmospheric puzzles can be properly explained in terms of two-flavor neutrino oscilations:

- solar: $\nu_{e} \leftrightarrow \nu_{a}$ (linear combination of ν_{μ} and ν_{τ}): $\Delta m^{2} \sim 10^{-4} \mathrm{eV}^{2}$, $\sin ^{2} \theta \sim 0.3$.
- atmospheric: $\nu_{\mu} \leftrightarrow \nu_{\tau}: \Delta m^{2} \sim 10^{-3} \mathrm{eV}^{2}, \sin ^{2} \theta \sim 0.5$ ("maximal mixing").
- short-baseline reactors: $\nu_{e} \leftrightarrow \nu_{a}$ (linear combination of ν_{μ} and ν_{τ}): $\Delta m^{2} \sim 10^{-3} \mathrm{eV}^{2}, \sin ^{2} \theta \sim 0.02$.

Putting it all together -3 flavor mixing:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{e \tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Definition of neutrino mass eigenstates (who are $\nu_{1}, \nu_{2}, \nu_{3}$?):

- $m_{1}^{2}<m_{2}^{2}$
$\Delta m_{13}^{2}<0$ - Inverted Mass Hierarchy
- $m_{2}^{2}-m_{1}^{2} \ll\left|m_{3}^{2}-m_{1,2}^{2}\right| \quad \Delta m_{13}^{2}>0$ - Normal Mass Hierarchy

$$
\tan ^{2} \theta_{12} \equiv \frac{\left|U_{e 2}\right|^{2}}{\left|U_{e 1}\right|^{2}} ; \quad \tan ^{2} \theta_{23} \equiv \frac{\left|U_{\mu 3}\right|^{2}}{\left|U_{\tau 3}\right|^{2}} ; \quad U_{e 3} \equiv \sin \theta_{13} e^{-i \delta}
$$

\qquad

It Turns Out That ...

- Two Mass-Squared Differences Are Hierarchical, $\Delta m_{12}^{2} \ll\left|\Delta m_{13}^{2}\right|$;
- One of the Mixing Angles Is Small, $\sin ^{2} \theta_{13} \sim 0.02$.
\Rightarrow Two Puzzles Decouple, and Two-Flavor Interpretation Captures
Almost All the Physics:
- Atmospheric Neutrinos Determine $\left|\Delta m_{13}^{2}\right|$ and θ_{23};
- Solar Neutrinos Determine Δm_{12}^{2} and θ_{12}.
(small θ_{13} guarantees that $\left|\Delta m_{13}^{2}\right|$ effects governing electron neutrinos are small, while $\Delta m_{12}^{2} \ll\left|\Delta m_{13}^{2}\right|$ guarantees that Δm_{12}^{2} effects are small at atmospheric and accelerator experiments).
\qquad

Three Flavor Mixing Hypothesis Fits All* Data Really Well.

parameter	best fit $\pm 1 \sigma$	2σ	3σ
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	7.62 ± 0.19	$7.27-8.01$	$7.12-8.20$
$\Delta m_{31}^{2}\left[10^{-3} \mathrm{eV}^{2}\right]$	$2.53_{-0.10}^{+0.08}$	$2.34-2.69$	$2.26-2.77$
	$-\left(2.40_{-0.07}^{+0.10}\right)$	$-(2.25-2.59)$	$-(2.15-2.68)$
$\sin ^{2} \theta_{12}$	$0.320_{-0.017}^{+0.015}$	$0.29-0.35$	$0.27-0.37$
$\sin ^{2} \theta_{23}$	$0.49_{-0.05}^{+0.08}$	$0.41-0.62$	
	$0.53_{-0.07}^{+0.05}$	$0.42-0.62$	$0.39-0.64$
$\sin ^{2} \theta_{13}$	$0.026_{-0.004}^{+0.003}$	$0.019-0.033$	$0.015-0.036$
	$0.027_{-0.004}^{+0.003}$	$0.020-0.034$	$0.016-0.037$
δ	$\left(0.83_{-0.64}^{+0.54}\right) \pi$	$0-2 \pi$	$0-2 \pi$
$0.07 \pi^{a}$	0		

[^0]\qquad

4- What We Know We Don’t Know: Missing Oscillation Parameters

- What is the ν_{e} component of ν_{3} ? $\left(\theta_{13} \neq 0!\right)$
- Is CP-invariance violated in neutrino oscillations? $(\delta \neq 0, \pi$?)
- Is ν_{3} mostly ν_{μ} or ν_{τ} ? $\left(\theta_{23}>\pi / 4\right.$, $\theta_{23}<\pi / 4$, or $\theta_{23}=\pi / 4$?)
- What is the neutrino mass hierarchy? ($\Delta m_{13}^{2}>0$?)
\Rightarrow All of the above can "only" be addressed with new neutrino oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space) March 25,26,28, 2013 \qquad Neutrino Physics

We need to do this in the lepton sector!

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

What we have really measured (very roughly):

- Two mass-squared differences, at several percent level - many probes;
- $\left|U_{e 2}\right|^{2}$ - solar data;
- $\left|U_{\mu 2}\right|^{2}+\left|U_{\tau 2}\right|^{2}$ - solar data;
- $\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2}$ - KamLAND;
- $\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)$ - atmospheric data, K2K, MINOS;
- $\left|U_{e 3}\right|^{2}\left(1-\left|U_{e 3}\right|^{2}\right)$ - Double Chooz, Daya Bay, RENO;
- $\left|U_{e 3}\right|^{2}\left|U_{\mu 3}\right|^{2}$ (upper bound \rightarrow hint) - MINOS, T2K.

We still have a ways to go!
\qquad

Why Don't We Know the Neutrino Mass Hierarchy?

Most of the information we have regarding θ_{23} and Δm_{13}^{2} comes from atmospheric neutrino experiments (SuperK). Roughly speaking, they measure

$$
P_{\mu \mu}=1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{13}^{2} L}{4 E}\right)+\text { subleading. }
$$

It is easy to see from the expression above that the leading term is simply not sensitive to the sign of Δm_{13}^{2}.
On the other hand, because $\left|U_{e 3}\right|^{2}<0.05$ and $\frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}}<0.06$ are both small, we are yet to observe the subleading effects.
\qquad

Determining the Mass Hierarchy via Oscillations - the large $U_{e 3}$ route

Again, necessary to probe $\nu_{\mu} \rightarrow \nu_{e}$ oscillations (or vice-versa) governed by Δm_{13}^{2}. This is the oscillation channel that (almost) all next-generation, accelerator-based experiments are concentrating on, including the next generation experiments T 2 K and $\mathrm{NO} \nu \mathrm{A}$.

In vaccum

$$
P_{\mu e}=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{13}^{2} L}{4 E}\right)+\text { "subleading", }
$$

so that, again, this is insensitive to the sign of Δm_{13}^{2} at leading order. However, in this case, matter effects may come to the rescue.

As I discussed already, neutrino oscillations get modified when these propagate in the presence of matter. Matter effects are sensitive to the neutrino mass ordering (in a way that I will describe shortly) and different for neutrinos and antineutrinos.
\qquad

If $\Delta_{12} \equiv \frac{\Delta m_{12}^{2}}{2 E}$ terms are ignored, the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability is described, in constant matter density, by

$$
\begin{gathered}
P_{\mu e} \simeq P_{e \mu} \simeq \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}^{\mathrm{eff}} \sin ^{2}\left(\frac{\Delta_{13}^{\mathrm{eff}} L}{2}\right) \\
\sin ^{2} 2 \theta_{13}^{\mathrm{eff}}=\frac{\Delta_{13}^{2} \sin ^{2} 2 \theta_{13}}{\left(\Delta_{13}^{\mathrm{eff}}\right)^{2}}, \\
\Delta_{13}^{\mathrm{eff}}=\sqrt{\left(\Delta_{13} \cos 2 \theta_{13}-A\right)^{2}+\Delta_{13}^{2} \sin ^{2} 2 \theta_{13}}, \\
\Delta_{13}=\frac{\Delta m_{13}^{2}}{2 E}
\end{gathered}
$$

$A \equiv \pm \sqrt{2} G_{F} N_{e}$ is the matter potential. It is positive for neutrinos and negative for antineutrinos.
$P_{\mu e}$ depends on the relative sign between Δ_{13} and A. It is different for the two different mass hierarchies, and different for neutrinos and antineutrinos.
\qquad

Requirements:

- $\sin ^{2} 2 \theta_{13}$ large enough - otherwise there is nothing to see!
- $\left|\Delta_{13}\right| \sim|A|$ - matter potential must be significant but not overwhelming.
- $\Delta_{13}^{\mathrm{eff}} L$ large enough - matter effects are absent near the origin.
\qquad

The "Holy Graill" of Neutrino Oscillations - CP Violation
In the old Standard Model, there is only one ${ }^{\text {a }}$ source of CP-invariance violation:
\Rightarrow The complex phase in $V_{C K M}$, the quark mixing matrix.
Indeed, as far as we have been able to test, all CP-invariance violating phenomena agree with the CKM paradigm:

- ϵ_{K};
- ϵ_{K}^{\prime};
- $\sin 2 \beta$;
- etc.

Recent experimental developments, however, provide strong reason to believe that this is not the case: neutrinos have mass, and leptons mix!

[^1]\qquad

[^0]: * Modulo short-baseline anomalies.

[^1]: a modulo the QCD θ-parameter, which will be "willed away" henceforth.

