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Neutral ultra-light spin-0 bosons
Neutral scalar/pseudoscalar particles can havegauge
invariant couplings with photons:

LS = – 1
4ΛS

FµνF
µνφS

LP = – 1
4ΛP

FµνF̃
µνφP

Λ → effective scale of mass dimension

• Fµν → EM field strength
• F̃ µν = ǫµναβFαβ
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Known examples are
Light: axion

• pseudo-scalar particle
• pseudo-goldstone boson of Peccei-Quinn symmetry
(solve the strong-CP problem in QCD)

• mass expected in the range ofm ∼ O(meV)

Heavy: Higgs boson

• scalar particle
• necessary to provide all masses in the SM

• mass expected in the range ofm ∼ 122–129 GeV
• CouplingH − γ − γ generated at one-loop

(Tao Han’s Lectures)
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U(1)A problem
• QCD Lagrangian possesses a global symmetry
G = U(f)R × U(f)L in the limitmf → 0

• Regarding the u and d quarks, the theory shows a symmetry
U(2)L × U(2)R

• Vectorial part of this symmetryU(2)L+R (and its subgroup
U(1)V = U(1)L+R) is an exact symmetry

• Axial part (U(2)A = U(2)L−R) is not preserved by the QCD
vacuum

• Four Goldstone bosons are expected.π−, π0, π+ corresponds
to SU(2)A breaking. The expected fourth boson related to the
U(1)A breaking does not exist

• This is theU(1)A problem
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Solution to U(1)A problem - Θ vacuum

• U(1)A has a chiral anomaly and that the ground state of QCD
is non-trivial

• In fact, the QCD vacuum has infinitely degenerate vacua,
topologically different

• Instantons describe a solution, localized in space and time, in
which a vacuum of class n-1 evolves into another vacuum, of
class n

The superposition of the various vacua is called theΘ vacuum

|Θ〉 =
∑

n

e−inΘ|n〉
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Solution to U(1)A problem - Θ vacuum

• At the same time, considering the effect of the chiral anomaly

of theU(1)A symmetry, an extra term is added to the Lagrangian

Leff
QCD = LQCD +Θ

g2

32π
Gµν

a G̃aµν

• Including the electroweak interactions

Leff
SM = LSM + Θ̄

g2

32π
Gµν

a G̃aµν

Θ̄ = Θ + Arg(detM)

• Because of the non-trivial properties of theΘ-vacuum, and
the axial anomaly ofU(1)A it was shown thatU(1)A is not a
quantum symmetry of QCD, and therefore no Nambu-Goldstone
boson is expected
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The strong CP problem

• The presence of̄Θ implies violation of the CP invariance in
QCD - has never been observed

• The EDM of neutron has a strong experimental bound
|dn| ≤ 12× 10−26e-cm

• However,dn ∼ 10−16Θ̄ e-cm

=⇒ Θ̄ < 10−9

• Extreme fine-tuning ofΘ to the value ofArg(detM)

• The question of the smallness ofΘ̄, is known as “the
Strong-CP problem".
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A solution to the strong CP problem

• An elegant answer to this problem was by Peccei and Quinn

• Extension of the SM with an additional, spontaneously broken,
global chiralU(1) symmetry (theU(1)PQ)

• Broken spontaneously at the PQ scalefa

• Corresponding pseudo-Nambu-Goldstone boson is theaxion

Couples to gluons such that the chiral anomaly in theU(1)PQ

current is reproduced

Lagg =
a

fa/N

g2s
32π2

Ga
µνG̃

aµν
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A solution to the strong CP problem

Lagg =
a

fa/N

g2s
32π2

Ga
µνG̃

aµν

LΘ = Θ̄
g2

32π
Gµν

a G̃aµν

• provide axion field with an effective potentialVeff

• Coefficient of the CP violatingGG̃ term becomes dynamical

vanishes for the value〈a〉 = −Θ̄fa/N at whichVeff has its
minimum

Solves the strong CP problem
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Axion mass
• Axion receives a mass from their interactions with gluons

• Induces transitions toqq̄ states and thus to neutral pions

• a andπ0 mix with each other

Axions pick up a small mass:mafa ≈ mπfπ

m2
a =

mumd

(mu +md)2

(

fπmπ

fa/N

)

Usingz = mu/md,

ma =

√
z

1 + z

(

fπmπ

fa/N

)

√

( )

Sourov Roy, Photon-axion mixing, 29/03/2013 – p. 12



Original PQ proposal assumedfa to be at the weak scale

•Axion searches, astrophysical observations, and cosmological
arguments points to

fa/N >∼ 6× 108 GeV

Accordingly, the axion has a very weak coupling

Its mass must be very small

ma
<∼ 0.01 eV

• Extremely weakly interacting particle (EWIP)
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Axion Models
• Axion interactions are model dependent

• Two most popular classes of phenomenologically viable
“invisible axion" models

Hadronic or Kim-Shifman-Vainshtein-Zakharov (KSVZ) model

Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) model

• KSVZ type: at least on additional heavy quark is introduced
which couples directly to the axion

• All other fields do not carry PQ charge

• Axion interacts with ordinary matter through the anomaly term
from loops of this new heavy quark
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Axion Models contd.
• Integrating out heavy quark loops, one obtains the effective
dimension-5 coupling of axions to gluons

• Couplings of the axion to SM matter fields are suppressed by
additional loop factors

• In DFSZ scheme, no additional heavy quarks are introduced

• SM matter fields and at least two Higgs doublets carry
appropriate PQ charges

• At low energies the axion-gluon interaction arises

• Axions withfa ∼ 1016 GeV appear also in string theory
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Axion couplings to photons
• Mixing with π0 generates couplings of the axions to photons

Laγγ =
1

4Λ
aFµνF̃

µν ≡ gaγγ
4
aFµνF̃

µν

gaγγ =
α

2π

1 + z√
z

ma

fπmπ

(

E

N
− 2

3
.
4 + z

1 + z

)

τa = Γ−1
a→γγ =

64π

g2aγγm
3
a

≃ 4.6× 1040 s
(

E
N − 1.95

)−2
(

fa/N
1010 GeV

)5

→ almost stable particle on cosmic time scale
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Effects of spin-0-γ− γ couplings on photon propagation

• replacingγ − γ − a→ 〈B〉γa gives a mixing term
in the photon-spin-0 system

• thephoton→ spin-0conversion is possible in
external EM field (Primakof effect)

γ φ

• it could generatephoton↔ spin-0 oscillationsfor
photons propagating in magnetic fields

G. Raffelt, L. Stodolsky, PRD 37, 1237 (1988)
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Astrophysical Constraints
• Axions can be produced in hot and dense astrophysical
environments: ordinary stars, white dwarfs, and supernovae

•Axion luminosityLa depnds onfa, the relevant axion
production process, astrophysical model of the source

• A sizeableLa is associated with additional energy transport
out of the source

• Affect the behaviour of the source strongly

• Astrophysical studies of stars, white dwarfs, and supernovae
can be used to derive constraints onfa/N orma
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Astrophysical Constraints
•In stars including our sun, axions can be produced through the
Primakoff process

γ + Ze→ Ze+ a
γ φ

• Axionic energy drain (La ∝ g2aγγ) leads to an enhanced
consumption of nuclear fuel within the star

• Shorten the lifetime of a star

• Globular clusters (GCs) are bound systems of a homogeneous
population of low mass stars

Allow for tests of stellar evolution theory

=⇒ gaγγ <∼ 10−10 GeV−1
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Photon-axion oscillation
Laγγ = gaγγ

4
aFµνF̃

µν = gaγγa ~E. ~B

• Induces a mixing between the photon and the axion in the
presence of a background magnetic field

Photon polarization with electric field parallel (|| ) to the

external~B mixes with the axion


ω2 + ∂2z + 2ω2





0 gaγB/2ω

gaγB/2ω −m2
a/2ω

2













A||

a



 = 0

Represents2× 2 mixing problem

Pa→γ = sin2(2θ) sin2(1
2
kx); k = 2π/LOsc

tan(2θ) =
gaγBω
m2
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Photon-axion oscillation
• One possible explanation of the dimming of the
type-Ia supernovae

P1 =
µ2

k2
sin2

(

kx
2

)

= (µx)2

4

(

sin(kx/2)
kx/2

)2

,

x: the distance traveled by the photon,
µ = B

M
,

When the magnetic field is not constant, the total photon-axion
oscillation probability over many magnetic domain is

Pγ→a =
1
3(1− e−y/Ldecay)

y = NLdom Ldecay =
2Ldom

3P1

C. Csáki, N. Kaloper, J.Terning, PRL88, 161302 (2002); Y. Grossman, SR,

and J. Zupan, PLB543, 23 (2002)
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Solar axion searches
• Most important and strongest astrophysical source for axions
is the core of the Sun

• Axions would be continuously produced in the magnetic and
electric field of the plasma via the 2-photon coupling

• After production freely stream out of the Sun

Differential solar axion flux on Earth
dΦa

dE = 6.02× 1010 cm−2 s−1 keV−1g210E
2.481e−E/1.205

(g10 = gaγγ/10
−10GeV−1)

• Spectral energy distribution of the axions peaks at≈ 3 keV
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Solar axion searches
• Most sensitive axion experiments at present in the mass range
10−5 eV <∼ma

<∼ 1 eV are “axion helioscopes" i.e. magnetic
solar telescopes

Pa→γ =
(

Bgaγγ
2

)2

2L2 1−cos(qL)
(qL)2

q = m2
a/2Eγ

qL < 1 =⇒ sensitivity is limited to a specific axion mass range
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Solar axion search

(eV)axionm

-210 -110 1

)
-1

(G
eV

γag

-1110

-1010

-910
Tokyo helioscope

HB stars

Axio
n 

m
od

el
s

KSVZ 
[E

/N
 =

 0
]

H
D

M

CAST Vacuum

He4 He3

-210 -110 1

Sourov Roy, Photon-axion mixing, 29/03/2013 – p. 24



Ultra-light spin-0 particle
mass, coupling and parity of ultra-light spin-0 particle
can be determined from measurement of vacuum
birefringence and dichroism
L. Maiani, R. Petronzio, E. Zavattini, PLB 175, 359 (1986)

• the birefringence can induce ellipticity on a linearly
polarized Laser beam in external field

R. Cameron et al. [BFRT collab.] PRD 47, 3707 (1993)

• PVLAS collaboration (2005) measured a large value
for the ellipticity

E. Zavattini et al., PRL 96, 110406 (2006)

• too large for QED!New physics effect ?

• if interpreted in terms of light axion implies
an axion massm ∼ 10−3 eV andΛ ∼ 106 GeV
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A method to measure vacuum birefrin-
gence
E. Iacopini and E. Zavattini, PLB 8, 151 (1979)

• different polarization vectors will propagate with
different phase velocities→ different refractive
indices

• linear polarization→ eliptical polarization out ofB.
Ellipticity ψ induced by birefringence

ψ = πL
λ (n‖ − n⊥)
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Rotation and Ellipticity
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Rotation and Ellipticity
Birefringence and linear dichroism of the vacuum are
characterized by

E ≈ N
B2L3m2

A

96ωM2 sin(2θ)

Θ ≈ N B2L2

16 M2 sin(2θ)

(m2
AL/4ω ≪ 1).

mA is the axion mass,M = 1/gaγγ the inverse coupling constant
to two photons

ω the photon energy,L andN the effective path lengths and the
number of paths the light travels
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QED contribution to the ellipticity
The QED contribution to the ellipticity can be written
as

E = N B2
0ℓα

2ω
15m4

e

• ω is the photon energy andme the electron mass
W. Heisenberg and H. Euler, Z. Phys.98, 714 (1936)

• Polarization vector of the initially linearly polarized
beam makes an angle 45◦ with the direction of the
external magnetic field
Take a laser beam with
• wavelengthλ = 1550 nm

• B0 = 9.5 T andNℓ = 25 km

Resulting ellipticity is2× 10−11
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Laser experiments
• Purely laboratory based experimental search for
ultra-light (pseudo)scalar particles

• Possible to make accurate measurements on the
modification of the polarization state of a light beam

• A laser beam is reflected back and forth N times
between two mirrors, in a constant magnetic field
orthogonal to the beam direction

Total length travelled by the laser beam in magnetic
fieldL = Nℓ ∼ a few km

Laser beam is linearly polarized to start with and after
traversingL, it is possible to measure very small
ellipticity and change in the rotation of the
polarization plane
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Photon splitting effect can also produce an apparent
rotation of the plane of polarization of a linearly
polarized light
S.L. Adler, Ann. Phys. (N.Y.)67, 599 (1971)

The resulting effect is too small to be observed in the
laboratory
If the coupling of scalar/pseudoscalar with two
photons is sufficiently large then this effect of photon
splitting can be significantly enhanced

γ

γ

γ (k)

(k  )

(k  )1

2

(k)
γ γ γM(            )    =

E. Gabrielli, K. Huitu, SR, PR D74, 073002 (2006)
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Constraints from PVLAS
In 2006 the PVLAS experiment measured a positive
value for the rotation
With B0 ≈ 5 T, ǫ = (3.9± 0.5)× 10−12 rad/pass
However, the new observations (in 2007) do not show
the presence of a rotation signal down to

1.2× 10−8 rad at a magnetic field strength of 5.5 T

1.0× 10−9 rad at a magnetic field strength of 2.3 T

(at 95% c.l.) with 45000 passes
In the same experimental environment no ellipticity
signal detected down to
1.4× 10−8 at a magnetic field intensity of 2.3 T (at 95% c.l.)
Impose bounds on the mass and the inverse coupling
constant for scalar/pseudoscalar bosons coupled to
two photons
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Constraints from PVLAS
Bounds onma and effective inverse coupling constant
(M̃ ) for axion to two photons. Area below the solid
and the dotted curves are disallowed from the data
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ultra-light spin-0 particle (contd.)
• Ultralight axions can also be tested in laboratory by different
kind of experiments

P. Sikivie, PRL 51, 1415 (1983)

• after a laser beam passes through a magnetic field an axion
component can be generated
• Light shining from a wall by using a second magnet
It is possible to check the parameter region explored by PVLAS
data, by using X-ray laser facility
R. Rabadan, A. Ringwald, K. Sigurdson, PRL 96, 110407 (2006)
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Exclusion regions in the mass-coupling plane
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Axion cold dark matter
The Peccei-Quinn (PQ) scalar field has the following
Lagrangian:

L = 1
2
|∂µφ|2 − Veff(φ, T )

Veff = λ
4
(|φ|2 − η2)2 + λ

6
T 2|φ|2

L is invariant under globalU(1)PQ, φ→ φeiα

At high temp.T > Tc, minimum atφ = 0

At T < Tc, φ obtains VEV|φ| = η

The axiona is a Nambu-Goldstone boson associated with this
spontaneous symmetry breaking

φ = |φ|eia/η

The axion is massless at this point
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Axion cold dark matter
When the temp. decreases further and becomes comparable to
the QCD scaleΛ, the axion obtains its mass through QCD
non-perturbative effect

The axion field starts to oscillate coherently around its minimum
when the cosmic expansion rateH becomes comparable to the
axion massma

Oncema takes on its T-independent value this axion condensate
behaves as cold dark matter with a relic density that is governed
by the initial angleθ1 = a1/η at onset of oscillation

Ωah
2 = 0.18 θ21

(

fa
1012GeV

)1.19
(

Λ
400MeV

)

(Xerexes Tata’s Lectures)
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Conclusion
• Axions appear as the solution to the strong CP
problem

• Couplings of axions with photons have several
implications

• Constraints have been derived on the axion-photon
mixing from various astrophysical observation and
laboratory experiment

• Axions can act as cold dark matter

• Axion searches are too important to ignore
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