Indirect Dark Matter Searches

(for DM masses in the range 10-1000 GeV and with emphasis on gamma-rays)

> Alejandro Ibarra Technische Universität München

Sangam@HRI 25-30 March 2013

Introduction

Many pieces of evidence for particle dark matter. However, very little is known about the properties of the dark matter particle:

Spin: 0 or 1/2 or 1 or 3/2 (possibly higher if composite) Parity: + or – Mass: $10^{-15} \text{ GeV} \longrightarrow 10^{15} \text{ GeV}$ (axions) $\longrightarrow (WIMPzillas)$ Interaction cross section with nucleons: $10^{-40} \text{ pb} \longrightarrow 10^{-5} \text{ pb}$ (gravitinos) $\longrightarrow (neutralinos)$ Self-annihilation cross section: $10^{-40} \text{ pb} \longrightarrow 10^{-5} \text{ pb}$ (gravitinos) $\longrightarrow (neutralinos)$ Lifetime: 10^9 years \longrightarrow infinity

DM nucleus \rightarrow DM nucleus

DM nucleus \rightarrow DM nucleus

Indirect detection

DM DM $\rightarrow \gamma X$, e⁺e⁻... (annihilation) DM $\rightarrow \gamma X$, e⁺X... (decay) Collider searches

 $pp \rightarrow DM X$

Dark matter annihilations?

Guaranteed for thermal relics (WIMPs)

Dark matter annihilations?

Guaranteed for thermal relics (WIMPs)

Typical value of the velocity weighted annihilation cross-section

$$\langle \sigma_{\rm ann} v \rangle \simeq 3 \times 10^{-26} {\rm cm}^3 {\rm s}^{-1}$$

Target value for experiments

Note however that in some scenarios the annihilation cross section today can be very different to the annihilation cross section at the time of freeze-out.

Decompose the annihilation cross section as:

$$\langle \sigma v \rangle = a + bv^2$$

Assume now that a = 0. Then, the cross section strongly depends on the velocity of the dark matter particles

Freeze-out
$$\langle v^2 \rangle \sim \frac{6T_{\text{f.o.}}}{m_{\text{DM}}} \sim \frac{0.3}{T_{\text{f.o.}}} \sim \frac{m_{\text{DM}}}{20}$$

Galactic center $v \sim 10^{-3}$

$$\frac{\langle \sigma v \rangle_{\rm G.C.}}{\langle \sigma v \rangle_{\rm f.o.}} \sim 3 \times 10^{-6}$$

Note however that in some scenarios the annihilation cross section today can be very different to the annihilation cross section at the time of freeze-out.

Decompose the annihilation cross section as:

$$\langle \sigma v \rangle = a + bv^2$$

Assume now that a = 0. Then, the cross section strongly depends on the velocity of the dark matter particles

Freeze-out
$$\langle v^2 \rangle \sim \frac{6T_{\text{f.o.}}}{m_{\text{DM}}} \sim \frac{0.3}{T_{\text{f.o.}}} \sim \frac{m_{\text{DM}}}{20}$$

Galactic center $v \sim 10^{-3}$

$$\frac{\langle \sigma v \rangle_{\rm G.C.}}{\langle \sigma v \rangle_{\rm f.o.}} \sim 3 \times 10^{-6}$$

• Consider the annihilation DM DM $\rightarrow f\overline{f}$, with DM a Majorana fermion or a scalar particle

$$\underbrace{f_{\mathrm{L}}}_{\Leftarrow} \underbrace{f_{\mathrm{L}}}_{\Leftarrow} \underbrace{f_{\mathrm{L}}}_{\mathsf{Z}} \rightarrow \mathbf{J_{z}=1}$$

In the limit $v \rightarrow 0$, no preferred direction

J_z=0

• Consider the annihilation DM DM $\rightarrow f\overline{f}$, with DM a Majorana fermion or a scalar particle

Rate of DM DM \rightarrow *ff* suppressed by $(m_f/m_{DM})^2$ if v=0. Otherwise by v^2 .

• Consider the annihilation DM DM $\rightarrow ff$, with DM a Majorana fermion or a scalar particle

Rate of DM DM \rightarrow *ff* suppressed by $(m_f/m_{DM})^2$ if v=0. Otherwise by v^2 .

• Relative contributions to the velocity weighted annihilation cross section $\langle \sigma v \rangle = a + bv^2$ for annihilations into light fermions:

For m=300 GeV, $\frac{a}{bv^2} \sim \frac{m_f^2}{m_{\rm DM}^2 v^2} \sim \begin{cases} 10^{-6} \text{ for electrons} \\ 0.1 \text{ for muons} \\ 10^{-5} \text{ for up-type quarks} \end{cases}$ $\langle \sigma v \rangle_{\rm G.C.} \sim 3 \times 10^{-6} \langle \sigma v \rangle_{\rm f.o.} \sim 10^{-31} \,\mathrm{cm}^3 \mathrm{s}^{-1}$

Indirect detection hopeless?? Not really... higher order effects become important.

• Consider the annihilation DM DM $\rightarrow f\overline{f}V$, with DM a Majorana fermion or a scalar particle and V a vector

No suppression by mass insertion. Suppressed, however, by the extra coupling constant and by the 3-body phase space. Bergström Flores, Olive, Rudaz

For annihilations into light fermions, the dominant annihilation channel *today* can be DM DM $\rightarrow f\bar{f}V$, while at the time of freeze-out, DM DM $\rightarrow f\bar{f}$

$$\langle \sigma v \rangle_{G.C.}^{2 \to 3} \sim \frac{\alpha}{0.3\pi} \langle \sigma v \rangle_{f.o.}^{2 \to 2} \sim 10^{-28} \mathrm{cm}^3 \mathrm{s}^{-1}$$

Target cross section for this class of scenarios, instead of $3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$.

Dark matter decays?

No matter particle is guaranteed to be stable

particle	Lifetime	Decay channel	Theoretical justification	.
proton	τ >8.2×10 ³³ years	$p \rightarrow e^+ \pi^0$	Baryon number conservation	Accidental symmetry
electron	τ >4.6×10 ²⁶ years	$e \rightarrow \gamma \nu$	Electric charge conservation	Local
neutrino	$\tau \gtrsim 10^{12}$ years	$\nu \to \gamma \gamma$	Lorentz symmetry conservation	symmetry
neutron	$\tau = 885.7 \pm 0.8 \text{ s}$	$n \rightarrow p \ \overline{\nu}_e \ e^-$	Isospin symmetry mildly broken.	

Dark matter decays?

No matter particle is guaranteed to be stable

particle	Lifetime	Decay channel	Theoretical justification	
proton	τ >8.2×10 ³³ years	$p \rightarrow e^+ \pi^0$	Baryon number conservation	Accidental symmetry
electron	τ >4.6×10 ²⁶ years	$e \rightarrow \gamma \nu$	Electric charge conservation	Local
neutrino	$\tau \gtrsim 10^{12}$ years	$\nu \to \gamma \gamma$	Lorentz symmetry conservation	symmetry
neutron	$\tau = 885.7 \pm 0.8 \text{ s}$	$n \rightarrow p \bar{\nu}_{e} e^{-}$	Isospin symmetry mildly broken.	
dark matter	$\tau \gtrsim 10^9$ years	???	???	

It is conceivable that the dark matter particle is long lived due to an accidental symmetry of the renormalizable Lagrangian (as for the proton).

Higher dimensional operators may induce the dark matter decay (as for the proton). For a dimension six operator suppressed by a large scale M,

$$\tau_{\rm DM} \sim 10^{26} {\rm s} \left(\frac{{\rm TeV}}{m_{\rm DM}}\right)^5 \left(\frac{M}{10^{15} {\rm GeV}}\right)^4$$

Indirect dark matter searches

Indirect dark matter searches

Production of gamma-rays

The gamma ray flux from dark matter annihilation/decay has two components:

- Prompt radiation of gamma rays produced in the annihilation/decay (final state radiation, pion decay...)
- May contain spectral features.

- Inverse Compton Scattering radiation of electrons/positrons produced in the annihilation/decay.
- Always smooth spectrum.

Prompt radiation: Effect of substructures

Halo component

Summary:

• Depends on the dark matter profile. Strong dependence in the direction of the galactic center and mild at high latitudes (|b|>10°)

• Even if the profile is spherically symmetric, the flux at Earth depends on the direction of observation.

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

• Isotropic

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

IsotropicRedshifted

Annihilation
$$\frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \frac{\Omega_{\text{DM}}^2 \rho_{\text{c}}^2}{m_{\text{DM}}^2} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} e^{-\tau(E_{\gamma},z)}$$
Decay
$$\frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\Omega_{\text{DM}} \rho_{\text{c}}}{m_{\text{DM}} \tau_{\text{DM}}} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} e^{-\tau(E_{\gamma},z)}$$

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

IsotropicRedshifted

Enhancement

$$\begin{array}{ll} \text{Annihilation} & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \frac{\Omega_{\text{DM}}^2 \rho_{\text{c}}^2}{m_{\text{DM}}^2} \int_0^\infty dz \frac{1}{H(z)} \; \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} (1+z)^3 \Delta^2(z) \; e^{\gamma \tau(E_{\gamma},z)} \\ \\ \text{Decay} & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\Omega_{\text{DM}} \rho_{\text{c}}}{m_{\text{DM}} \tau_{\text{DM}}} \int_0^\infty dz \frac{1}{H(z)} \; \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} \; e^{-\tau(E_{\gamma},z)} \end{array}$$

Fermi coll. arXiv:1002.4415

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

- Isotropic
- Redshifted
- Attenuated due to pair production $\gamma\gamma \rightarrow e^+e^-$

$$\begin{array}{ll} \text{Annihilation} & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle}{2} \frac{\Omega_{\text{DM}}^2 \rho_{\text{c}}^2}{m_{\text{DM}}^2} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} (1+z)^3 \Delta^2(z) \ e^{-\tau(E_{\gamma},z)} \\ \\ \text{Decay} & \frac{dJ_{\text{eg}}}{dE_{\gamma}} = \frac{c}{4\pi} \frac{\Omega_{\text{DM}} \rho_{\text{c}}}{m_{\text{DM}} \tau_{\text{DM}}} \int_0^\infty dz \frac{1}{H(z)} \frac{dN_{\gamma} \left[(1+z)E_{\gamma} \right]}{dE_{\gamma}} \ e^{-\tau(E_{\gamma},z)} \end{array}$$

$$\frac{dJ}{dE_{\gamma}}(\Omega) = \frac{dJ_{\text{halo}}}{dE_{\gamma}}(\Omega) + \frac{dJ_{eg}}{dE_{\gamma}}$$

Extragalactic component

- Isotropic
- Redshifted
- Attenuated due to pair production $\gamma\gamma \rightarrow e^+e^-$

Impact of attenuation: decaying dark matter

Inverse Compton Scattering radiation

The inverse Compton scattering of electrons/positrons from dark matter annihilation/decay with the interstellar and extragalactic radiation fields produces gamma rays.

Propagation

S

0

Kepta Chic NGC 4755

A

1012

WE ARE HERE

13 Lagron Mill

> M7* 7293

NGC TO

Ring MS2 -

0

M27

R

Ŵ.

Carine Mar 1217 Keybole NGC 3524

Targets for indirect dark matter searches

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

Kuhlen, Diemand, Madau

Targets for indirect dark matter searches

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

Kuhlen, Diemand, Madau

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

Baltz et al. arXiv:0806.2911 Bertone et al. arXiv:0709.2299

But beware of backgrounds when searching for dark matter...

Background I: sources

Background II: modelling of the diffuse emission

Inverse compton

bremmstrahlung

 π^0 -decay

Conservative approach: demand that the flux from dark matter annihilations does not exceed the measured flux

Cirelli, Panci, Serpico

Cirelli, Panci, Serpico

Limits on the dark matter lifetime from measurements of the diffuse gamma-ray background

Region: $|l| \le 20^\circ$, $-18^\circ \le b \le -10^\circ$, chosen to optimize S/B

Dwarf spheroidal galaxies

Name	Distance (kpc)	year of discovery	M _{1/2} /L _{1/2} ref. 8	1	b	Ref.
Ursa Major II	30± 5	2006	4000+3700	152.46	37.44	1,2
Segue 2	35	2009	650	149.4	-38.01	3
Willman 1	38±7	2004	770+930	158.57	56.78	1
Coma Berenices	44± 4	2006	1100^{+800}_{-500}	241.9	83.6	1,2
Bootes II	46	2007	18000??	353.69	68.87	6,7
Bootes I	62±3	2006	1700^{+1400}_{-700}	358.08	69.62	6
Ursa Minor	66±3	1954	290^{+140}_{-90}	104.95	44.80	4,5
Sculptor	79±4	1937	18+6	287.15	-83.16	4,5
Draco	76± 5	1954	200 ⁺⁸⁰	86.37	34.72	4,5,9
Sextans	86±4	1990	120_{-35}^{+40}	243.4	42.2	4,5
Ursa Major I	97±4	2005	1800^{+1300}_{-700}	159.43	54.41	6
Hercules	132±12	2006	1400^{+1200}_{-700}	28.73	36.87	6
Fornax	138±8	1938	8.7+2.8	237.1	-65.7	4,5
Leo IV	160±15	2006	260^{+1000}_{-200}	265.44	56.51	6

Relatively close

High mass-to-light ratio: dwarf galaxies contain large amounts of dark matter

Assume a Navarro-Frenk-White dark matter halo profile inside the tidal radius:

$$\rho(r) = \begin{cases} \frac{\rho_s r_s^3}{r(r_s + r)^2} & \text{for } r < r_t \\ 0 & \text{for } r \ge r_t \end{cases}$$

Name	$ ho_s$	r_s	J^{NFW}	
	$(M_\odot \ pc^{-3})$	(kpc)	$(10^{19} GeV^2 cm^{-5})$	
Segue 1	1.65	0.05	0.97	ſ
Ursa Major II	0.17	0.25	0.57	$J(\psi) = dl(\psi)\rho^2(l(\psi))$
Segue 2	0.61	0.06	0.1	J1.o.s
Willman 1	0.417	0.17	0.84	
Coma Berenices	0.232	0.22	0.42	
Usra Minor	0.04	0.97	0.35	
Sculptor	0.063	0.52	0.12	
Draco	0.13	0.50	0.43	
Sextans	0.079	0.36	0.05	
Fornax	0.04	1.00	0.11	

Flux upper limits

Fermi coll. arXiv:1001.4531

Constraints on annihilating WIMPs

Closing in on light WIMP scenarios from dwarf galaxy observations

Geringer-Sameth, Koushiappas '11

Limits on the dark matter lifetime from dwarf spheroidal observations

Limits on the dark matter lifetime from dwarf spheroidal observations

Dwarf limits weaker than other limits

Galaxy clusters

Cluster	RA	Dec.	z	$J \; (10^{17} \ {\rm GeV^2} \ {\rm cm^{-5}})$
AWM 7	43.6229	41.5781	0.0172	$1.4^{+0.1}_{-0.1}$
Fornax	54.6686	-35.3103	0.0046	$6.8^{+1.0}_{-0.9}$
M49	187.4437	7.9956	0.0033	$4.4^{+0.2}_{-0.1}$
NGC 4636	190.7084	2.6880	0.0031	$4.1_{-0.3}^{+0.3}$
Centaurus (A3526)	192.1995	-41.3087	0.0114	$2.7^{+0.1}_{-0.1}$
Coma	194.9468	27.9388	0.0231	$1.7\substack{+0.1\\-0.1}$

Flux upper limits

Constraints on the WIMP annihilation cross section

Constraints on the dark matter lifetime

Lower limits on DM decay rate; 95% C.L. $\psi \rightarrow \mu^+ \mu^-$ 10^{26} \mathbf{x} τ_{ψ} 10^{25} Combined A1060 NGC4636AWM7NGC5813 Fornax Coma S636EGBG . . A1367 10^{24} 10^3 10^4 $m_{\psi}~[{\rm GeV}]$ Huang et al.

Gamma-ray features

<u>Strategy</u>: search for a feature in the gamma-ray spectrum which cannot be mimicked by any (known) astrophysical source:

- If not observed → strong limits on models (background substraction very efficient)
- If observed, unequivocal sign of dark matter

Produced in the annihilation DM DM $\rightarrow \gamma \gamma$

On general grounds, fairly suppressed in dark matter annihilations.

 $\langle \sigma v \rangle (\chi \chi \to \gamma \gamma) \sim \alpha_{\rm em}^2 \times \langle \sigma v \rangle_{f.o.} \sim 10^{-30} \,{\rm cm}^3 {\rm s}^{-1}$

Produced in the annihilation DM DM $\rightarrow \gamma \gamma$

Predicted to be fairly intense in some concrete scenarios

• Inert Higgs

Gustafsson, Lundström, Bergström, Edsjö astro-ph/0703512

Produced in the annihilation DM DM $\rightarrow \gamma \gamma$

Predicted to be fairly intense in some concrete scenarios

• Dirac fermion coupled to a Z'

Jackson et al. arXiv: 0912.0004

Produced also in the decay $DM \rightarrow \gamma \nu$

Predicted to be fairly intense in some concrete scenarios. No suppression.

• Gravitino in general SUSY models (without imposing R-parity conservation)

m=200 GeV τ =7×10²⁶ s

Buchmüller, AI, Shindou, Takayama, Tran arXiv:0906.1187

Produced also in the decay $DM \rightarrow \gamma \nu$

Predicted to be fairly intense in some concrete scenarios. No suppression.

• Vector of a hidden SU(2)

Produced also in the decay $DM \rightarrow \gamma \nu$

Predicted to be fairly intense in some concrete scenarios. No suppression.

• Vector of a hidden SU(2)

The Fermi collaboration has searched for lines in the region $|b|>10^{\circ}$ plus a $20^{\circ}\times20^{\circ}$ square centered at the Galactic Center

Flux upper limits from DM DM $\rightarrow \gamma \gamma$

Fermi collaboration arXiv:1205.2739

Limits on the annihilation cross section DM DM $\rightarrow \gamma \gamma$, Z γ

Fermi collaboration arXiv:1205.2739

Limits on the annihilation cross section DM DM $\rightarrow \gamma \gamma$, Z γ

Gamma-ray lines

Limits on the lifetime $DM \rightarrow \gamma \nu$

Gamma-ray lines

Limits on the lifetime DM $\rightarrow \gamma \nu$

Gamma-ray lines

Produced also in the decay $DM \rightarrow \gamma \nu$

Predicted to be fairly intense in some concrete scenarios

• Gravitino in general SUSY models (without imposing R-parity conservation)

m=200 GeV $\tau = 7 \times 10^{26}$ s

Buchmüller, AI, Shindou, Takayama, Tran arXiv:0906.1187

Weniger arXiv:1204.2797

Reg3

Gamma-ray lines. A hint for a signal?

For Einasto halo profile,

 $m_{\chi} = 129.8 \pm 2.4^{+7}_{-13} \text{ GeV}$ $\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} = (1.27 \pm 0.32^{+0.18}_{-0.28}) \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}$ $4.6 \sigma \text{ (3.3 } \sigma \text{ including LEE)}$

Weniger arXiv:1204.2797

Gamma-ray "boxes"

AI, Lopez-Gehler, Pato arXiv:1205.0007

Gamma-ray "boxes"

AI, Lopez-Gehler, Pato arXiv:1205.0007

Gamma-ray "boxes"

Virtual internal Bremsstrahlung

Bergström Flores, Olive, Rudaz

In the case of Majorana dark matter annihilations into light fermions, the $2 \rightarrow 3$ process can have a larger cross section than the $2 \rightarrow 2$ one.

Bonus: if η is degenerate in mass with the dark matter particle, the Gamma-ray spectrum displays a characteristic feature

Bringmann, Huang, AI, Vogl, Weniger arXiv:1203.1312

Virtual internal Bremsstrahlung

Virtual internal Bremsstrahlung

• We have entered an era where indirect searches provide strong constraints on the dark matter properties.

• Experiments are starting to probe regions of the parameter space where a signal could be expected. Discovery potential?

 Bright future in indirect dark matter searches: AMS-02, IceCube, CTA... New surprises (and new challenges) are surely awaiting us.