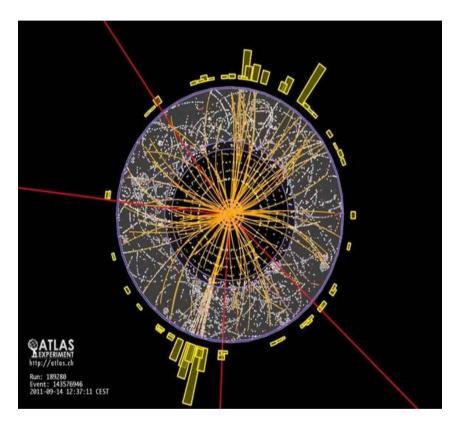
Aspects of QCD at the LHC

- Experiment and Theory
- QCD improved parton model
- Strong coupling constant
- Parton distribution function
- NLO, NNLO results
- Jet physics

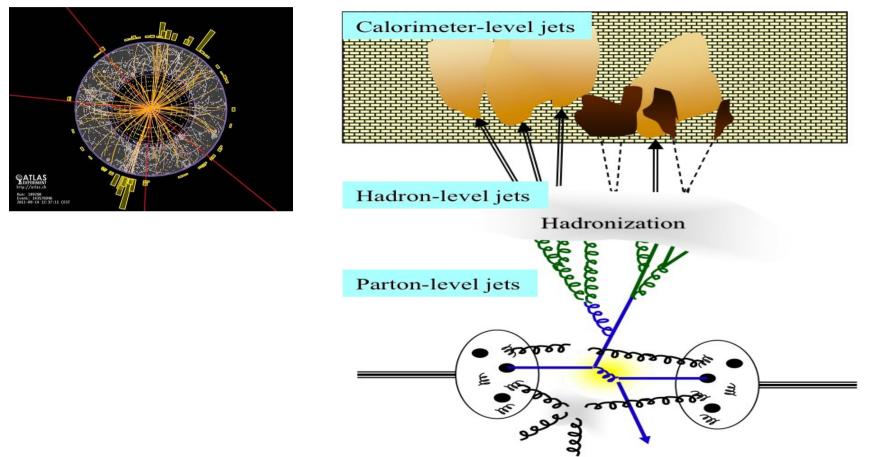
- Excellent discovery reach:
 - Higgs

 - SupersymmeryExtra-Dimensional models
 - Anything else


- Excellent discovery reach:
 - Higgs
 - Supersymmery
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10fb^{-1}$ /year)
 - $\circ W
 ightarrow e
 u$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $\circ t \overline{t}$ production: 10^7 events
 - Higgs ($m_H = 700 GeV$): 10^4 events

- Excellent discovery reach:
 - Higgs
 - Supersymmery
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10 f b^{-1}$ /year)
 - $W \to e \nu$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $\circ t \overline{t}$ production: 10^7 events
 - Higgs ($m_H = 700 GeV$): 10^4 events
- Large background
 - Large number of $\gamma, l^{\pm}, Z, W^{\pm}$
 - Jets
 - Large number of $t\overline{t}, b\overline{b}$

- Excellent discovery reach:
 - Higgs
 - Supersymmery
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10 f b^{-1}$ /year)
 - $W \to e \nu$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $\circ t \overline{t}$ production: 10^7 events
 - Higgs ($m_H = 700 GeV$): 10^4 events
- Large background
 - $\circ~$ Large number of $\gamma, l^{\pm}, Z, W^{\pm}$
 - Jets
 - Large number of $t\overline{t}, b\overline{b}$
- Theories:
 - Quantum Chromodynamics (QCD) effects
 - Electroweak (WE) effects


- Excellent discovery reach:
 - Higgs
 - Supersymmetry
 - Extra-Dimensional models
 - Anything else
- Enormous amount of events (with $10fb^{-1}$ /year)
 - $\circ~W
 ightarrow e
 u$: 10^8 events
 - $Z \rightarrow e^+e^-$: 10⁷ events
 - $\circ t \overline{t}$ production: 10^7 events
 - Higgs ($m_H = 700 GeV$): 10^4 events
- Large background
 - $\circ~$ Large number of $\gamma, l^{\pm}, Z, W^{\pm}$
 - o Jets
 - Large number of $t\overline{t}, b\overline{b}$
- Theories:
 - Quantum Chromodynamics (QCD) effects
 - Electroweak (WE) effects
- Issues to be tackled:
 - Kinematics
 - Normalisation
 - Renormalisation and factorisation scale uncertainities
 - Parton Distribution Functions
 - Phase Space boundary effects and resummation of large logs

What we see in the experiment

• Large number of events of different kinds involving variety of particles at the detector level

What really happens

Underlying event

- Large number of events of different kinds involving variety of particles at the production and detector levels
- The underlying theory, Quantum Chromodynamics provides a physical picture.
- Exact computation of such an observable is unrealistic.

• LHC being hadronic machine Quantum Chromodynamics(QCD), - the theory of Strong interaction physics plays an important role.

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".
- Provides a framework to compute signal and background processes both in Standard Model and in beyond the Standard Model.

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".
- Provides a framework to compute signal and background processes both in Standard Model and in beyond the Standard Model.
- We can explore the validity of SM at very high energies
- We can compute New physics signal and large SM background very precisely

- LHC being hadronic machine Quantum Chromodynamics(QCD), the theory of Strong interaction physics plays an important role.
- QCD describes the structure and dynamics of hadrons in terms of their constituents, "Quarks" and "Gluons".
- Provides a framework to compute signal and background processes both in Standard Model and in beyond the Standard Model.
- We can explore the validity of SM at very high energies
- We can compute New physics signal and large SM background very precisely
- Parameter of QCD is strong coupling constant g_s or Λ_{QCD} .

QCD-a toolkit for discovering NEW PHYSICS at LHC

- We are interested processes involving hadrons
 - 1) Total cross sections: Higgs, slepton, gluino productions
 - 2) Differential cross sections: higt p_T jets, rapidity of leptons
 - 3) Decay of particles to hadrons: Jet physics, Fragmentation
 - 4) • • •

- We are interested processes involving hadrons
 - 1) Total cross sections: Higgs, slepton, gluino productions
 - 2) Differential cross sections: higt p_T jets, rapidity of leptons
 - 3) Decay of particles to hadrons: Jet physics, Fragmentation

4) • • • • •

• We want to compute them at energies much larger than the mass of the hadron/constituents.

 $Q^2 >> M_p^2, m_q^2,$ Collinear divergence

- We are interested processes involving hadrons
 - 1) Total cross sections: Higgs, slepton, gluino productions
 - 2) Differential cross sections: higt p_T jets, rapidity of leptons
 - 3) Decay of particles to hadrons: Jet physics, Fragmentation

4) • • • • •

• We want to compute them at energies much larger than the mass of the hadron/constituents.

 $Q^2 >> M_p^2, m_q^2,$ Collinear divergence

• We also may need differential cross sections in some special kinematic region

$${d^2\sigma\over dP_T dQ^2} \qquad Q^2>> P_T>> M_P, m_q$$

- We are interested processes involving hadrons
 - 1) Total cross sections: Higgs, slepton, gluino productions
 - 2) Differential cross sections: higt p_T jets, rapidity of leptons
 - 3) Decay of particles to hadrons: Jet physics, Fragmentation

4) • • • • •

• We want to compute them at energies much larger than the mass of the hadron/constituents.

$$Q^2 >> M_p^2, m_q^2,$$
 Collinear divergence

• We also may need differential cross sections in some special kinematic region

$$\frac{d^2\sigma}{dP_T dQ^2} \qquad Q^2 >> P_T >> M_P, m_q$$

• In perturbation theory, large logs orginate from the infra-red sector of the theory:

$$\log\left(rac{Q^2}{\Lambda^2}
ight), \qquad \log\left(rac{P_T^2}{Q^2}
ight), \qquad \left(rac{log(1-x)}{(1-x)}
ight)_+$$

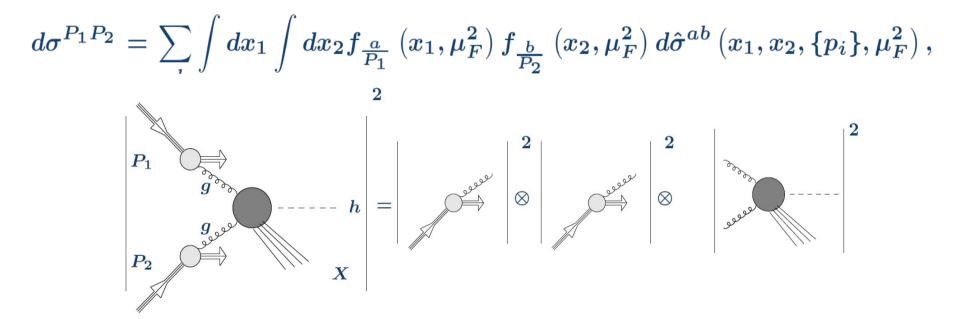
- We are interested processes involving hadrons
 - 1) Total cross sections: Higgs, slepton, gluino productions
 - 2) Differential cross sections: higt p_T jets, rapidity of leptons
 - 3) Decay of particles to hadrons: Jet physics, Fragmentation

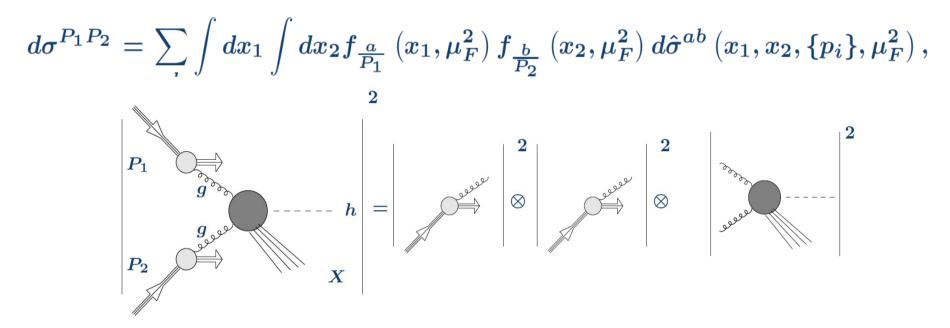
4) • • • • •

• We want to compute them at energies much larger than the mass of the hadron/constituents.

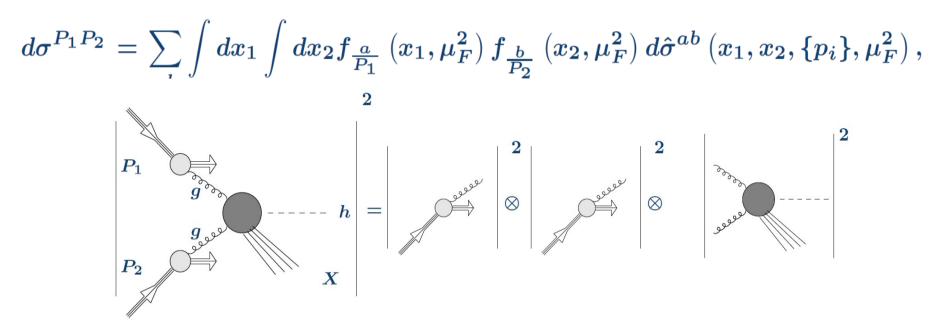
$$Q^2 >> M_p^2, m_q^2,$$
 Collinear divergence

• We also may need differential cross sections in some special kinematic region


$$rac{d^2\sigma}{dP_T dQ^2} \qquad Q^2 >> P_T >> M_P, m_Q$$


• In perturbation theory, large logs orginate from the infra-red sector of the theory:

$$\log\left(rac{Q^2}{\Lambda^2}
ight), \qquad \log\left(rac{P_T^2}{Q^2}
ight), \qquad \left(rac{log(1-x)}{(1-x)}
ight)_+$$


• We can compute them because they are "infra-red safe" due to their Factorisation properties

$$d\sigma^{P_1P_2} = \sum_{ab} \int dx_1 \int dx_2 f_{rac{a}{P_1}}\left(x_1,\mu_F^2
ight) f_{rac{b}{P_2}}\left(x_2,\mu_F^2
ight) d\hat{\sigma}^{ab}\left(x_1,x_2,\{p_i\},\mu_F^2
ight),$$

- $f_a(x, \mu_F^2)$ are parton distribution functions inside the hadron P.
- Non-perturbative in nature and process independent.

- $f_a(x, \mu_F^2)$ are parton distribution functions inside the hadron P.
- Non-perturbative in nature and process independent.
- $\hat{\sigma}_{ab}(x_i, \{p_i\}, \mu_F^2)$ are the partonic cross sections.
- Perturbatively calculable.

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

• The non-perturbative flux:

$$\Phi_{ab}(x,\mu_F) \hspace{0.1in} = \hspace{0.1in} \int_x^1 rac{dz}{z} f_a\left(z,\mu_F
ight) f_b\left(rac{x}{z},\mu_F
ight)$$

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(au, m_h^2
ight) = \sum_{ab} \int_{ au}^1 rac{dx}{x} \Phi_{ab}\left(x, \mu_F
ight) 2\hat{s} \ d\hat{\sigma}^{ab}\left(rac{ au}{x}, m_h^2, \mu_F
ight)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

• The non-perturbative flux:

$$\Phi_{ab}(x,\mu_F) \hspace{0.1in} = \hspace{0.1in} \int_x^1 rac{dz}{z} f_a\left(z,\mu_F
ight) f_b\left(rac{x}{z},\mu_F
ight)$$

- $f_a^{P_1}(x, \mu_F)$ are Parton distribution functions with momentum fraction x.
- μ_R is the Renormalisation scale and μ_F , Factorisation scale

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \ d\sigma^{P_1P_2}\left(\tau, m_h^2\right) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}\left(x, \mu_F\right) 2\hat{s} \ d\hat{\sigma}^{ab}\left(\frac{\tau}{x}, m_h^2, \mu_F\right)$$

• The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}\left(z,m_{h}^{2},\mu_{F}
ight) = \sum_{i=0}^{\infty} \left(rac{lpha_{s}(\mu_{R})}{4\pi}
ight)^{i} d\hat{\sigma}^{ab,(i)}\left(z,m_{h}^{2},\mu_{F},\mu_{R}
ight)$$

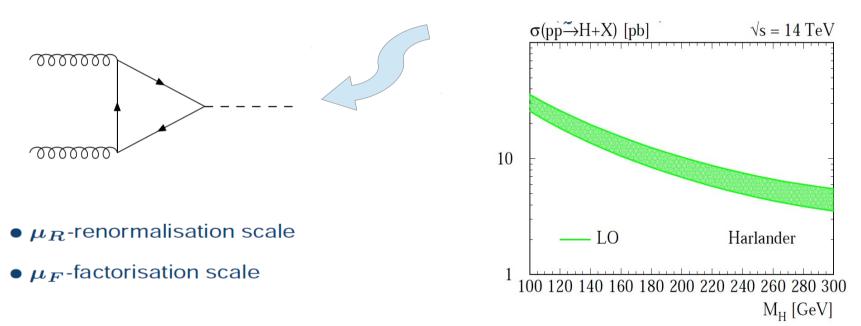
• The non-perturbative flux:

$$\Phi_{ab}(x,oldsymbol{\mu_F}) \hspace{0.1 in} = \hspace{0.1 in} \int_x^1 rac{dz}{z} f_a \left(z,oldsymbol{\mu_F}
ight) f_b \left(rac{x}{z},oldsymbol{\mu_F}
ight)$$

- $f_a^{P_1}(\boldsymbol{x}, \mu_F)$ are Parton distribution functions with momentum fraction \boldsymbol{x} .
- μ_R is the Renormalisation scale and μ_F , Factorisation scale
- The Renormalisation group invariance:

 $rac{d}{d\mu}\sigma^{P_1P_2}(au,m_h^2)=0, \qquad \mu=\mu_F,\mu_R$

Higgs Production through gluon fusion:


$$2S \, d\sigma^{PP}(x, m_H) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z, \mu_F) \, 2\hat{s} \, d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z}, m_H^2, \mu_R\right) + \cdots$$

Higgs Production through gluon fusion:

$$2S \, d\sigma^{PP} \left(x, m_H \right) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)} \left(z, \mu_F \right) 2\hat{s} \, d\hat{\sigma}_{gg}^{(0)} \left(\frac{x}{z}, m_H^2, \mu_R \right) + \cdots$$

Higgs Production through gluon fusion:

$$2S \, d\sigma^{PP}(x, m_H) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z, \mu_F) \, 2\hat{s} \, d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z}, m_H^2, \mu_R\right) + \cdots$$

Higgs Production through gluon fusion:

$$2S \ d\sigma^{PP}(x, m_H) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z, \mu_F) \ 2\hat{s} \ d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z}, m_H^2, \mu_R\right) + \cdots$$

$$000000000$$
• μ_R -renormalisation scale
• μ_F -factorisation scale
• μ_F -factorisation scale

$$2\hat{s} \ \hat{\sigma}_{gg}^{(0)}(\hat{s},\mu_R) \sim lpha_s^2(\mu_R) \ G_F \ \left[rac{4m_t^2}{m_H^2} F\left(rac{4m_t^2}{m_H^2}
ight)
ight], \qquad \qquad rac{m_H}{2} < \mu_R = \mu_F < 2m_H$$

LO prediction is Unreliable due 100 - 200% scale uncertainity

• Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Factorisation scale due to light quarks and massless gluon

$$f_a(x) \to f_a(x, \mu_F)$$
 $a = q, \bar{q}, g$

Renormalisation scale due to UV divergences

 $\alpha_s
ightarrow lpha_s(\mu_R)$

• Factorisation scale due to light quarks and massless gluon

 $f_a(x)
ightarrow f_a(x, \mu_F)$ $a = q, \bar{q}, g$

• Parton Distribution Functions PDF extracted from experiments

NLO: CTEQ, GRV NNLO: MRS, MRST, MSTW, JR, ABKM, HERAPDF, NNPDF

Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Factorisation scale due to light quarks and massless gluon

 $f_a(x)
ightarrow f_a(x, \mu_F)$ $a = q, \bar{q}, g$

• Parton Distribution Functions PDF extracted from experiments

NLO:	CTEQ,	GRV					
NNLO:	MRS,	MRST,	MSTW,	JR,	ABKM,	HERAPDF,	NNPDF

• Stability of perturbative result and missing higher order contributions.

Renormalisation scale due to UV divergences

$$\alpha_s
ightarrow lpha_s(\mu_R)$$

• Factorisation scale due to light quarks and massless gluon

 $f_a(x)
ightarrow f_a(x, \mu_F) \qquad a = q, \bar{q}, g$


Parton Distribution Functions PDF extracted from experiments

NLO: CTEQ, GRV NNLO: MRS, MRST, MSTW, JR, ABKM, HERAPDF, NNPDF

- Stability of perturbative result and missing higher order contributions.
- Any "Fixed order" perturbative result is bound to depend on μ_R and μ_F and type of PDF sets.
- Observables are "free" of μ_R and μ_F .

$$\mu rac{d}{d\mu} \sigma^{P_1P_2} = 0, \qquad \mu = \mu_F, \mu_R, PDF$$

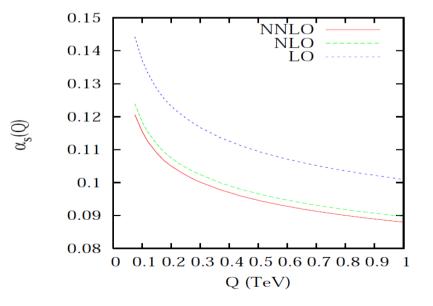
Strong Coupling Constant

Renormalisation Group Equation $lpha_s$

Renormalisation group equation for α_s :

$$a_s(\mu_R^2) = rac{g_s^2(\mu_R^2)}{16\pi^2} = rac{lpha_s(\mu_R^2)}{4\pi}$$

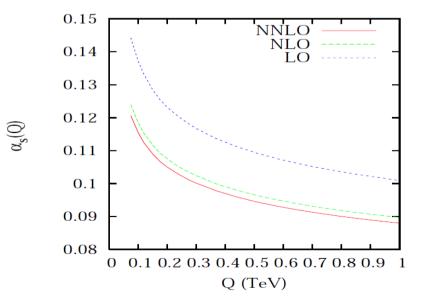
Renormalisation Group Equation $lpha_s$


Renormalisation group equation for α_s :

$$a_{s}(\mu_{R}^{2}) = \frac{g_{s}^{2}(\mu_{R}^{2})}{16\pi^{2}} = \frac{\alpha_{s}(\mu_{R}^{2})}{4\pi}$$
$$\mu_{R}^{2} \frac{d}{d\mu_{R}^{2}} a_{s}(\mu_{R}^{2}) = \beta \left(a_{s}(\mu_{R}^{2})\right)$$
$$= -\beta_{0} a_{s}^{2}(\mu_{R}^{2}) - \beta_{1} a_{s}^{3}(\mu_{R}^{2}) - \beta_{2} a_{s}^{4}(\mu_{R}^{2}) - \cdots$$

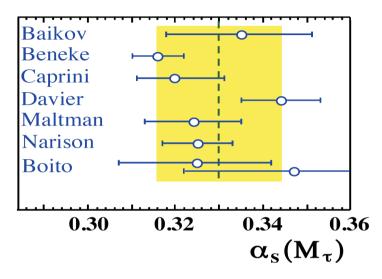
Renormalisation Group Equation α_s

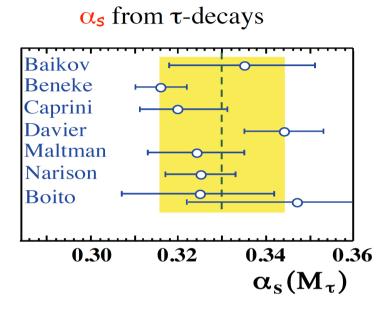
Renormalisation group equation for α_s :

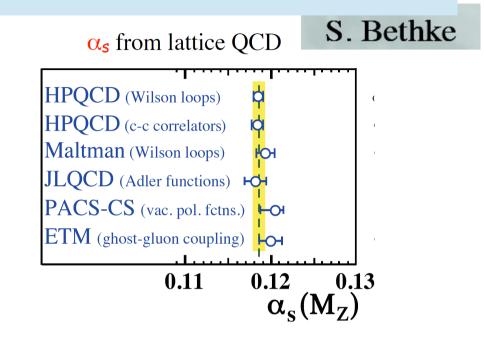

$$a_{s}(\mu_{R}^{2}) = \frac{g_{s}^{2}(\mu_{R}^{2})}{16\pi^{2}} = \frac{\alpha_{s}(\mu_{R}^{2})}{4\pi}$$
$$\mu_{R}^{2}\frac{d}{d\mu_{R}^{2}}a_{s}(\mu_{R}^{2}) = \beta \left(a_{s}(\mu_{R}^{2})\right)$$
$$= -\beta_{0} a_{s}^{2}(\mu_{R}^{2}) - \beta_{1} a_{s}^{3}(\mu_{R}^{2}) - \beta_{2} a_{s}^{4}(\mu_{R}^{2}) - \cdots$$

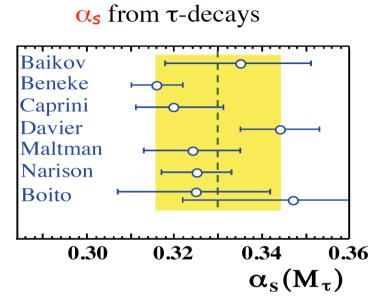
Renormalisation Group Equation α_s

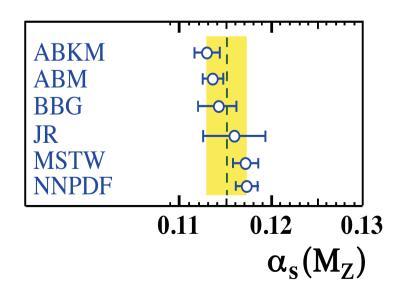
Renormalisation group equation for α_s :

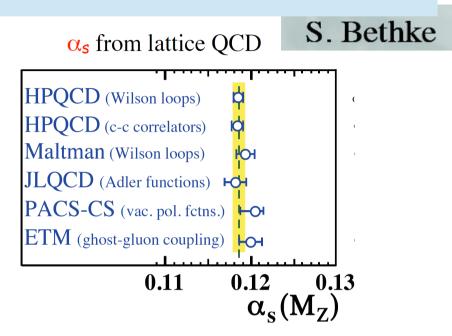

$$a_{s}(\mu_{R}^{2}) = \frac{g_{s}^{2}(\mu_{R}^{2})}{16\pi^{2}} = \frac{\alpha_{s}(\mu_{R}^{2})}{4\pi}$$
$$\mu_{R}^{2}\frac{d}{d\mu_{R}^{2}}a_{s}(\mu_{R}^{2}) = \beta \left(a_{s}(\mu_{R}^{2})\right)$$
$$= -\beta_{0} a_{s}^{2}(\mu_{R}^{2}) - \beta_{1} a_{s}^{3}(\mu_{R}^{2}) - \beta_{2} a_{s}^{4}(\mu_{R}^{2}) - \cdots$$

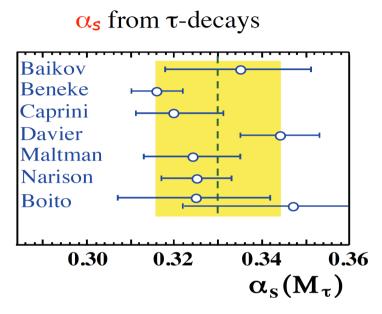

Measured from :

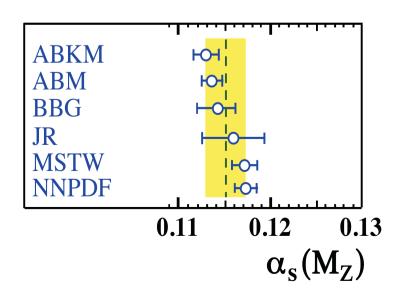

- Tau decays,
- lattice,
- heavy quarkonia decays,
- non-single structure functions,
- Jets from HERA,
- event shape variables from LEP

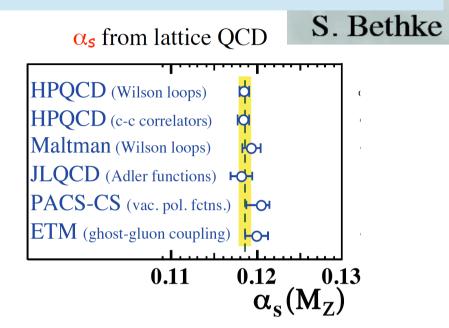

 α_{s} from τ -decays

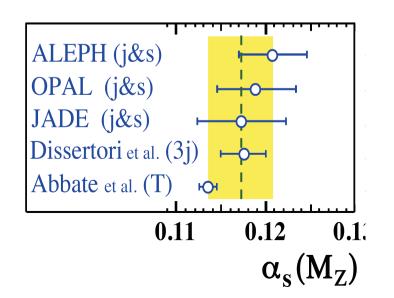

S. Bethke



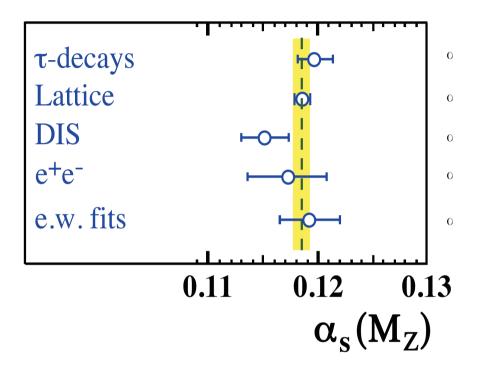


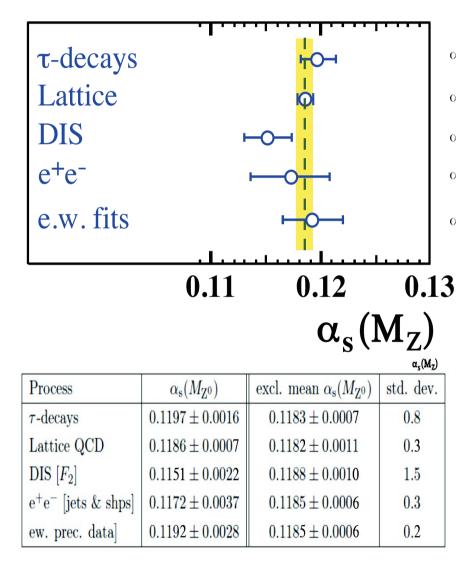

 α_s from DIS structure functions

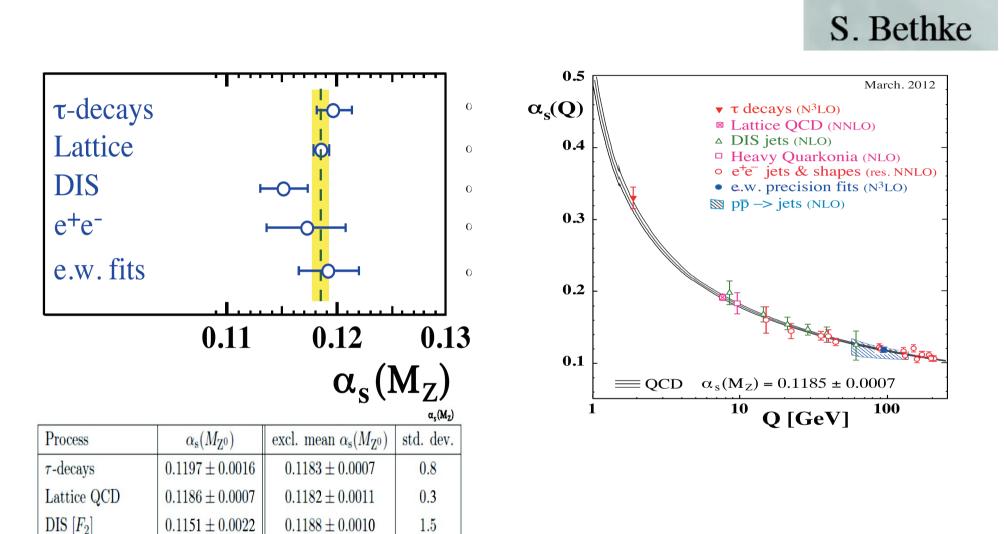




 α_s from DIS structure functions




 α_s from jets and event shapes in e⁺e⁻ annihilation



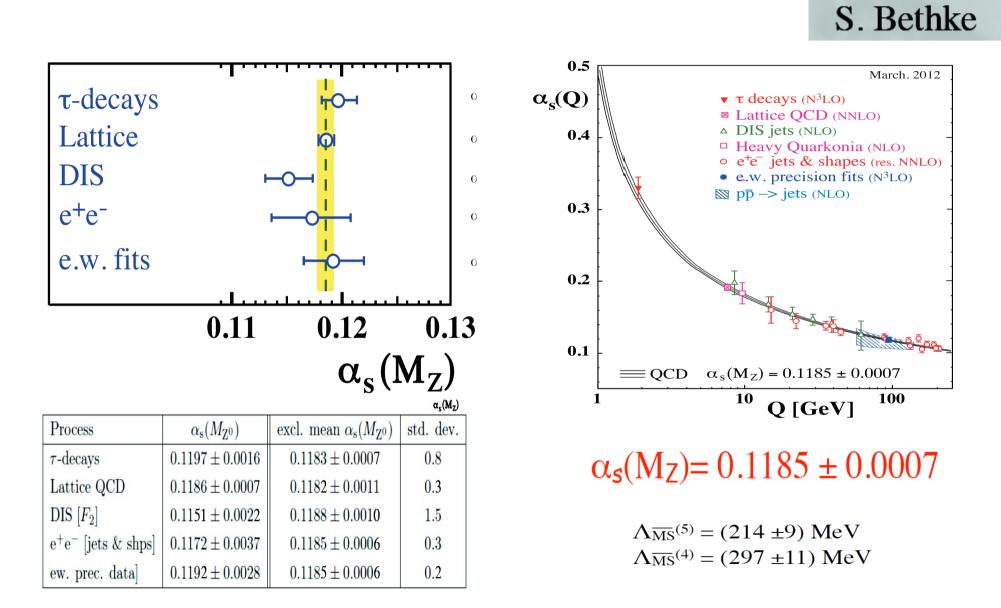
S. Bethke

S. Bethke

 e^+e^- [jets & shps]

ew. prec. data

 0.1172 ± 0.0037


 0.1192 ± 0.0028

 0.1185 ± 0.0006

 0.1185 ± 0.0006

0.3

0.2

Parton Distribution Function

 $f_a(z, \mu_F)$

PDF and DGLAP evolution equation

Renormalised parton density:

$$f_a(z, oldsymbol{\mu_F}) = \Gamma_{ab}\left(z, oldsymbol{\mu_F}, rac{1}{arepsilon_{ ext{IR}}}
ight) \otimes ~ f_a^{oldsymbol{B}}(z)$$

PDF and DGLAP evolution equation

Renormalised parton density:

$$f_a(z,\mu_F) = \Gamma_{ab}\left(z,\mu_F,rac{1}{arepsilon_{
m IR}}
ight) \otimes \ f^B_a(z)$$

Dakshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Evolution equation:

$$\mu_F rac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 rac{dz}{z} P_{ab}(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight), \qquad P \equiv \Gamma^{-1}\left(\mu_F rac{d}{d\mu_F}
ight) \Gamma$$

PDF and DGLAP evolution equation

Renormalised parton density:

$$f_a(z, oldsymbol{\mu_F}) = \Gamma_{ab}\left(z, oldsymbol{\mu_F}, rac{1}{arepsilon_{ ext{IR}}}
ight) \otimes ~ f_a^{oldsymbol{B}}(z)$$

Dakshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Evolution equation:

$$\mu_F rac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 rac{dz}{z} P_{ab}(z,\mu_F) f_b\left(rac{x}{z},\mu_F
ight), \qquad P \equiv \Gamma^{-1}\left(\mu_F rac{d}{d\mu_F}
ight) \Gamma$$

Perturbatively Calculable:

$$P_{ab}(z, \mu_F) = \left(\frac{\alpha_s(\mu_F)}{4\pi}\right) P^{(0)}(z) \quad \text{one loop } (LO)$$
$$+ \left(\frac{\alpha_s(\mu_F)}{4\pi}\right)^2 P^{(1)}(z) \quad \text{two loop } (NLO)$$
$$+ \left(\frac{\alpha_s(\mu_F)}{4\pi}\right)^3 P^{(2)}(z) \quad \text{three loop } (NNLO)$$

NNLO is already known (summer 2004)

Scale Variation of Flux at the LHC

$$\Phi^{I}_{ab}(x,\mu_{F}) = \int_{x}^{1} \frac{dz}{z} f^{I}_{a}(z,\mu_{F}) f^{I}_{b}\left(\frac{x}{z},\mu_{F}\right) \qquad I = LO, NLO, NNLO$$

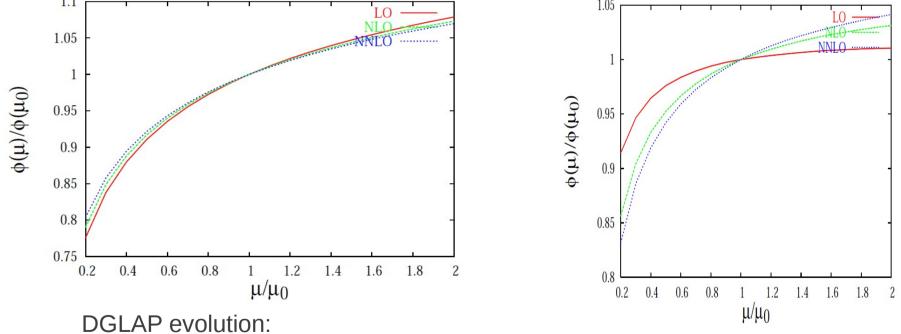
DGLAP evolution:

$$\mu_F \frac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 \frac{dz}{z} P_{ab}(z,\mu_F) f_b\left(\frac{x}{z},\mu_F\right) \qquad \mu_F = \mu, \quad \mu_0 = 150 \, GeV$$

Scale Variation of Flux at the LHC

$$\Phi_{ab}^{I}(x,\mu_{F}) = \int_{x}^{1} \frac{dz}{z} f_{a}^{I}(z,\mu_{F}) f_{b}^{I}\left(\frac{x}{z},\mu_{F}\right) \qquad I = LO, NLO, NNLO$$

$$LHC(quark flux,Q=150 \text{ GeV})$$


$$\lim_{\substack{100 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.85 \\ 0.75 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 0.75 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 1.4 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 1.4 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 1.4 \\ 1.6 \\ 1.8 \\ 2 \\ 1.4$$

Scale Variation of Flux at the LHC

$$\Phi_{ab}^{I}(x,\mu_{F}) = \int_{x}^{1} \frac{dz}{z} f_{a}^{I}(z,\mu_{F}) f_{b}^{I}\left(\frac{x}{z},\mu_{F}\right) \qquad I = LO, NLO, NNLO$$

$$LHC(quark flux,Q=150 \text{ GeV}) \qquad LHC(gluon flux,Q=150 \text{ GeV})$$

$$1.1 \qquad 1.05 \qquad 1.0$$

$$\mu_F \frac{d}{d\mu_F} f_a(x,\mu_F) = \int_x^1 \frac{dz}{z} P_{ab}(z,\mu_F) f_b\left(\frac{x}{z},\mu_F\right) \qquad \mu_F = \mu, \quad \mu_0 = 150 \, GeV$$

PDF sets

Different Groups:

MSTW, CTEQ, ABKM, ABM, NNPD, HERAPDF, GJR,

PDF sets

Different Groups:

```
MSTW, CTEQ, ABKM, ABM, NNPD, HERAPDF, GJR, .....
```

Exterimental inputs:

Deep Inelastic Scattering, Drell-Yan, Tevatron jets, Tevatron W,Z , ...

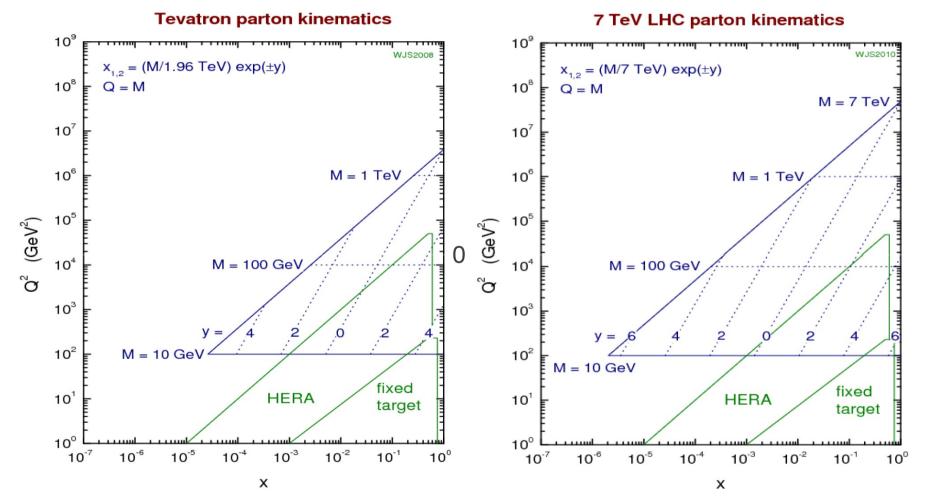
PDF sets

Different Groups:

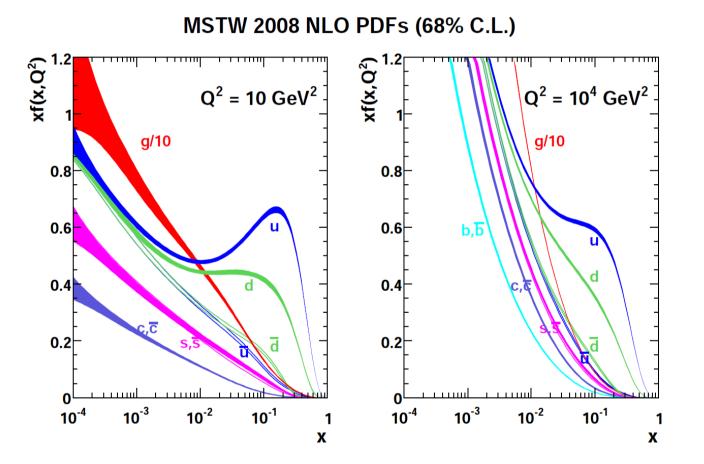
```
MSTW, CTEQ, ABKM, ABM, NNPD, HERAPDF, GJR, .....
```

Exterimental inputs:

Deep Inelastic Scattering, Drell-Yan, Tevatron jets, Tevatron W,Z , ...

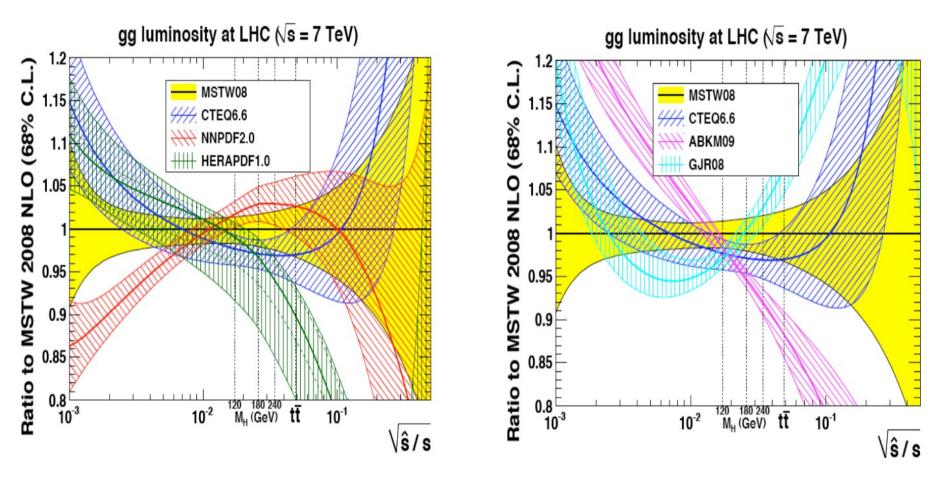

PDF uncertainity:

Choice of data sets Treatment of heavy quarks Treatment of errors Order of perturbation theory Parametrisation of densities Flavour symmetries Asymptotic behavious of pdfs

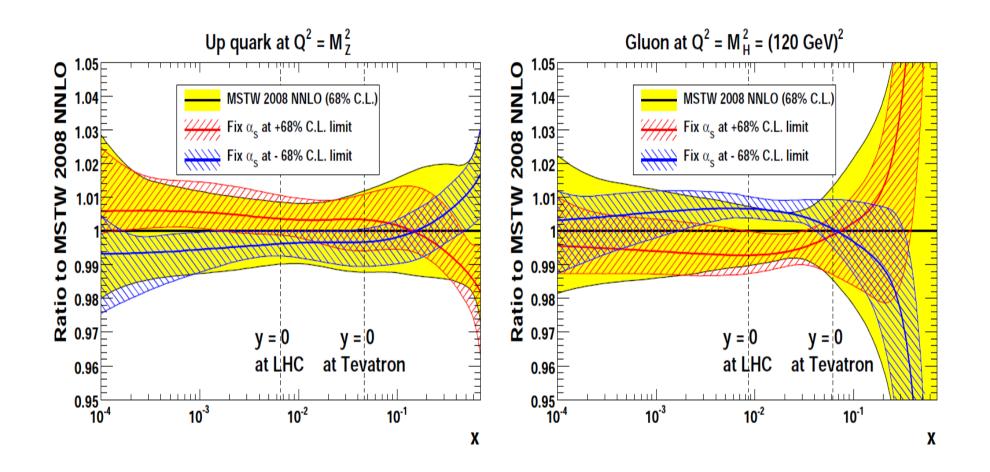


	MSTW08	CTEQ6.6 ^x	NNPDF2.0	HERAPDF1.0	ABKM09	GJR08
HERA DIS	✓	✓	✓*	✓*	\checkmark	✓
F-T DIS	✓	✓	\checkmark	×	✓	✓
F-T DY	✓	✓	\checkmark	×	\checkmark	✓
TEV W,Z	✓	✓+	\checkmark	×	×	×
TEV jets	✓	✓+	\checkmark	×	×	✓
GM-VFNS	\checkmark	\checkmark	×	✓	×	×
NNLO	~	×	×	×	\checkmark	\checkmark

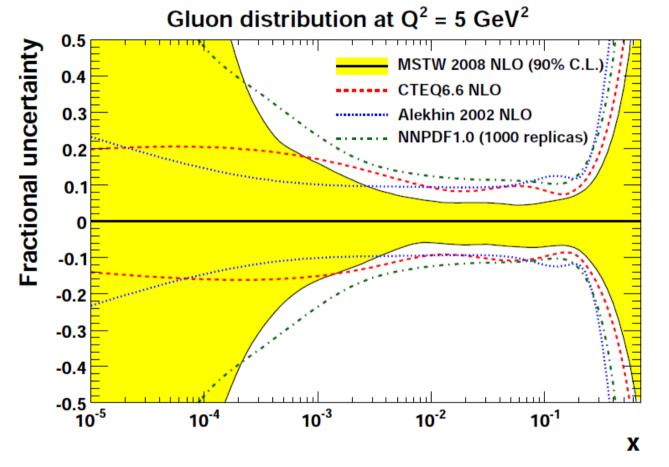
LHC-testing ground



Uncertainty from Parton Distribution Functions

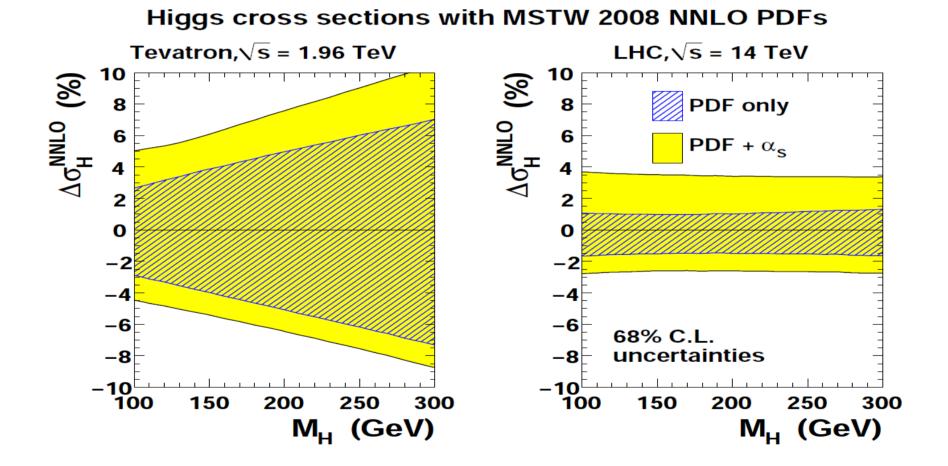

MSTW 2008 NLO PDFs at $Q^2 = 10$ GeV² and $Q^2 = 10^4$ GeV². J. Stirling

Gluon Luminosity



- Data sets: Electroproduction, hadron production (fixed target and collider)
- Fits procedure: Hessian and Monte Carlo
- ullet Treatment: $lpha_s$, m_b and m_c

PDF Uncertainty



Gluon PDF

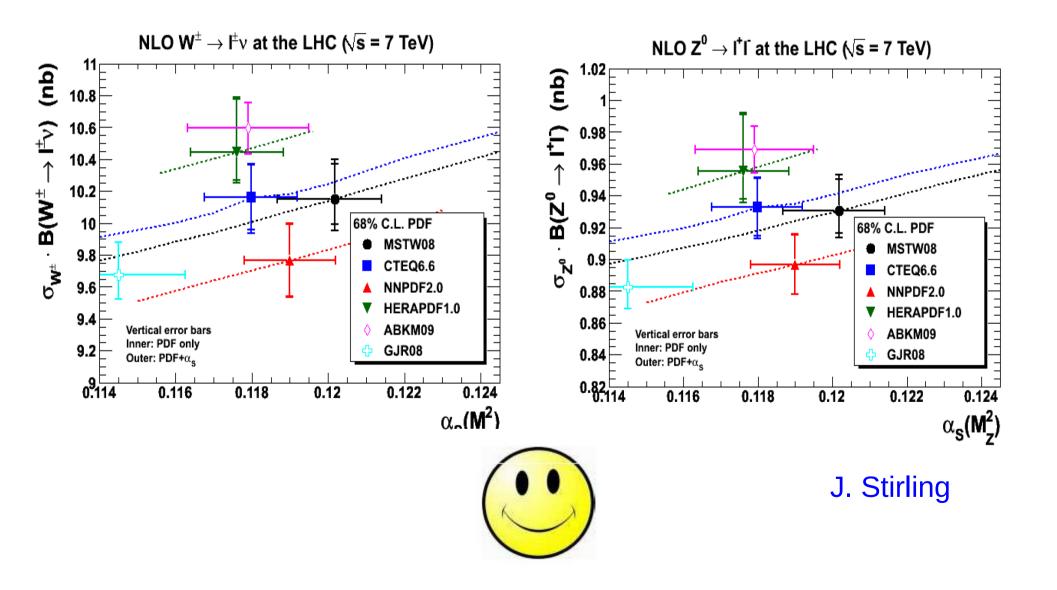
A comparison of the fractional uncertainty for the present MSTW, CTEQ6.6, Alekhin and NNPDF1.0 NLO gluon distributions at $Q^2 = 5$ GeV². All uncertainty bands represent a 90% C.L. limit.

PDF and Higgs cross section

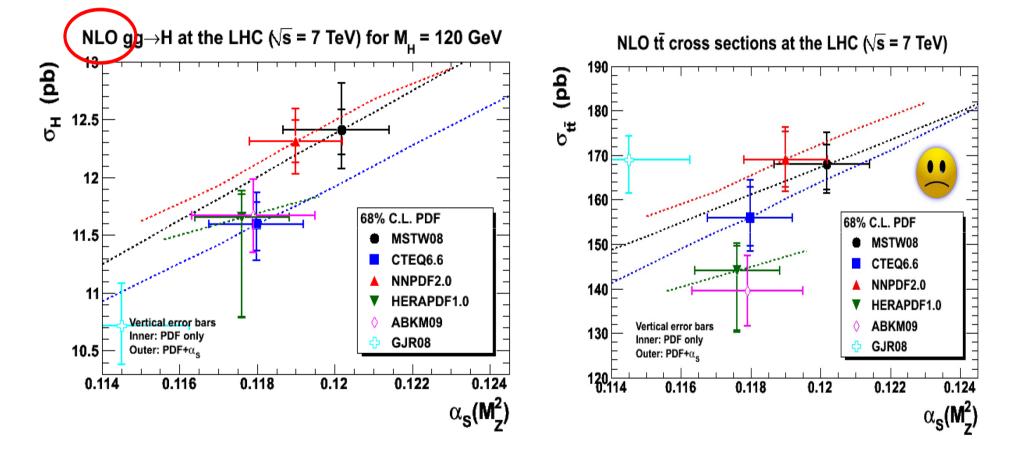
PDF and α_s

- For consistent prediction, PDFs along with appropriate α_s have to be used.
- MSTW does global fits for both PDFs and α_s using DIS data and other hadronic data.
- Also it uses LO, NLO and NNLO corrected cross sections computed in \overline{MS} scheme.

PDF and α_s

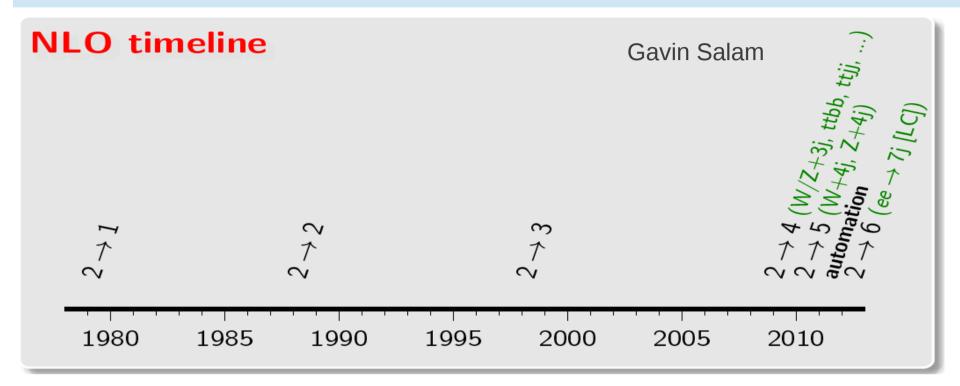

- For consistent prediction, PDFs along with appropriate α_s have to be used.
- MSTW does global fits for both PDFs and α_s using DIS data and other hadronic data.
- Also it uses LO, NLO and NNLO corrected cross sections computed in \overline{MS} scheme. Such a fit gives:

$$NLO: \alpha_s(M_Z^2) = 0.1202^{+0.0012}_{-0.0015}(68\% C.L)^{+0032}_{-0038}(90\% C.L.)$$


$$NLO: \alpha_s(M_Z^2) = 0.1171^{+0.0014}_{-0.0014} (68\% C.L)^{+0034}_{-0034} (90\% C.L.)$$

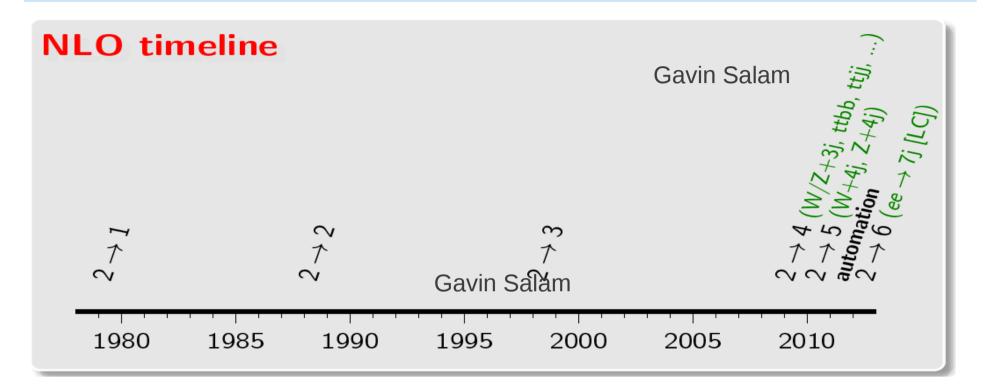
NNLO	$lpha_S(M_Z^2)$ (expt. unc. only)
MSTW	$0.1171 \begin{array}{r} +0.0014 \\ -0.0014 \end{array}$
AMP	$0.1128 \ \pm 0.0015$
BBG	$\begin{array}{rrr} 0.1134 & {}^{+0.0019}_{-0.0021} \end{array}$
ABKM	0.1129 ± 0.0014
JR	0.1158 ± 0.0035

Benchmark cross sections for W and Z



Benchmark cross sections for Higgs and Top

NLO revolution



1979: NLO Drell-Yan [Altarelli, Ellis & Martinelli] 1991: NLO $gg \rightarrow$ Higgs [Dawson; Djouadi, Spira & Zerwas]

1987: NLO high-pt photoproduction [Aurenche et al]
1988: NLO bb, tt [Nason et al]
1988: NLO dijets [Aversa et al]
1993: Vj [JETRAD, Giele, Glover & Kosower]

1998: NLO $Wb\bar{b}$ [MCFM: Ellis & Veseli] 2000: NLO $Zb\bar{b}$ [MCFM: Campbell & Ellis] 2001: NLO 3j [NLOJet++: Nagy] ... 2007: NLO $t\bar{t}j$ [Dittmaier, Uwer & Weinzierl '07] ...

NLO revolution


```
2009: NLO W+3j [Rocket: Ellis, Melnikov & Zanderighi]
2009: NLO W+3j [BlackHat+Sherpa: Berger et al]
2009: NLO t\bar{t}b\bar{b} [Bredenstein et al]
2009: NLO t\bar{t}b\bar{b} [HELAC-NLO: Bevilacqua et al]
2009: NLO q\bar{q} \rightarrow b\bar{b}b\bar{b} [Golem: Binoth et al]
2010: NLO t\bar{t}jj [HELAC-NLO: Bevilacqua et al]
2010: NLO t\bar{t}jj [HELAC-NLO: Bevilacqua et al]
2010: NLO Z+3j [BlackHat+Sherpa: Berger et al]
```

Advances at NLO

Analytical Methods

• Faster way of generating Feynman diagrams:

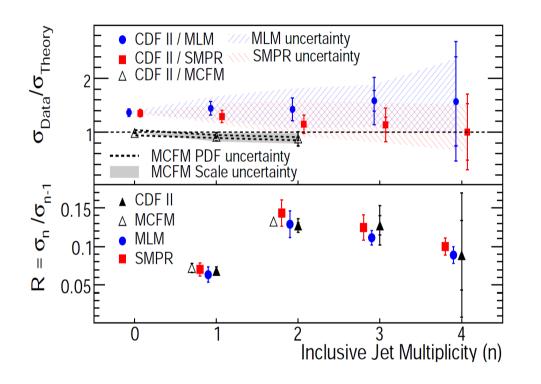
QGRAF

• Sympolic manupulation:

FORM, Mathematica

- On-shell methods
- Recursion techniques

Merging NLO with Parton Showers:

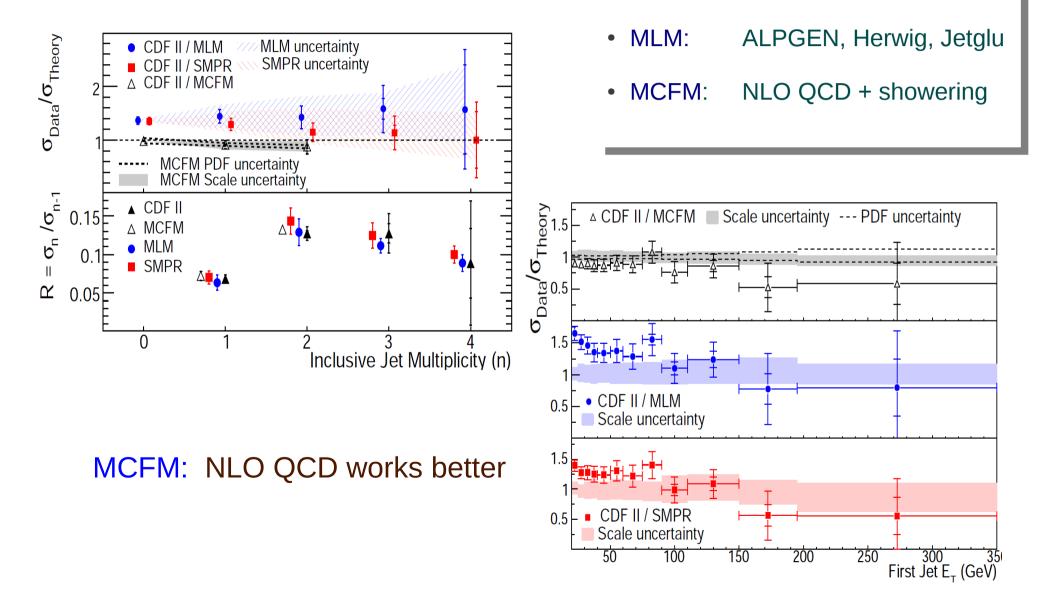

- MC@NLO
- POWEG
- SHERPA
- VINCIA
- GENeVa
- aMC@NLO
- KRKMC

Semi-numerical methods

- Helac-NLO
- CutTools
- BlackHat
- Rocket
- SAMURAI
- MadLoop
- GoSam
- Ngluon

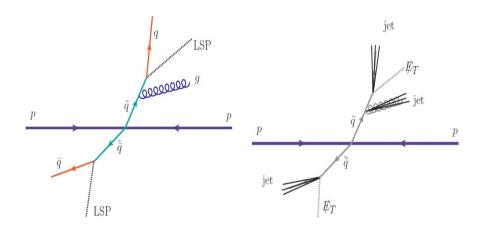
Role of NLO corrections

W + n-jet cross section

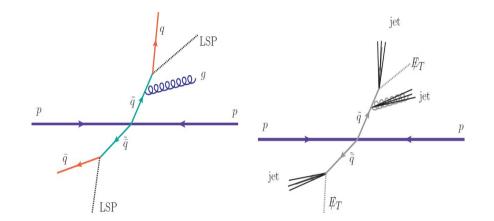

- SMPR: Madgraph, Pythia, Jetglu
- MLM: ALPGEN, Herwig, Jetglu
- MCFM: NLO QCD + showering

Role of NLO corrections

SMPR:


Madgraph, Pythia, Jetglu

W + n-jet cross section

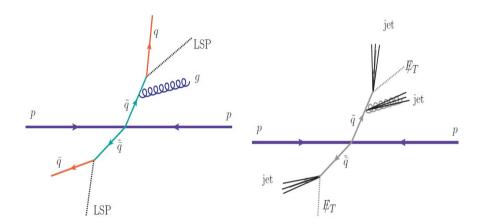

Z background to SUSY searches

- Susy searches require estimate on the Z background
- Hard to measure Z background
- Photon rates are 6 times larger easy to measure.
- Use theory to get the ratio $R_{Z/\gamma}$

Z background to SUSY searches

- Susy searches require estimate on the Z background
- Hard to measure Z background
- Photon rates are 6 times larger easy to measure.
- Use theory to get the ratio $R_{Z/\gamma}$

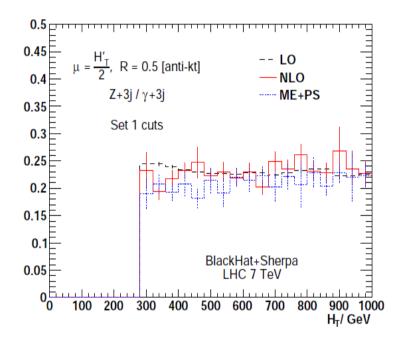
 $\sigma(pp \to Z(\to \nu \bar{\nu}) + \text{jets}) = \sigma(pp \to \gamma + \text{jets}) \times R_{Z/\gamma}$


Image: DescriptionImage: DescriptionBackgroundmeasured

Z background to SUSY searches

- Susy searches require estimate on the Z background
- Hard to measure Z background
- Photon rates are 6 times larger easy to measure.
- Use theory to get the ratio $R_{Z/\gamma}$

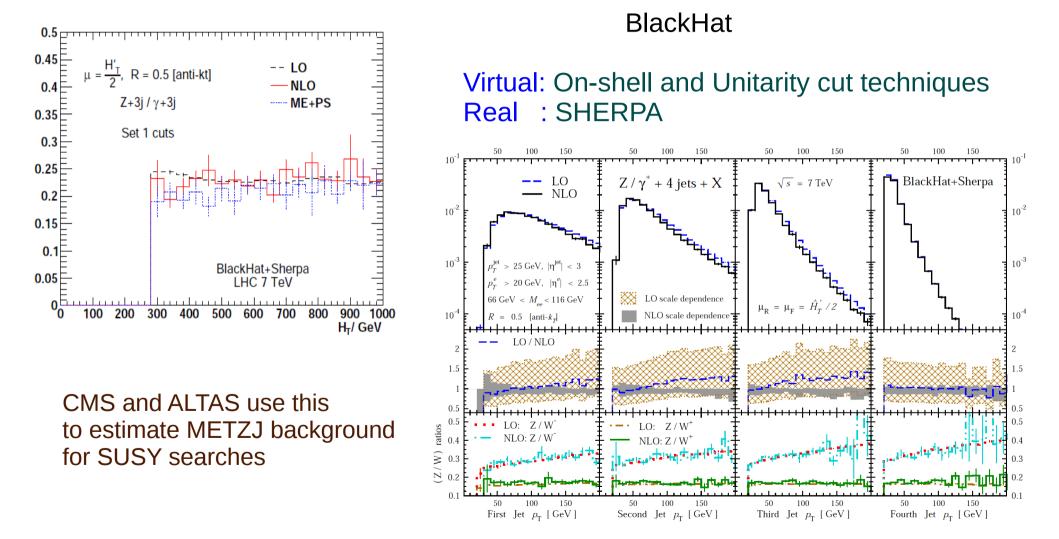
measured


Background

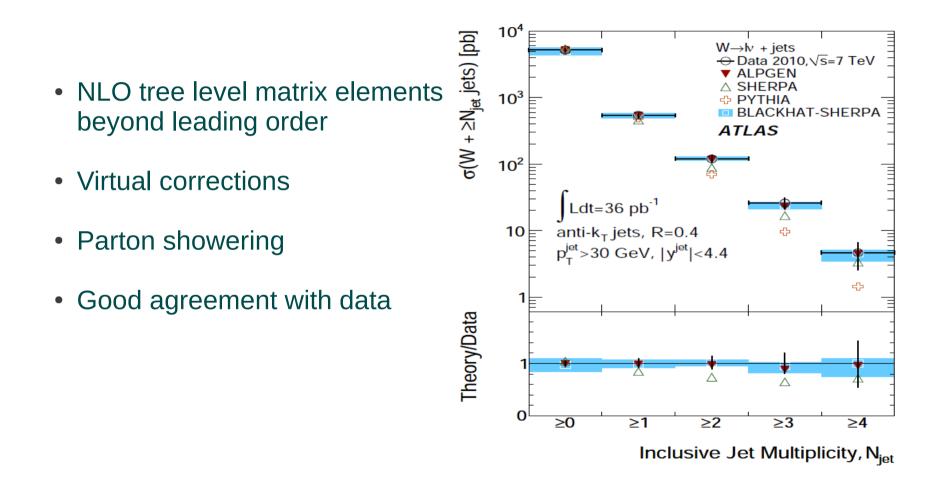
$$\sigma(pp \to Z(\to \nu\bar{\nu}) + \text{jets}) = \sigma(pp \to \gamma + \text{jets}) \times R_{Z/\gamma} \qquad q \xrightarrow{Z \to \nu}_{\bar{\nu}} \qquad q \xrightarrow{Q \to \mu}_{\bar{\nu}} \qquad q \xrightarrow{Q \to \nu}_{\bar{\nu}} \qquad q \xrightarrow{Q \to \mu}_{\bar{\nu}} \qquad q \xrightarrow{Q \to \mu}_{\bar{\mu}} \qquad q$$

theory

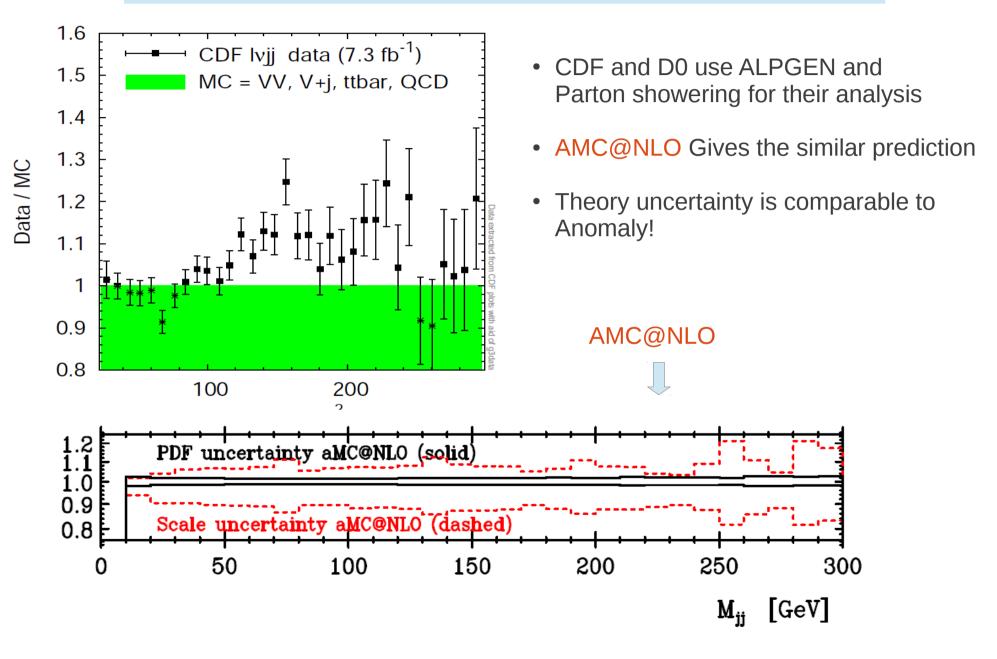
Theory predictions



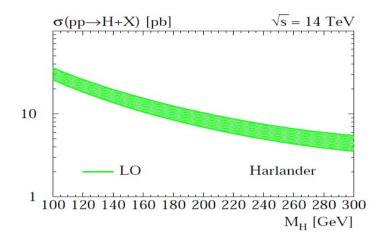
BlackHat


Virtual: On-shell and Unitarity cut techniques Real : SHERPA

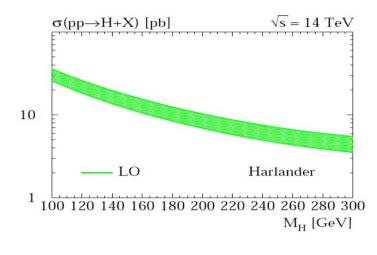
CMS and ALTAS use this to estimate METZJ background for SUSY searches

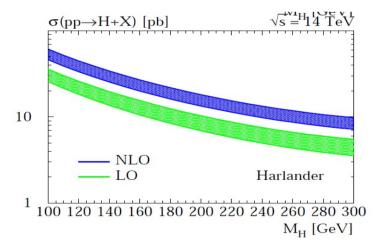

Theory predictions

NLO predictions

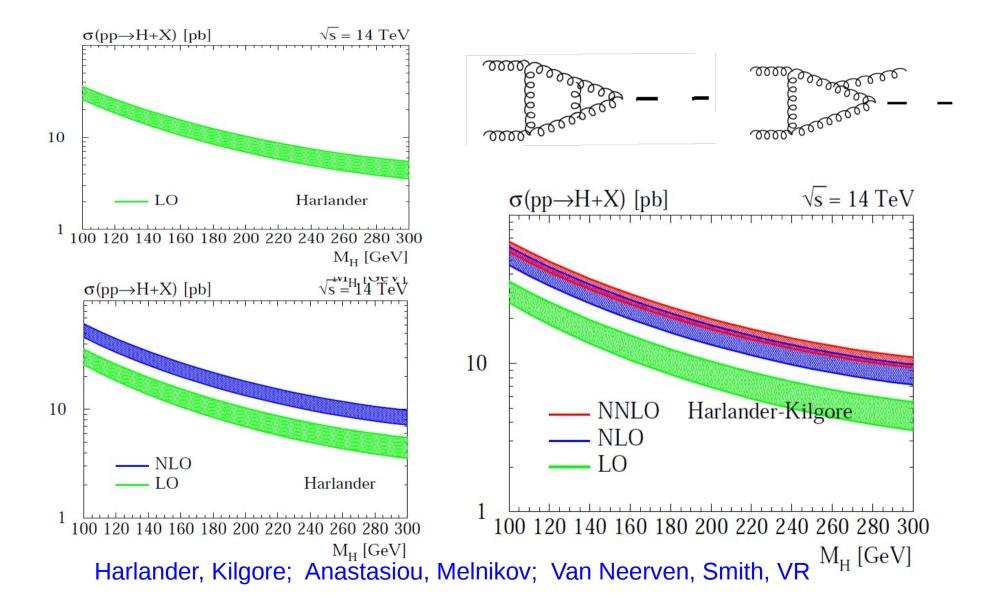


W+2 jet anomaly at CDF – NLO effect?

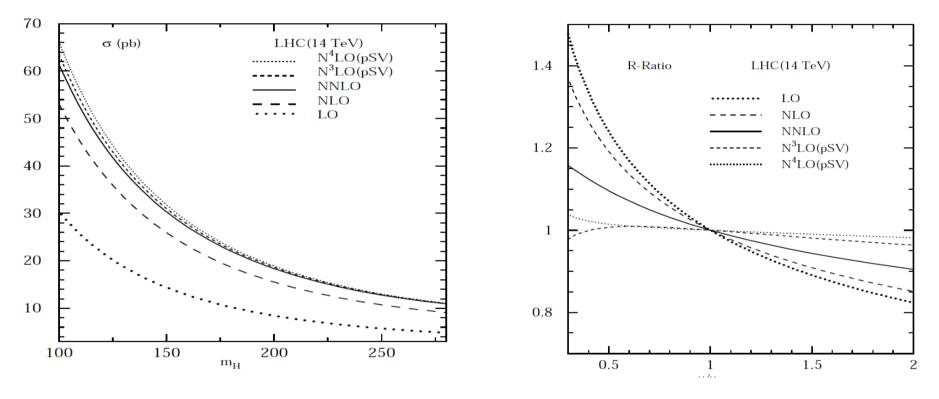




Higgs cross section at NNLO

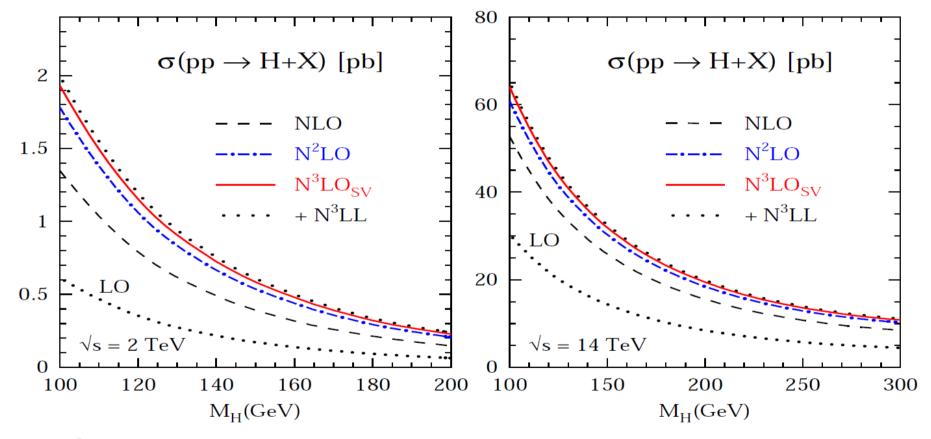


Higgs cross section at NNLO



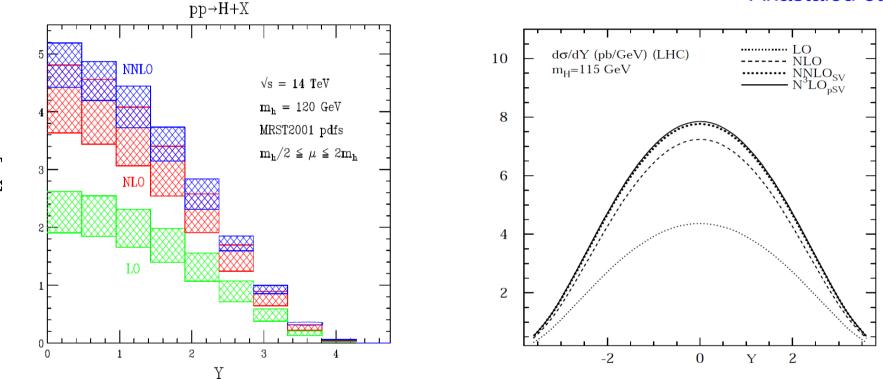
Higgs cross section at NNLO

Higgs Cross section at NNNLO (approx.)


 $R = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)}$

- Scale uncertainity improves a lot
- Additional 7 9% increase in cross section due to N^3LO soft gluons.

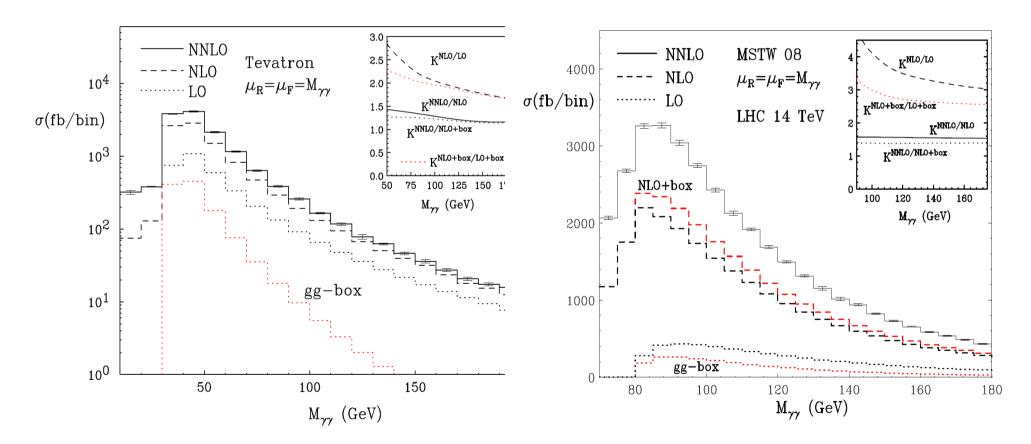
Resummed Higgs cross section


Catani and Grazzini; Vogt and Moch

- N^3LL resummation exponents are available now.
- N^3LL resummation does not change the picture much. Fixed order N^3LO_{pSV} is very close to the N^3LL resummed result.

Rapidity of Higgs and its scale dependence at $NNLO, N^3LO$

Anastaiou et al


- NNLO exact in the large top limit reduces the scale uncertainity significantly
- One of the most difficult computations in QCD. Is it the end?

σ [pb]

Di-photon at NNLO

Tevatron

LHC Catani et al.

Cross section increases by 30-40%

Top quark production at NNLO

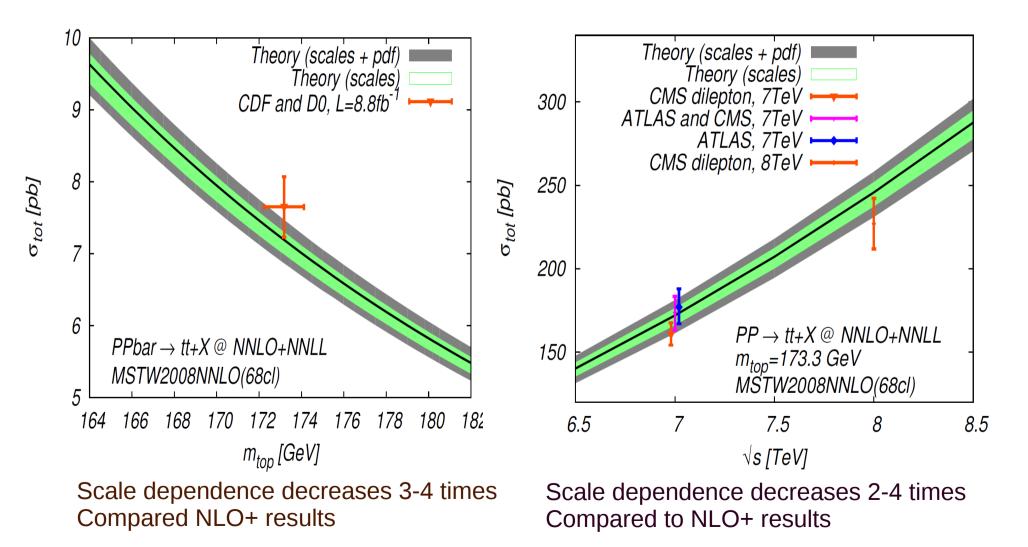
Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to $q\bar{q} \rightarrow t\bar{t} + X$

Peter Bärnreuther and Michał Czakon Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany

Alexander Mitov Theory Division, CERN, CH-1211 Geneva 23, Switzerland (Dated: April 25, 2012)

The total top quark pair production cross-section at hadron colliders through $\mathcal{O}(\alpha_S^4)$

Michał Czakon and Paul Fiedler Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany

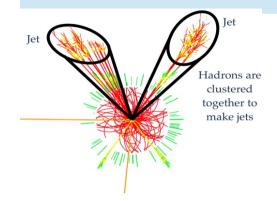

Alexander Mitov Theory Division, CERN, CH-1211 Geneva 23, Switzerland (Dated: March 26, 2013)

Top@Tevatron and LHC

Czakon et al.

Tevatron

LHC

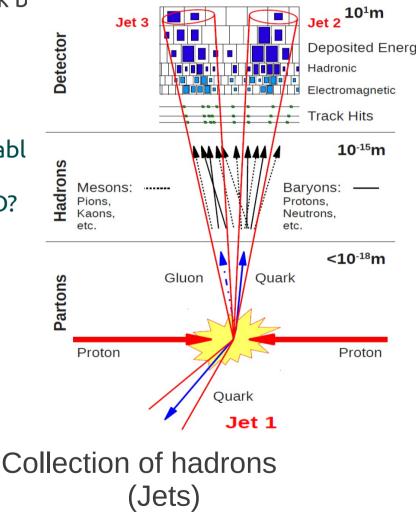

Scale uncertainty is 2.2%

Scale uncertainty is 3%

Infra-red safe observables

Algorithm

• We do not see quarks and gluons, we see only


 hadrons/bunch of hadrons (jets), leptons, photons, weak b

- Infra-red Safe observables are the only measurabl
- How to construct infra-red safe quatities in QCD?

Collection of partons

Infra-red safe definition of a Jet

• Example: What is a Jet

Jet Agorithms

- k_t Algorithm
- Cambride/Aachen algorithm \triangleright
- Anti k_t algorithm \succ

SIS Cone **ATLAS** Cone CMS Iterative Cone GetJet

. . . .

Successively Recombine the nearby partons

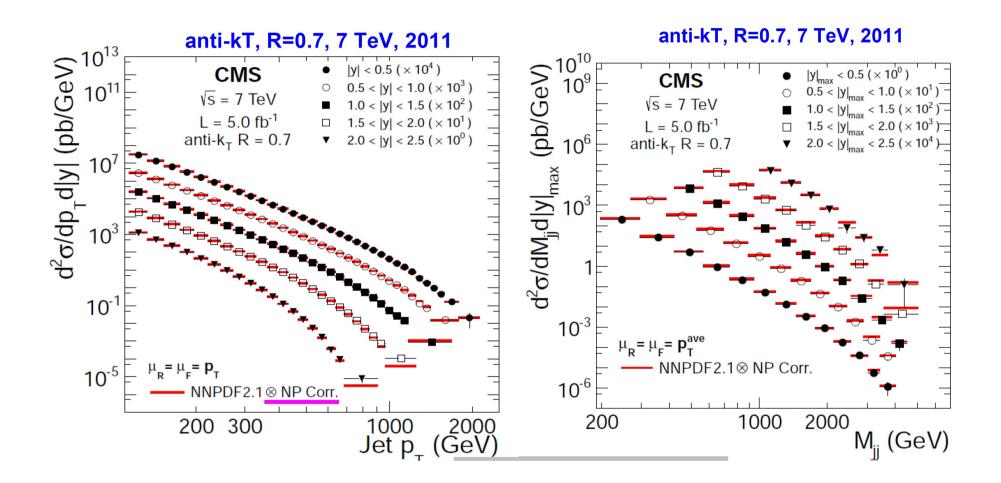
$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)$$

p = 1: k_t algorithm

p = 0: Cambridge/Aachen (C/A) algorithm

p = -1: anti- k_t algorithm

[Catani, Dokshitzer, Seymour, Webber, 93]

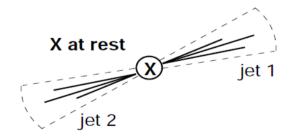

[Dokshitzer, Leder, Moretti, Webber, 93]

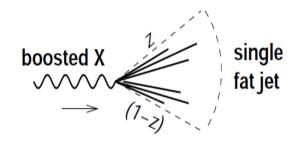
[Cacciari, Salam, GS, 08]

Cone: \approx flow of energy in a cone (of fixed *R*) centred on the cone centre: SISCone

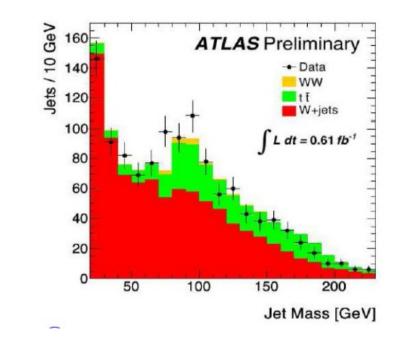
[Salam, GS, 07]

High Pt and invariant mass distributions of jets

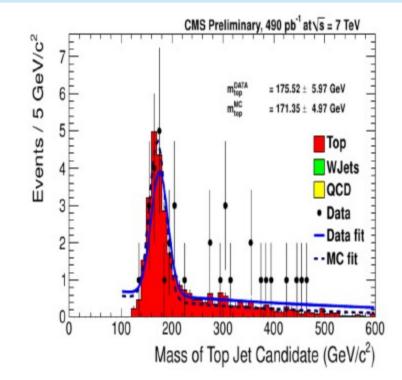


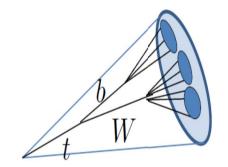

Excellent agreement with NLO QCD predictions

Fine Jets and Boosted Jets


- Filtering: undo the last recombination, keep the subjets
- Trimming: remove low energetic deposits near a jet
- **Pruning:** recluster each jet in way wide angle recombinatio are absent

Boosted jets can probe Heavy states: new physics




Boosted Jet from W Boson

Boosted Jet from top quark

Conclusions

- QCD is a tool kit at Hadron Colliders
- Factorisation plays an important role for predictions
- Strong coupling constant and PDFs are under control
- Many NLO and few NNLO results are available to test SM and new physics
- Jet physics provides alternate ground for probing new physics.