Theories of Extra Dimensions

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai

Sangam @ HRI HRI, Allahabad March 2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation

- SM hierarchy problem: $M_{EW} \ll M_{PI}$
- SM flavor problem: $m_e \ll m_t$
- Explained by new dynamics?
 - Extra dimensions (Warped (AdS), Flat)
 - Supersymmetry
 - Strong dynamics
 - Little Higgs

Talk Outline

- Aspects of Extra Dimensional Theories
 - Large Extra Dimensions (LED) (aka ADD)
 - Universal Extra Dimensions (UED)
 - Warped Extra Dimensions (WED) Main Focus
- Kaluza-Klein (KK) expansion
- LHC Signatures

Extra Dimensional Proposals

Large Extra Dimensions (LED, ADD)

Usual picture

- 3 space + 1 time Gravity scale $M_{pl} \sim 10^{19}$ GeV
- Large Extra Dimensions [Arkani-Hamed, Dimopoulos, Dvali (ADD)]
 - n (compact) space extra dims Radius R
 - Only fundamental scale $M_* \sim 10^3 \; {
 m GeV}$

•
$$M_{pl}^2 = M_*^{2+n} V_n$$
 $V_n \sim R^r$

• Gravity in bulk, SM on brane

•
$$S = \int d^4 x \ d^n y \ \left[\mathcal{L}_{\text{Bulk}} \ + \ \delta(\underline{y}) \ \mathcal{L}_{\text{Brane}} \right]$$

Extra Dimensional Proposals

Universal Extra Dimensions (UED)

[Appelquist, Cheng, Dobrescu] [Cheng, Matchev, Schmaltz] [Datta, Kong, Matchev]

All SM fields propagate in Extra Dimension(s)

- No solution to the hierarchy problem
- KK number conserved
- Orbifolding implies KK parity conservation
 - Relaxed constraints since no tree level contribution to EW precision obs
 - $M_{KK}\gtrsim 400~GeV$
 - LKP stable!
 - Dark Matter
 - Missing energy at Colliders

[Servant, Tait]

Details of the Models

LHC Phenomenology

Extra Dimensional Proposals

Warped Extra Dimensions (WED, RS)

SM in background 5D warped AdS space

[Randall, Sundrum 99]

$$ds^2 = e^{-2k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu}) + dy^2$$

- Z_2 orbifold fixed points:
 - Planck (UV) Brane
 - TeV (IR) Brane
 - R : radius of Ex. Dim.
 - k : AdS curvature scale ($k \lesssim M_{pl}$)

Hierarchy prob soln:

- IR localized Higgs : $M_{EW} \sim ke^{-k\pi R}$: Choose $k\pi R \sim 34$
 - CFT dual is a composite Higgs model

AdS/CFT

AdS/CFT Correspondence

$\mathsf{AdS}/\mathsf{CFT}\ \mathsf{Correspondence}$

[Maldacena, 1997]

- A classical supergravity theory in $AdS_5 \times S_5$ at weak coupling is **dual** to a 4D large-N CFT at strong coupling
- The CFT is at the boundary of AdS [Witten 1998; Gubser, Klebanov, Polyakov 1998]

$$Z_{CFT}[\phi_0] = e^{-\Gamma_{AdS}[\phi_0]}$$

$\mathcal{L} \supset \int d^4 x \mathcal{O}_{CFT}(x) \phi_0(x)$	$\Gamma_{AdS}[\phi]$ supergravity eff. action
Eg: $\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{\delta^2 Z_{CFT}[\phi_0]}{\delta \phi_0(x_1) \delta(x_2)}$	$\phi(y,x)$ is a solution of the EOM ($\delta\Gamma=0$)
with Z_{CFT} given by the RHS	for given bndry value $\phi_0(x) = \phi(y = y_0, x)$

4D Duals of Warped Models

[Arkani-Hamed, Porrati, Randall, 2000; Rattazzi, Zaffaroni, 2001]

- Dual of Randall-Sundrum model RS1 (SM on IR Brane)
 - Planck brane \implies UV Cutoff; Dynamical gravity in the 4D CFT
 - $\bullet~{\rm TeV}~({\rm IR})$ brane $\implies~{\rm IR}$ Cutoff; Conformal invariance broken below a TeV
 - All SM fields are composites of the CFT
- Dual of Warped Models with **Bulk SM**
 - UV localized fields are elementary
 - IR localized fields (Higgs) are composite
 - 4D dual is Composite Higgs model [G
 - [Georgi, Kaplan 1984]

人口 医水黄 医水黄 医水黄素 化甘油

- Shares many features with Walking Extended Technicolor
- Partial Compositeness
 - AdS dual is weakly coupled and hence calculable!
- KK states are dual to composite resonances

Details of the Models

LHC Phenomenology

KK Decomposition

Eg: 5-Dimensional Theory

Bulk fields $\Phi(x, y) = \{A_M, \phi, \Psi, ...\}$

$$S^{(5)} = \int d^4x \, dy \, \mathcal{L}^{(5)} \quad ; \quad \mathcal{L}^{(5)} \supset \sqrt{|g|} \, \mathcal{M}^3_* \mathcal{R} \, + \mathcal{L}^{(5)}_{\mathcal{A}} + \mathcal{L}^{(5)}_{\Psi} + \mathcal{L}^{(5)}_{\phi} + \mathcal{L}^{(5)}_{int}$$

$$\mathcal{L}_{\psi}^{(5)} \supset \sqrt{|g|} \left\{ \bar{\Psi} i \Gamma^{M} \partial_{M} \Psi + c_{\psi} \ k \ \bar{\Psi} \Psi
ight\}$$

$$\mathcal{L}_{\phi}^{(5)} \supset \sqrt{|g|} \left\{ \partial^{M} \phi^{\dagger} \partial_{M} \phi + m_{\phi}^{2} \phi^{\dagger} \phi \right\};$$

$$\mathcal{L}_{A}^{(5)} \supset \sqrt{|g|} \left\{ -\frac{1}{4} F^{MN} F_{MN} \right\}$$

$$\mathcal{L}_{int}^{(5)} \supset \sqrt{|g|} \left\{ g_5 \bar{\Psi} \Gamma^M \Psi A_M + (\lambda_5 \phi \bar{\Psi}_L \Psi_R + h.c.) - \mathcal{V}(\phi^{\dagger} \phi) \right\}$$

Details of the Models

LHC Phenomenology

KK Decomposition

Kaluza-Klein (KK) expansion

 $\delta S^{(5)} = 0 \implies$ Euler-Lagrange Equations of Motion (EOM)

•
$$\frac{\delta \mathcal{L}^{(5)}}{\delta \Phi} = \partial_M \frac{\delta \mathcal{L}^{(5)}}{\delta \partial_M \Phi}$$

KK expansion: $\Phi(x, y) = \sum_{n=0}^{\infty} f_{(n)}^{\phi}(y) \phi^{(n)}(x)$ with $\int dy f_{(n)}^{\phi}(y) f_{(m)}^{\phi}(y) = \delta_{nm}$ Plug into EOM, y dependent piece is (for WED)

[Gherghetta, Pomarol, 2000]

$$\begin{bmatrix} -e^{sk|y|}\partial_5(e^{-sk|y|}\partial_5) + \hat{M}_{\Phi}^2 \end{bmatrix} f_{(n)}(y) = e^{2k|y|} m_n^2 f_n(y)$$
$$s = \{2, 4, 1\}; \quad \hat{M}_{\Phi}^2 = \{0, ak^2, c(c \pm 1)k^2\}$$

The solution is

$$f_{(n)}(y) = \frac{1}{N_n} e^{sk|y|/2} \left[J_{\alpha}(\frac{m_n}{k} e^{k|y|}) + b_{\alpha} Y_{\alpha}(\frac{m_n}{k} e^{k|y|}) \right]$$

Details of the Models

LHC Phenomenology

KK Decomposition

Equivalent 4D theory

Plug KK expansion into $S^{(5)}$ & integrate over $y \rightarrow equivalent 4D$ theory

$$S^{(4)} = \sum \int d^4 x \ m_n^2 \phi^{(n)} \phi^{(n)} + \ g_{4D}^{(nml)} \psi^{(n)} \psi^{(m)} A^{(l)} + \ \lambda_{4D}^{(nm)} \psi_L^{(n)} \psi_R^{(m)} H$$

 $\phi^{(n)} \rightarrow \mathsf{KK}$ tower with mass m_n ; Denote $\phi^{(1)} \equiv \phi'$; $m_1 \equiv m_{KK} \sim \mathsf{TeV}$

Some 4D couplings

- Yukawas: $\lambda_{4D}^{(00)} = \lambda_{5D} \int dy f_0^{\psi_L} f_0^{\psi_R} f^H$
- Gauge couplings: $g_{4D}^{(001)} = g_{5D} \int dy f_0^{\psi} f_0^{\psi} f_1^{A}$

KK Decomposition

Equivalent 4D theory

Plug KK expansion into $S^{(5)}$ & integrate over $y \rightarrow equivalent 4D$ theory

$$S^{(4)} = \sum \int d^4 x \ m_n^2 \phi^{(n)} \phi^{(n)} + \ g_{4D}^{(nml)} \psi^{(n)} \psi^{(m)} A^{(l)} + \ \lambda_{4D}^{(nm)} \psi_L^{(n)} \psi_R^{(m)} H$$

 $\phi^{(n)} \rightarrow \mathsf{KK}$ tower with mass m_n ; Denote $\phi^{(1)} \equiv \phi'$; $m_1 \equiv m_{KK} \sim \mathsf{TeV}$

Some 4D couplings

- Yukawas: $\lambda_{4D}^{(00)} = \lambda_{5D} \int dy f_0^{\psi_L} f_0^{\psi_R} f^H$
- Gauge couplings: $g_{4D}^{(001)} = g_{5D} \int dy f_0^{\psi} f_0^{\psi} f_1^{A}$

In summary

- 5D (compact) field ↔ "Infinite" tower of 4D fields
- Look for this tower at the LHC

Example:

Introduction	Details of the Models	LHC Phenomenolo
UED		
UED Spectrum		

- All KK states degenerate at leading order
 - Loop corrections split this

[Cheng, Matchev, Schmaltz]

LHC SUSY \leftrightarrow UED confusion!

Details of the Models •00000000

LHC Phenomenology

э

Warped Extra Dimensions

Explaining SM (gauge & mass) hierarchies (WED)

Bulk Fermions explain SM mass hierarchy

[Gherghetta, Pomarol 00][Grossman, Neubert 00]

(日)

$$\mathcal{S}^{(5)} \supset \int d^4 x \, dy \, \left\{ c_{\psi} \, k \, \overline{\Psi}(x, y) \, \Psi(x, y) \right\}$$

Fermion bulk mass (c_{ψ} parameter) controls $f^{\psi}(y)$ localization

RS-GIM keeps FCNC under control

LHC Phenomenology

Warped Extra Dimensions

4-D KK couplings in WED

$$\xi \equiv \sqrt{k\pi R} \approx 5$$

Compare to SM couplings:

- ξ enhanced: $t_R t_R A'$, hhA', $\phi \phi A'$
- $1/\xi$ suppressed: $\psi_{light} \psi_{light} A'_{++}$
- SM strength: $t_L t_L A'$

(Equivalence Theorem $\Rightarrow \phi \leftrightarrow A_L$) Note: $\psi_{light} \psi_{light} A'_{-+} = 0$

LHC Phenomenology

Warped Extra Dimensions

4-D KK couplings in WED

$$\xi \equiv \sqrt{k\pi R} \approx 5$$

Compare to SM couplings:

- ξ enhanced: $t_R t_R A'$, hhA', $\phi \phi A'$
- $1/\xi$ suppressed: $\psi_{light} \psi_{light} A'_{++}$
- SM strength: $t_L t_L A'$

Effective coupling (Eg: Z'):

$$\mathcal{L}^{4D} \supset \bar{\psi}_{L,R} \gamma^{\mu} \Big[e \mathcal{QIA}_{1 \ \mu} + g_Z \left(T_L^3 - s_W^2 T_Q \right) \mathcal{IZ}_{1 \ \mu} + g_{Z'} \left(T_R^3 - s'^2 T_Y \right) \mathcal{IZ}_{X1 \ \mu} \Big] \psi_{L,R} \gamma^{\mu} \Big]$$

(Equivalence Theorem
$$\Rightarrow \phi \leftrightarrow A_L$$
)
Note: $\psi_{light} \psi_{light} A'_{-+} = 0$

LHC Phenomenology

Warped Extra Dimensions

Challenge I : Precision EW Constraints in WED

Precision Electroweak Constraints (S, T, $Zb\bar{b}$)

- Bulk gauge symm $SU(2)_L imes U(1)$ (SM ψ , H on TeV Brane)
 - T parameter $\sim (\frac{v}{M_{KK}})^2 (k\pi R)$
 - S parameter also $(k\pi R)$ enhanced
- AdS bulk gauge symm $SU(2)_R \Leftrightarrow CFT$ Custodial Symm

[Agashe, Delgado, May, Sundrum 03]

- T parameter Protected
- S parameter $\frac{1}{k\pi R}$ for light bulk fermions
- Problem: *Zbb* shifted
- 3rd gen quarks (2,2)

[Agashe, Contino, DaRold, Pomarol 06]

(日)

- Zbb coupling Protected
- Precision EW constraints $\Rightarrow M_{KK} \gtrsim 2-3$ TeV

[Carena, Ponton, Santiago, Wagner 06,07] [Bouchart, Moreau-08] [Djouadi, Moreau, Richard 06]

[Csaki, Erlich, Terning 02]

LHC Phenomenology

Warped Extra Dimensions

WED Bulk Gauge Group

[Agashe, Delgado, May, Sundrum 03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- 8 gluons
- 3 neutral EW (W³_L, W³_R, X)
- 2 charged EW (W_L^{\pm}, W_R^{\pm})

LHC Phenomenology

Warped Extra Dimensions

WED Bulk Gauge Group

[Agashe, Delgado, May, Sundrum 03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- 8 gluons
- 3 neutral EW (W³_L, W³_R, X)
- 2 charged EW (W_L^{\pm}, W_R^{\pm})

Gauge Symmetry breaking:

- By Boundary Condition (BC):
 - $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$
- By VEV of TeV brane Higgs
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

$$A_{-+}(x, y)$$
 BC: $A|_{y=0} = 0; \ \partial_y A|_{y=\pi R} = 0$

Higgs $\Sigma = (2, 2)$

Details of the Models

LHC Phenomenology

Warped Extra Dimensions

Fermion representation : $Zb\bar{b}$ not protected

[Agashe, Delgado, May, Sundrum '03]

• Complete $SU(2)_R$ multiplet : Doublet t_R (DT) model

•
$$Q_L \equiv (\mathbf{2}, \mathbf{1})_{1/6} = (t_L, b_L)$$

 $\psi_{t_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (t_R, b')$
 $\psi_{b_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (T, b_R)$

- "Project-out" b', T zero-modes by (-, +) B.C.
- New ψ_{VL} : b', T
- $b \leftrightarrow b'$ mixing
 - Zbb coupling shifted
 - So LEP constraint quite severe

Details of the Models

LHC Phenomenology

Warped Extra Dimensions

Fermion representation : $Zb\bar{b}$ protected

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Details of the Models

LHC Phenomenology

Warped Extra Dimensions

Fermion representation : $Zb\bar{b}$ protected

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

11

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Two t_R possibilities:

- Singlet t_R (ST) : $(1,1)_{2/3} = t_R$ New ψ_{VL} : χ , T
- **2** Triplet t_R (TT) :

$$(1,3)_{2/3} \oplus (3,1)_{2/3} = \psi_{t_R}' \oplus \psi_{t_R}'' = \begin{pmatrix} \frac{t_R}{\sqrt{2}} & \chi' \\ b' & -\frac{t_R}{\sqrt{2}} \end{pmatrix} \oplus \begin{pmatrix} \frac{t}{\sqrt{2}} & \chi'' \\ b'' & -\frac{t'}{\sqrt{2}} \end{pmatrix} \\ \text{New } \psi_{VL} : \chi, T, \chi', b', \chi'', t'', b''$$

Flavor structure

[Agashe, Perez, Soni, 04]

人口 医水黄 医水黄 医水黄素 化甘油

$$\mathcal{L} \supset ar{\Psi}^i i \Gamma^\mu D_\mu \Psi^i + M_{ij} ar{\Psi}^i \Psi^j + y_{ij}^{5D} H ar{\Psi}^i \Psi^j + h.c.$$

• Basis choice: M_{ij} diagonal $\equiv M_i$

- All flavor violation from y_{ij}^{5D}
- KK decompose and go to mass basis
 - $\implies g \bar{\Psi}^{i}_{(n)} W^{(k)}_{\mu} \Psi^{j}_{(m)}$ off-diagonal in flavor (due to non-degenerate f^{i} i.e. M^{i})
- 5D fermion Ψ is vector-like
 - M_{ij} is independent of $\langle H \rangle = v$
 - But zero-mode made chiral (SM)

FCNC couplings

- $h^{\mu\nu}_{(0)}\psi_{(0)}\psi_{(0)}$: diagonal
- $\{A_{(0)}, g_{(0)}\} \psi_{(0)} \psi_{(0)}$: diagonal (unbroken gauge symmetry)
- $\{Z_{(0)}, Z_{X_{(0)}}\} \psi_{(0)}\psi_{(0)}$: almost diagonal (non-diagonal due to EWSB effect)
- $h \psi_{(0)} \psi_{(0)}$: diagonal (only source of mass is $\langle h \rangle = v$)
- $h_{(1)}^{\mu\nu}\psi_{(0)}\psi_{(0)}$: off-diagonal
- $\{A_{(1)}, g_{(1)}\} \psi_{(0)} \psi_{(0)}$: off-diagonal

(i=1,2 almost diagonal)

- $\{Z_{(1)}, Z_{X_{(1)}}\} \psi_{(0)} \psi_{(0)}$: off-diagonal
- $h_{(0)}^{\mu\nu}\psi_{(0)}\psi_{(1)}:0$
- $\{A_{(0)}, g_{(0)}\} \psi_{(0)} \psi_{(1)} : 0$ (unbroken gauge symmetry)
- $\{Z_{(0)}, Zx_{(0)}\} \psi_{(0)}\psi_{(1)}$: off-diagonal (EWSB effect)
- $h \psi_{(0)} \psi_{(1)}$: off-diagonal (since M_{ψ} is extra source of mass)

 $\psi_{(0)} \leftrightarrow \psi_{(1)}$ mixing due to EWSB

FCCC couplings

- $W^{\pm}_{L(0)}\psi^{i}_{(0)}\psi^{j}_{(0)}$: $g V^{ij}_{CKM}$
- $\left\{ W_{L(1)}^{\pm}, W_{R(1)}^{\pm} \right\} \psi_{(0)} \psi_{(0)} : g V_{100} [f_{W^{(1)}} f_{\psi} f_{\psi}]$ • [...] suppressed for i = 1, 2; (Not suppr for b_L, t_L, t_R)

•
$$W_{L(0)}^{\pm}\psi_{(0)}\psi_{(1)}$$
 : $g V_{001} \left[f_{W^{(1)}}f_{\psi}f_{\psi^{(1)}}\right]$

Challenge II : Flavor Constraints in WED

- $K^0 \bar{K}^0$ mixing:
 - Tree-level FCNC vertex $g_{(1)}ds \propto V_L^{d\dagger} \begin{pmatrix} [g_{(1)}dd] & 0 \\ 0 & [g_{(1)}ss \end{bmatrix} \end{pmatrix} V_L^{d}$

• $b \rightarrow s\gamma$:

- No tree-level contribution to helicity flip dipole operator
- So 1-loop with $g_{(1)} b s_{(1)}$ OR $\phi^{\pm} b s_{(1)}$
- $b \rightarrow s \ell^+ \ell^-$, $b \rightarrow s s \bar{s}$, $K \rightarrow \pi \nu \bar{\nu}$:
 - Tree level FCNC vertex Z s d

Bound : $m_{KK} \gtrsim few$ TeV [Agashe et al][Buras et al][Neubert et al][Csaki et al]

Relaxed with flavor alignment : MFV, NMFV, flavor symmetries, ... [Fitzpatrick et al][Agashe et al]

[SG, A.Iyer, S.Vempati Ongoing]

LHC Phenomenology

LHC Signatures

LED KK Graviton @ LHC

Look for KK Gravitons $(h_{\mu\nu}^{(n)})$: Missing energy (MET) [Giudice, Rattazzi, Wells 1998][Hewett 1998] [Han, Lykken, Zhang 1998]

- Small KK spacing : sum over huge number of states
 - Cutoff dependence
- Final state Gravitons : $pp \rightarrow \gamma h^{(n)}, \ j \ G^{(n)}$
- Virtual Gravitons : $pp \rightarrow h^{(n)} \rightarrow \ell^+ \ell^-, \cdots$

Details of the Models

LHC Phenomenology

LHC Signatures

LED LHC Limit $pp ightarrow h^{(n)}_{\mu u} ightarrow \ell^+ \ell^-$

TABLE VIII. Observed 95% C.L. lower limits on $M_{\rm S}$ (in units of TeV), including systematic uncertainties, for ADD signal in the GRW, Hewett and HLZ formalisms with K factors of 1.6 and 1.7 applied to the signal for the dilepton and diphoton channels, respectively. Separate results are provided for the different choices of flat priors: $1/M_{\rm S}^4$ and $1/M_{\rm S}^8$.

Channel	Prior	GRW	Hewett			HLZ		
				n=3	n=4	n=5	n=6	n=7
ee	$1/M_{ m S}^4$	2.95	2.63	3.51	2.95	2.66	2.48	2.34
	$1/M_{\rm S}^8$	2.82	2.67	3.08	2.82	2.68	2.59	2.52
$\mu\mu$	$1/M_{ m S}^4$	3.07	2.74	3.65	3.07	2.77	2.58	2.44
	$1/M_{ m S}^8$	2.82	2.67	3.08	2.82	2.68	2.59	2.52
$ee + \mu\mu$	$1/M_{\rm S}^4$	3.27	2.92	3.88	3.27	2.95	2.75	2.60
	$1/M_{ m S}^8$	3.09	2.92	3.37	3.09	2.94	2.84	2.76
$ee + \mu\mu$	$1/M_{\rm S}^4$	3.51	3.14	4.18	3.51	3.17	2.95	2.79
$+ \gamma \gamma$	$1/M_{ m S}^8$	3.39	3.20	3.69	3.39	3.22	3.11	3.02

ATLAS : 1211.1150 : 7TeV, 5 fb⁻¹

(日本)(四本)(日本)(日本)(日本)

Details of the Models

LHC Phenomenology

LHC Signatures

WED KK Graviton

[Agashe et al, 07] [Fitzpatrick et al, 07]

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

$$m_{n} = x_{n} k e^{-k\pi r} \qquad x_{n} = 3.83, 7.02, \dots$$
$$\mathcal{L} \supset -\frac{C^{\text{ffG}}}{\Lambda} T^{\alpha\beta} h_{\alpha\beta}^{(n)} \qquad \Lambda = \bar{M}_{P} e^{-k\pi r}$$

- SM on IR brane
 - CDF & D0 bounds : $m_1 > 300 900$ GeV for $\frac{k}{M_0} = 0.01 0.1$
 - ATLAS & CMS reach : 3.5 TeV with 100 fb⁻¹

$$gg \rightarrow h^{(1)} \rightarrow ZZ \rightarrow 4\ell$$

- light fermion couplings highly suppressed
- gauge field couplings $\frac{1}{k\pi r}$ suppressed
- Decays dominantly to t, h, V_{Long}

various $\frac{k}{M_p}$; SM dashed

[Agashe, Davoudiasl, Perez, Soni, 2007]

	000000	000000000	000000000000000000000000000000000000000
LHO	Signatures		
K	K Gluon		
	$m_n = x_n k e^{-k\pi r}$	$x_n \approx 2.45, 5.57, \dots$	[Agashe et al, 06] [Lillie et al, 07] Width $\Gamma pprox rac{M}{6}$
	$g^{(1)}tar{t}$: parity v	iolating couplings!	,
		LHC: $qar{q} o g^{ig(1)}$ —	$ ightarrow tar{t}$

I HC Phenomenology

LHC reach: About 4 TeV with 100 fb^{-1}

(本日本)(4個)(本語)(本語)

3

Details of the Models

LHC Phenomenology

э

<ロト <回ト < 注ト < 注ト

LHC Signatures

LHC KK-gluon search

ATLAS JHEP01(2013) 116 : Limit (7 TeV, 4.7 fb^{-1}): $M_{KK} > 1.6 TeV @95\% CL$

Details of the Models

LHC Phenomenology

LHC Signatures

CMS Resonances Limits (Moriond 2013)

LHC Phenomenology

LHC Signatures

ATLAS Extra Dimensions Limits (Moriond 2013)

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

Large ED (ADD) : monojet + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]	4.37 TeV M _D (δ=2)
Large ED (ADD) : monophoton + E _{7,miss}	L=4.6 fb ⁻¹ , 7 TeV [1209.4525]	1.93 TeV M _D (δ=2) ΑΤΙ ΔΟ
arge ED (ADD) : diphoton & dilepton, mw/ll	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M _S (HLZ δ=3, NLO) ATLAS
UED : diphoton + E _{T miss}	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	141 TeV. Compact. scale R ⁻¹ Preliminary
S ¹ /Z ₂ ED : dilepton, m	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 TeV M _{KX} ~ R ⁻¹
RS1 : diphoton & dilepton, march	L=4.7-5.9 fb ⁻¹ , 7 TeV [1210.5359]	2.23 TeV Graviton mass (k/M _{Pl} = 0.1)
RS1 : ZZ resonance, m	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 GeV Graviton mass (k/M _{Pl} = 0.1)
RS1 : WW resonance, m _{T.N.N}	L=4.7 fb ⁻¹ , 7 TeV [1208.2389]	1.23 TeV Graviton mass (k/Mp = 0.1) Ldt = (1.0 - 13.0) fb ⁻¹
$Sg_{yy} \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV g mass
ADD BH (M _{TH} /M _D =3) : SS dimuon, N _{ch. nat.}	L=1.3 fb ⁻¹ , 7 ToV [1111.0686]	1.25 TeV $M_p(\delta=\hat{6})$ is = 7, 8 ieV
ADD BH $(M_{TH}/M_D=3)$: leptons + jets, $\Sigma \rho_{T}$	L=1.0 fb ⁻¹ , 7 TeV [1204.4545]	1.5 TeV M _ρ (δ=6)
Quantum black hole : dijet, F (m)	L=4.7 fb ⁻¹ , 7 TeV [1210.1715]	4.11 TeV M _D (6=6)

LHC Phenomenology

 Z_1

ヘロア ヘロア ヘビア ヘビア

 Z_{X_1}

135.6

3

Z' @ LHC

Z' decays in WED

[Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni - arXiv:0709.0007 [hep-ph]]

Introduction

Details of the Models

LHC Phenomenology

Z' @ LHC

Z' Branching Ratios in WED

Introduction 00000000 Details of the Models

LHC Phenomenology

Z' @ LHC

WED Z' production at the LHC

Details of the Models

Z' @ LHC

WED Z' channels summary

$$(\mathcal{L}_{2 TeV}; \mathcal{L}_{3 TeV})$$
 in fb^{-1}

•
$$pp \to Z' \to W^+ W^-$$

• Fully leptonic : $W \to \ell \nu$; $W \to \ell \nu$
• Semi leptonic : $W \to \ell \nu$; $W \to (jj)$
• $pp \to Z' \to Z h$
• $m_h = 120 \text{GeV} : Z \to \ell^+ \ell^-$; $h \to b \bar{b}$
• $m_h = 150 \text{GeV} : Z \to (jj)$; $h \to W^+ W^- \to (jj) \ell \nu$
• $pp \to Z' \to \ell^+ \ell^-$
• $BR_{\ell\ell} \sim 10^{-3}$ Tiny!
• $pp \to Z' \to t \bar{t}$, $b \bar{b}$
• KK gluon "pollution"
[Djouadi, Moreau, Singh 07]

Introduction 00000000	Details of the Models	LHC Phenomenology
W'@LHC		
W' cross section		

[Agashe, SG, Han, Huang, Soni, 08: arXiv:0810.1497]

Total W' Cross Section at LHC

æ

Introduction 000000000 Details of the Models

LHC Phenomenology

W' @ LHC

$W^{\prime\pm}$ Width and BR

 Introduction
 Details of the Models

 000000000
 0000000000

 W' @ LHC
 Control

W'^{\pm} Channels summary

 $(\mathcal{L}_{2 TeV}; \mathcal{L}_{3 TeV})$ in fb^{-1}

人口 医水黄 医医水黄 医水黄素

- $W'^{\pm} \rightarrow t b$:
 - Leptonic

- \mathcal{L} : (100; 1000) fb⁻¹
- t t
 t
 is becomes (reducible) bkgnd since collimated t can fake a b-jet

 Jet-mass cut : cone size 1.0 and 0 < j_M < 75 ⇒0.4% of tops fake b
- $W'^{\pm} \rightarrow Z W$: • Fully leptonic • Semi leptonic $\mathcal{L}: (100; 1000) \ fb^{-1}$ $\mathcal{L}: (300; -) \ fb^{-1}$
- $W'^{\pm} \rightarrow W h$: $\mathcal{L}: (100; 300) fb^{-1}$
 - $m_h \approx 120$: $h \rightarrow b b$
 - What is b-tagging eff at large p_{T_b} ?
 - $m_h \approx 150$: $h \rightarrow W W$
 - Use W jet-mass to reject light jet

W' @ LHC

Measuring W' Chirality in (pp) $uar{d} o W'^+ o t\,ar{b} o \ell^+ u bar{b}$ (WED)

A Model Independent Study

 $L\supset \bar{\psi}_{u}\left(g_{L}P_{L}+g_{R}P_{R}\right)\psi_{d}\;W'$

[SG, Han, Lewis, Si, Zhou, 2010: arXiv:1008.3508]

- Can we measure $g_{L,R}^{ud}$, $g_{L,R}^{tb}$?
- Yes, encoded in top polarization!

W' @ LHC

Measuring W' Chirality in (pp) $u\bar{d} \rightarrow W'^+ \rightarrow t \, \bar{b} \rightarrow \ell^+ \nu b \bar{b}$ (WED)

A Model Independent Study

$$L \supset \bar{\psi}_u \left(g_L P_L + g_R P_R \right) \psi_d W'$$

[SG, Han, Lewis, Si, Zhou, 2010: arXiv:1008.3508]

- Can we measure $g_{L,R}^{ud}$, $g_{L,R}^{tb}$?
- Yes, encoded in top polarization!

Need to fix u direction:

Statistical only: On avg u carries higher

 \therefore direction of $y_{W'} > 0.8$ is *u* direction

 θ_ℓ distribution analyzes top polarization

Analyze in top rest frame

Introduction 00000000 Details of the Models

LHC Phenomenology

W' @ LHC

Measuring W' Chirality (Results)

WED KK fermions @ LHC

WED KK Fermions @ LHC

- SM fermions : (+, +) BC \rightarrow zero-mode
- "Exotic" fermions : (-,+) BC \rightarrow No zero-mode
 - 1st KK vectorlike fermion

Introduction	Details of the Models	LHC Phenomenology		
WED KK fermions @ LHC				

b' Pair Production

[SG, T.Mandal, S.Mitra, R.Tibrewala, arXiv:1107.4306]

Pair Production : $pp \rightarrow b'\bar{b}' \rightarrow bZ\bar{b}Z \rightarrow bjj\bar{b}\ell\ell$

 $\begin{array}{ll} \mbox{Rapidity:} & -2.5 < y_{b,j,Z} < 2.5, \\ & \mbox{Transverse momentum:} \ p_{T\,b,j,Z} > 25 \ \mbox{GeV}, \\ \mbox{Invariant mass cuts:} \\ & \mbox{M}_Z - 10 \ \mbox{GeV} < M_{jj} < M_Z + 10 \ \mbox{GeV}, \\ & \mbox{0.95} M_{b_2} < M_{(bZ)} < 1.05 M_{b_2} \ . \end{array}$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Details of the Models

WED @ LHC (Summary)

KK states at the LHC

•
$$h^{(1)}_{\mu\nu}$$
 (KK Graviton)
 $L = 300 \ fb^{-1}$ LHC reach is about 2 TeV [Agashe, Davoudias], Perez, Soni 07]
[Fitzpatrick, Kaplan, Randall, Wang 07]
• $g^{(1)}_{\mu}$ (KK Gluon)
 $L = 100 \ fb^{-1}$ LHC reach is 4 TeV [Agashe, Belyaev, Krupovnickas, Perez, Virzi 06]
[Lillie, Randall, Wang, 07] [Lillie, Shu, Tait 07]
• $Z^{(1)}_{\mu}$, $W^{(1)\pm}_{\mu}$ ($Z_{KK} \equiv Z'$, $W^{\pm}_{KK} \equiv W'$)
 $q\bar{q} \rightarrow Z'$, $W' \rightarrow XX$
[Agashe, Davoudias], SG, Han, Huang, Perez, Si, Soni 0709.0007 & 0810.1497]

- b', t', χ (KK Fermions) [Agashe, Servant 04][Dennis et al 07][Contino, Servant 08][SG, Mandal, Mitra, Moreau ongoing]
- Radion

Little RS (LRS) ($Z' \rightarrow \ell^+ \ell^-$)

 $M_{EW} \sim k \, e^{-k\pi R}$; Vary $k, \ k\pi R$; $(k\pi R)_{LRS} < (k\pi R)_{RS} = 35$

- RS: $k \lesssim M_{pl}$
- LRS: $k \ll M_{pl}$; $k\pi R = 7 \implies k \approx 1000 \ TeV$ [Davoudiasl, Perez, Soni 08]
- RS as a theory of flavor! (give-up solution to hierarchy problem)

Little RS (LRS) $(Z' \rightarrow \ell^+ \ell^-)$

$$M_{EW} \sim k \, e^{-k\pi R}$$
 ; Vary $k, \ k\pi R$; $(k\pi R)_{LRS} < (k\pi R)_{RS} = 35$

- RS: $k \lesssim M_{pl}$
- LRS: $k \ll M_{pl}$; $k\pi R = 7 \implies k \approx 1000 \text{ TeV}$ [Davoudiasl, Perez, Soni 08]
- RS as a theory of flavor! (give-up solution to hierarchy problem)

Little RS (LRS) $(Z' \rightarrow \ell^+ \ell^-)$

$$M_{EW} \sim k \, e^{-k\pi R}$$
; Vary $k, \ k\pi R$; $(k\pi R)_{LRS} < (k\pi R)_{RS} = 35$

- RS: $k \lesssim M_{pl}$
- LRS: $k \ll M_{pl}$; $k\pi R = 7 \implies k \approx 1000 \ TeV$ [Davoudiasl, Perez, Soni 08]
- RS as a theory of flavor! (give-up solution to hierarchy problem)

LED Bulk ν_R

[Dienes, Dudas, Gherghetta] [Davoudiasl, Langacker, Perelstein] [Cao,SG,Yuan 2003,2004]

• Introduce Bulk ν_R propagating in δ dimensions

•
$$\Psi^{\alpha}(x^{\mu}, y) = \begin{pmatrix} \psi_{L}^{\alpha}(x^{\mu}, y) \\ \psi_{R}^{\alpha}(x^{\mu}, y) \end{pmatrix}$$
 $(\delta = 1) \qquad \alpha \to \text{Generation}$

•
$$\mathcal{L}_{\text{Bulk}} \supset \bar{\Psi}^{\alpha} i \Gamma^{M} D_{M} \Psi^{\alpha}$$

 $\mathcal{L}_{\text{Brane}} \supset \mathcal{L}_{\text{SM}} - \left(\frac{\Lambda_{\alpha\beta}^{\nu}}{\sqrt{M_{*}^{\beta}}} h \psi_{R}^{\beta} \nu_{L}^{\alpha} + h.c.\right)$
• $\nu_{L} \rightarrow \text{Usual SM left-handed neutrino}$
• $\psi_{R} \rightarrow \text{Bulk right-handed neutrino} \equiv \nu_{R}$
• $\psi_{L} \rightarrow \text{No direct coupling to SM}$

Introduction

Details of the Models

イロト 不得 トイヨト イヨト

э

LRS

LED Bulk ν_R at colliders

• ν_R couples only to ν_L and h (Yukawa)

•
$$\mathcal{L}^{(4)} \supset - \left[\frac{\bar{m}_{\nu}^{i\beta}}{\nu} \left(h\nu_{R}^{ij}\nu_{L}^{\beta} + \sum_{\hat{n}}\sqrt{2}h\nu_{R}^{ij(\hat{n})}\nu_{L}^{\beta} \right) + h.c. \right] \qquad \bar{m}_{\nu} \equiv m_{0}l^{\dagger}$$

New Higgs production mechanism (Signal)

$$q \bar{q}'
ightarrow W^*
ightarrow \ell^+ h \,
u_R^{(n)} \qquad (\ell = e, \mu, au)$$

• Signal can be enhanced due to large number of final state $\nu_R^{(n)}$

- New Higgs decay mode
 - Invisible mode: $(h \rightarrow \nu_L \nu_R^{(n)})$
 - (SM: $h \rightarrow b\bar{b}$)

Introduction

LRS

Details of the Models

LHC Phenomenology

LED Bulk ν_R @ LHC

æ

Conclusions

Conclusions

- LED recasts Heirarchy Problem statement
 - LHC Limits strong
- UED provides Dark Matter candidate
- Warped Models
 - Bulk fields limits weaker
 - LHC14 high luminosity run crucial
 - Possibly dual to 4D strongly coupled theory

BACKUP SLIDES

BACKUP SLIDES

Yukawa Couplings

Yukawa Couplings

- No Zbb protection
 - DT $\mathcal{L}_{\mathrm{Yuk}} \supset \lambda_t \ \bar{Q}_L \Sigma \psi_{t_R} + \lambda_b \ \bar{Q}_L \Sigma \psi_{b_R} + h.c.$
- With Zbb protection

• ST
$$\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma] t_R + h.c.$$

- **TT** $\mathcal{L}_{\text{Yuk}} \supset \lambda_t \operatorname{Tr}\left[\bar{Q}_L \Sigma \psi'_{t_R}\right] + \lambda'_t \operatorname{Tr}\left[\bar{Q}_L \Sigma \psi''_{t_R}\right] + h.c.$
- b Yukawa requires triplet b_R

$$\begin{array}{c} (1,3)_{2/3} \oplus (3,1)_{2/3} = \psi_{b_R}^{\prime} \oplus \psi_{b_R}^{\prime\prime} = \begin{pmatrix} \frac{t_b^{\prime}}{\sqrt{2}} & \chi_b^{\prime} \\ b_R & -\frac{t_b^{\prime}}{\sqrt{2}} \end{pmatrix} \oplus \begin{pmatrix} \frac{t_b^{\prime}}{\sqrt{2}} & \chi_b^{\prime\prime} \\ \frac{t_b^{\prime}}{\sqrt{2}} & \chi_b^{\prime\prime} \\ b_B^{\prime\prime} & -\frac{t_b^{\prime}}{\sqrt{2}} \end{pmatrix} \\ \mathcal{L}_{\mathrm{Yuk}} \supset \lambda_b \mathrm{Tr} \big[\bar{Q}_L \Sigma \psi_{b_R}^{\prime} \big] + \lambda_b^{\prime} \mathrm{Tr} \big[\bar{Q}_L \Sigma \psi_{b_R}^{\prime\prime} \big] + h.c. \\ c_{b_R} \text{ such that new } \psi_b^{\prime}, \psi_b^{\prime\prime} \gtrsim 3 \text{ TeV, so ignore them} \end{array}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

!!!Warning!!! Very rough estimates!

•
$$\sigma(M_{g^{(1)}} = 2 TeV, \sqrt{S} = 14 TeV, k\pi R = 35) \approx 600 \ fb$$

• $\mathcal{L}^{5\sigma}(M_{g^{(1)}} = 2 TeV, \sqrt{S} = 14 TeV, k\pi R = 35) = 1.2 \ fb^{-1}$
• $14 \ TeV \to 7 \ TeV : \sigma(g^{(1)} = 2 \ TeV) \ falls \ by \ a \ factor \ of \ 25$
• $\mathcal{L}^{5\sigma}(M_{g^{(1)}} = 2 \ TeV, \sqrt{S} = 7 \ TeV, \ k\pi R = 35) = 30 \ fb^{-1}$
(Assumed : Bkgnd falls with same factor)
• $\mathcal{L}^{5\sigma}(M_{g^{(1)}} = 2 \ TeV, \ \sqrt{S} = 7 \ TeV, \ k\pi R = 7) = 1 \ fb^{-1}$

**** シック・ 単 - 4 単 + 4 単 + 4 目 +

Bulk EW Gauge Sector

Bulk EW Gauge group : $SU(2)_L \times SU(2)_R \times U(1)_X$

- Three neutral gauge bosons: (W_L^3, W_R^3, X)
- Two charged gauge bosons: (W_L^{\pm}, W_R^{\pm})

Symmetry Breaking:

• By Boundary Condition (BC):

$$Z_{X}(-,+) \text{ means } Z_{X}|_{y=0} = 0; \ \partial_{y}Z_{X}|_{y=\pi R} = 0$$
• $SU(2)_{R} \times U(1)_{X} \to U(1)_{Y} : (W_{L}^{3}, W_{R}^{3}, X) \to (W_{L}^{3}, B, Z_{X})$
 $A \to (+,+); Z \to (+,+); Z_{X} \to (-,+)$
• $Z_{X} \equiv \frac{1}{\sqrt{g_{x}^{2}+g_{R}^{2}}}(g_{R}W_{R}^{3}-g_{X}X) \to (-,+) ; W_{R}^{\pm} \to (-,+)$
• $B \equiv \frac{1}{\sqrt{g_{x}^{2}+g_{R}^{2}}}(g_{X}W_{R}^{3}+g_{R}X) \to (+,+) ; W_{L}^{\pm} \to (+,+)$

人口 医水黄 医水黄 医水黄素 化甘油

Bulk EW Gauge Sector

Bulk EW Gauge group : $SU(2)_L \times SU(2)_R \times U(1)_X$

- Three neutral gauge bosons: (W_L^3, W_R^3, X)
- Two charged gauge bosons: (W_L^{\pm}, W_R^{\pm})

Symmetry Breaking:

• By Boundary Condition (BC):

$$Z_X(-,+)$$
 means $Z_X|_{y=0} = 0$; $\partial_y Z_X|_{y=\pi R} = 0$
• $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$: $(W_L^3, W_R^3, X) \rightarrow (W_L^3, B, Z_X)$
 $A \rightarrow (+,+)$; $Z \rightarrow (+,+)$; $Z_X \rightarrow (-,+)$
• $Z_X \equiv \frac{1}{\sqrt{g_x^2 + g_R^2}} (g_R W_R^3 - g_X X) \rightarrow (-,+)$; $W_R^{\pm} \rightarrow (-,+)$
• $B \equiv \frac{1}{\sqrt{g_x^2 + g_R^2}} (g_X W_R^3 + g_R X) \rightarrow (+,+)$; $W_L^{\pm} \rightarrow (+,+)$

- By VEV of TeV brane Higgs
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$: $(W_L^3, B, Z_X) \rightarrow (A, Z, Z_X)$

人口 医水黄 医医水黄 医水黄素

Gauge Boson

- "Zero" modes: $A^{(0)}, Z^{(0)}$; $W_L^{(0)}$
- First KK modes: $A^{(1)}, Z^{(1)}, Z^{(1)}_X \to Z'$; $W^{(1)}_L, W^{(1)}_R$ EWSB mixes : $Z^{(0)} \leftrightarrow Z^{(1)}$; $Z^{(0)} \leftrightarrow Z^{(1)}_X$; $Z^{(1)} \leftrightarrow Z^{(1)}_X$ $W^{(0)}_L \leftrightarrow W^{(1)}_L$; $W^{(0)}_L \leftrightarrow W^{(1)}_R$; $W^{(1)}_L \leftrightarrow W^{(1)}_R$

Mass eigenstates :

- "Zero" modes: A, Z ; W^{\pm}
- First KK modes: $A_1, \tilde{Z}_1, \tilde{Z}_{X_1} \to Z'$; $ilde{W}_{L_1}, ilde{W}_{R_1} \to {W'}^{\pm}$

Z' Overlap Integrals

Define:
$$\xi \equiv \sqrt{k\pi R} = 5.83$$

Z' overlap with Higgs $\rightarrow \xi$ Z' overlap with fermions:

	Q_L^3	t _R	other fermions
\mathcal{I}^+	$-\frac{1.13}{\xi} + 0.2\xi \approx 1$	$-\frac{1.13}{\xi} + 0.7\xi \approx 3.9$	$-rac{1.13}{\xi}pprox -0.2$
\mathcal{I}^-	$0.2\xipprox 1.2$	$0.7 \xi pprox 4.1$	0

Compared to SM

- Z' couplings to h enhanced (also V_L Equivalence Theorem!)
- Z' couplings to t_R enhanced
- Z'couplings to χ suppressed

$$\bar{\psi}_{L,R} \gamma^{\mu} \Big[eQ\mathcal{I}A_{1\,\mu} + g_Z \left(T_L^3 - s_W^2 T_Q \right) \mathcal{I}Z_{1\,\mu} + g_{Z'} \left(T_R^3 - s'^2 T_Y \right) \mathcal{I}Z_{X1\,\mu} \Big] \psi_{L,R}$$

EWSB induced $Z'W^+W^-$ coupling

 $Z^{(1)}V^{(0)}V^{(0)}$ is zero by orthogonality but induced after EWSB

Using Goldstone equivalence:

(日) (四) (日) (日) (日)

In Unitary Gauge:

Even though $\xi \cdot (\frac{v}{M_{KK}})^2$ suppressed ...

Z'decays

Γ

[Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni - arXiv:0709.0007 [hep-ph]]

$$\begin{split} & \prod_{Z'} \sum_{Z'} \sum_{Z'} \sum_{Z'} \sum_{Z'} \sum_{X_{1}} \sum_{h} \sum_{Z'} \sum_{X_{1}} \sum_{h} \sum_{Z'} \sum_{X_{1}} \sum_{h} \sum_{Z'} \sum_{X_{1}} \sum_{h} \sum_{T'} \sum_$$

Widths & BR's (For $M_{Z'} = 2$ TeV)

	A1			\tilde{Z}_1	\tilde{Z}_{X1}		
	Γ(GeV)	BR	Γ(GeV)	BR	Γ(GeV)	BR	
tt	55.8	0.54	18.3	0.16	55.6	0.41	
bb	0.9	$8.7 imes10^{-3}$	0.12	10 ⁻³	28.5	0.21	
ūu	0.28	$2.7 imes10^{-3}$	0.2	$1.7 imes10^{-3}$	0.05	4×10^{-4}	
dd	0.07	$6.7 imes10^{-4}$	0.25	$2.2 imes 10^{-3}$	0.07	$5.2 imes 10^{-4}$	
$\ell^+\ell^-$	0.21	$2 imes 10^{-3}$	0.06	$5 imes 10^{-4}$	0.02	$1.2 imes 10^{-4}$	
$W_L^+ W_L^-$	45.5	0.44	0.88	$7.7 imes 10^{-3}$	50.2	0.37	
Z _L h	-	-	94	0.82	2.7	0.02	
Total	103.3		114.6		135.6		

Total Widths

$pp \rightarrow Z' \rightarrow W^+W^- \rightarrow \ell \nu jj$

$$M_{eff} \equiv p_{\mathcal{T}_{jj}} + p_{\mathcal{T}_\ell} + p_{\mathcal{T}} \qquad M_{\mathcal{T}_{WW}} \equiv 2\sqrt{p_{\mathcal{T}_{jj}}^2 + m_W^2}$$

æ

ヘロト ヘロト ヘビト ヘビト

$pp \rightarrow Z' \rightarrow W^+W^- \rightarrow \ell \ \nu \ jj$ (Boosted $W \rightarrow (jj)$)

j j Collimation implies forming m_W nontrivial : use jet-mass In our study: Jet-mass after Parton shower in Pythia Thanks to Frank Paige for discussional

To account for (HCal) expt. uncert.
Smearing by
$$\delta E = 80\%/\sqrt{E}$$
; $\delta \eta, \delta \phi = 0.05$
Tracker + ECal (2 cores?) have better resolutions [F. Paige; M. Strassler]

(日)

э

2 ν 's \Rightarrow cannot reconstruct event

 $M_{eff} \equiv p_{T_{\ell_1}} + p_{T_{\ell_2}} + \not p_T \qquad M_{T_{WW}} \equiv 2\sqrt{p_{T_{\ell_\ell}}^2 + M_{\ell_\ell}^2}$

 \mathcal{L} needed: 100 fb^{-1} (2 TeV) ; 1000 fb^{-1} (3 TeV)

э

(日)

Cross-section (in fb) after cuts:

2 TeV	Basic cuts	$ \eta_\ell < 2$	$M_{eff} > 1 \; { m TeV}$	M_T >1.75 TeV	# Evts	S/B	S/\sqrt{B}
Signal	0.48	0.44	0.31	0.26	26	0.9	4.9
WW	82	52	0.4	0.26	26		
au au	7.7	5.6	0.045	0.026	2.6		
3 TeV	Basic cuts	$ \eta_\ell < 2$	$1.5 < M_{eff} < 2.75$	$2.5 < M_T < 5$	# Evts	S/B	S/\sqrt{B}
Signal	0.05	0.05	0.03	0.025	25		
		-					
WW	82	52	0.08	0.04	40	0.6	3.8

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

events above is for

- 2 TeV : 100 fb^{-1}
- 3 TeV : 1000 fb⁻¹

Cross-section (in fb) after cuts:

$M_{Z'} = 2 \text{ TeV}$	рт	$\eta_{\ell,j}$	M _{eff}	M _{Tww}	Mjet	# Evts	S/B	S/\sqrt{B}
Signal	4.5	2.40	2.37	1.6	1.25	125	0.39	6.9
W+1j	$1.5 imes10^5$	$3.1 imes10^4$	223.6	10.5	3.15	315		
WW	$1.2 imes 10^3$	226	2.9	0.13	0.1	10		
$M_{Z'} = 3 \text{ TeV}$								
Signal	0.37	0.24	0.24	0.12	-	120	0.17	4.6
W+1j	$1.5 imes10^5$	$3.1 imes10^4$	88.5	0.68	-	680		
WW	$1.2 imes10^3$	226	1.3	0.01	-	10		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ □

events above is for

- 2 TeV : 100 fb⁻¹
- 3 TeV : 1000 fb⁻¹

$pp ightarrow Z' ightarrow Z \ h ightarrow \ell^+ \ell^- \ b \ ar b \ \ (m_h = 120 \ { m GeV})$

How well can we tag high p_T b's ? For $\epsilon_b = 0.4$, expect $R_j \approx 20 - 50$; $R_c = 5$ Two b's close : $\Delta R_{bb} \sim 0.16$ \mathcal{L} needed: 200 fb^{-1} (2 TeV) ; 1000 fb^{-1} (3 TeV)

・ ロ ト ・ 一戸 ト ・ 目 ト ・
$pp ightarrow Z' ightarrow Z \ h ightarrow \ell^+ \ell^- \ b \ ar b \ \ (m_h = 120 \ { m GeV})$

Cross-section (in fb) after cuts:

$M_{Z'} = 2 \text{ TeV}$	Basic	p_T, η	$\cos \theta_{Zh}$	M _{inv}	b-tag	# Evts	S/B	S/\sqrt{E}
$Z' \to hZ \to b\bar{b}\ell\ell$	0.81	0.73	0.43	0.34	0.14	27	1.1	5.3
SM Z + b	157	1.6	0.9	0.04	0.016	3		
$SM Z + b\overline{b}$	13.5	0.15	0.05	0.01	0.004	0.8		
SM $Z + q_I$	2720	48	22.4	1.5	0.08	15		
SM Z + g	505.4	11.2	5.8	0.5	0.025	5		
SM Z + c	184	1.9	1.1	0.05	0.01	2		
$M_{Z'} = 3 \text{ TeV}$								
$Z' \to hZ \to b\overline{b}\ell\ell$	0.81	0.12	0.05	0.04	0.016	16	2	5.7
SM Z + b	157	0.002	0.001	$3 imes 10^{-4}$	$1.2 imes10^{-4}$	0.12		
SM $Z + b\overline{b}$	13.5	0.018	0.014	0.002	0.001	1		
SM $Z + q_I$	2720	1.1	0.7	0.1	0.005	5		
SM Z + g	505.4	0.3	0.2	0.03	0.0015	1.5		
SM Z + c	183.5	0.03	0.02	0.002	$4 imes 10^{-4}$	0.4		

events above is for

- 2 TeV : 200 fb⁻¹
- 3 TeV : 1000 fb⁻¹

$pp \rightarrow Z' \rightarrow Z h$: $Z \rightarrow jj$; $h \rightarrow W^+W^- \rightarrow jj \ell \nu$ $(m_h = 150 \text{ GeV})$

$$M_{T_{Zh}} \equiv \sqrt{p_{T_Z}^2 + m_Z^2} + \sqrt{p_{T_h}^2 + m_h^2}$$

(日)

$M_{Z'} = 2 \text{ TeV}$ $m_h = 150 \text{ GeV}$	Basic	p_T, η	$\cos \theta$	MT	Mjet	# Evts	S/B	S/\sqrt{B}
$Z' \rightarrow hZ \rightarrow \ell \not \in_T (jj) (jj)$	2.4	1.6	0.88	0.7	0.54	54	2.5	11.5
SM Wjj	3×10^4	35.5	12.7	0.62	0.19	19		
SM W Z j	184	0.45	0.15	0.02	0.02	2		
SM W W j	712	0.54	0.2	0.02	0.01	1		
$M_{Z'} = 3 \text{ TeV} m_h = 150 \text{ GeV}$								
$Z' \to hZ \to \ell \not \in_T (jj) (jj)$	0.26	0.2	0.14	0.06	-	18	1.2	4.7
SM Wjj	3×10^4		4.1	0.05	-	15		

events above is for

3 TeV : 300 fb⁻¹

$pp ightarrow Z' ightarrow \ell^+ \ell^-$

$M_{Z'} = 2 \text{ TeV}$	Basic	ΡΤℓ	$M_{\ell \ell}$	# Evts	S/B	S/\sqrt{B}
Signal	0.1	0.09	0.06	60	0.3	4.2
SM ℓℓ	3×10^4	5.4	0.2	200		
SM WW	295	0.03	0.002	2		

events above is for

• 2 TeV : 1000 fb^{-1}

Experimentally clean, but needs a LOT of luminosity

$pp ightarrow Z' ightarrow t \overline{t}$

$M_{Z'} = 2 \text{ TeV}$	Basic	$p_T > 800$	$1900 < M_{tt} < 2100$
Signal	17	7.2	5.6
SM tt	$1.9 imes10^5$	31.1	19.1
$M_{Z'} = 3 \text{ TeV}$	Basic	$p_T > 1250$	$2850 < M_{tt} < 310$
Signal	1.7	0.56	0.45
SM tī	$1.9 imes 10^5$	4.1	1.1

W'[±]width

$W'^{\pm}BR$

$W'^{\pm} ightarrow t b ightarrow \ell u b b$

Signal c.s. $\sim 1 fb$ Bkgnd is single top + QCD W b b AND ... $t\bar{t}$: hadronically decaying top can fake a b

b-jet Event Jet Cluster (diff)

æ

$\overline{W^{\prime\pm}} ightarrow t \, b ightarrow \ell u b \, b$

Jet-mass cut: cone size 1.0 and $0 < j_M < 75 \Rightarrow 0.4\%$ of *top* fakes *b* \mathcal{L} needed: 100 fb⁻¹ (2 TeV)

$W'^{\pm} ightarrow Z \, W$ and $W \, h$

$W'^{\pm} \rightarrow Z W$:

- Fully leptonic $\rightarrow \mathcal{L}$: 100 fb^{-1} (2 TeV) ; 1000 fb^{-1} (3 TeV)
- Semi leptonic $\rightarrow \mathcal{L}$: 300 fb⁻¹ (2 TeV) (SM W/Z + 1j large)

$W'^{\pm} ightarrow Z W$ and W h

$W'^{\pm} \rightarrow Z W$:

- Fully leptonic $ightarrow \mathcal{L}$: 100 fb $^{-1}$ (2 TeV) ; 1000 fb $^{-1}$ (3 TeV)
- Semi leptonic $\rightarrow \mathcal{L}$: 300 fb⁻¹ (2 TeV) (SM W/Z + 1j large)

 $W'^{\pm} \rightarrow W h$:

- $m_h \approx 120$: $h \rightarrow b b$
 - What is b-tagging eff?
- $m_h \approx 150$: $h \rightarrow W W$

• Use W jet-mass to reject light jet

 \mathcal{L} needed: 100 $fb^{-1}(2\text{TeV})$; 300 $fb^{-1}(3\text{TeV})$

Storage Area

- Warped (RS) model
- Heavy EW gauge bosons : 3 neutral (Z') & 2 charged (W'^{\pm})
 - Precision electroweak observables require $M_{Z'}$, $M_{W_i^\pm}\gtrsim$ 2 TeV

• Makes discovery challenging at the LHC