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Introduction

� The first 5 lectures contain essential information with 
simple and concise derivations of basic formulæ and 
the 6th lecture uses this introduction to tackle 
accelerator design.

� In this lecture, we will fill some of the gaps:

� Edge focusing

� Skew quadrupoles

� Solenoids

� Normalised phase space 

� Beam steering

� Position & angle measurement

� Half-wavelength bump

� 3-magnet bump

� 4-magnet bump

� Of course, there is still much more.  
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Edge focusing

� The theory in Lecture 1 is based on the hard-

edge model of a sector dipole.

� Modern lattices usually have rectangular 

dipoles and in some cases dipoles with edges 

inclined at a general angle.  These cases excite 

edge focusing.  

Central orbit

Sector dipole

Orbit is 

perpendicular to 

magnet face

θθθθ

Rectangular dipole

Orbit is NOT 

perpendicular to 

magnet face

θθθθ



JUAS13_07- P.J. Bryant  - Lecture 7
Filling some gaps - Slide4

Edge focusing continued

� The edge angles of a dipole are measured with 
respect to the basic sector magnet.  The sign 
convention used here designates the edge angles as 
positive when the field integral is reduced with 
respect to the sector dipole on the outer side of the 
bend (i.e. defocusing).  

� For the special case of a rectangular dipole the 
edge angles are equal to half the bending angle.

θθθθ

εεεε1
εεεε2

Positive Positive
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Edge focusing continued

An edge angle is modelled by a ‘hard-edge’
field wedge set on the boundary of a sector 
dipole.  The field in the wedge is made equal 
in magnitude to that in the dipole and the 
wedge is arranged to add to the field integral 
on one side of the central orbit and to 
subtract on the other.  Since the width of the 
wedge is proportional to the distance from the 
axis, the angular deviation, αααα, suffered by an 
ion will be proportional to its distance from 
the axis.

z is the coordinate in the plane of bending that can be x or y.

××××

• αz
Central 

orbit

ε

f

)1(
tantan

ρ
ε

ρ
ε

α
z

B

zB
==



JUAS13_07- P.J. Bryant  - Lecture 7
Filling some gaps - Slide6

Edge focusing continued

� The effect of the wedge is local and relatively 
weak, so it is safe to regard the wedge as a thin 
lens.  The transfer matrix of this thin lens in the 
plane of bending will be,

� The wedge will focus (positive f and negative k) in 
the plane of bending when it adds to the field 
integral on the outside of the bend and subtracts 
from the field integral on the inside of the bend.  
Thus focusing in the plane of bending corresponds 
to a negative edge angle.

� This convention is independent of whether the 
dipole is bending to the left or right or upwards or 
downwards.

� However, an F-type quadrupole is universally 
accepted as horizontally focusing and vertically 
defocusing, which requires the upper signs for 
horizontally bending dipoles and the lower signs 
for vertically bending dipoles.
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Edge focusing continued

� So far, only the gradient seen in the plane of 
bending has been evaluated.

� There must also be a gradient in the 
orthogonal plane, but to demonstrate this 
requires some extra explanation that invokes 
the focusing action of the longitudinal field 
components that arise above and below the 
median plane.

� Note this is a departure from the strict ‘hard-
edge’ model.
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Edge focusing continued

� An integration loop is drawn along the beam path 

with one side in the median plane and the return 

at a height z above it.  The orbit’s curvature has 

been neglected. The vertical sides are either deep 

inside the magnet and ‘see’ only a vertical field B0, 

or far outside and ‘see’ zero field. The integral is 

zero, since no current is passing through the loop. 

� The beam crosses the magnet edge with angle εεεε.  

The fringe field component BY is resolved into Bs, 

parallel to the path, and the Bx, perpendicular to 

the path.  These two components are related by,

� Combining these equations gives an angular kick, 

αααα, in the plane perpendicular to the main bending 

that is independent of the fringe field shape, linear 

in z and of opposite sign.
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Edge focusing continued

� Thus the ‘hard-edge’ wedge of field that 
physically represents the edge focusing in the 
bending plane can be replaced by a thin 
quadrupole lens that represents the additional 
focusing in both planes.

� For accurate work, one more step can be  
taken by using the dipole fringe-field 
correction (Ref D.C. Carey, The optics of charged particle 

beams, (Harwood Academic Publishers, 1987), ISBN 3-7186-

0350-0). This accounts for the shape of the 
fringe field and the curve of the beam path 
that was hitherto neglected. The effect can be 
significant and is expressed as an effective 
edge angle.

� Less well-known and rarely used is a 
quadrupole fringe-field correction (Ref P. Krejcik, 

Nonlinear quadrupole end-field effects in the CERN 
antiproton accumulators, 1987 Part. Accel. Conf., 
Washington D.C., March 16-19, (IEEE)).
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Tilted elements

� Any element can be rotated (tilted) about its 

longitudinal axis by applying a rotation 

matrix at the entry and a compensating 

rotation at the exit.

where C = cosθθθθ, S = sinθθθθ and θθθθ is the angle of 

rotation in the anticlockwise direction when 

viewed in the beam direction.

� For a 6 ×××× 6 matrix, the rotation becomes,
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Skew quadrupoles

� Skew quadrupoles are normal quadrupoles

rotated by ππππ/4, so that C = S = 1/√√√√2.  These are 

relatively common elements, so it is worth 

multiplying (4) out,

which becomes

where

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

























++−−

++−−

−+++

−−++

2222212122222121

1212111112121111

2222212122222121

1212111112121111

2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

vvhhvvhhvvhhvvhh

vvhhvvhhvvhhvvhh

vvhhvvhhvvhhvvhh

vvhhvvhhvvhhvvhh

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

)6(

coshcos
2

1
sinsinh

2
coshcos

2

1
sinhsin

2

sinhsin
2

coshcos
2

1
sinhsin

2
coshcos

2

1

coshcos
2

1
sinhsin

2
coshcos

2

1
sinsinh

2

sinhsin
2

coshcos
2

1
sinhsin

2
coshcos

2

1





























+−−+−

++−−

−+−+−

−−++

ϕϕϕϕ
ϕ

ϕϕϕϕ
ϕ

ϕϕ
ϕ

ϕϕϕϕ
ϕ

ϕϕ

ϕϕϕϕ
ϕ

ϕϕϕϕ
ϕ

ϕϕ
ϕ

ϕϕϕϕ
ϕ

ϕϕ

ll

ll
ll

ll

lk=ϕ



JUAS13_07- P.J. Bryant  - Lecture 7
Filling some gaps - Slide12

Solenoids

�Solenoids with their main field aligned with 

the central axis have long been used as focusing 

devices at low beam energies where the ability to 

focus in both planes over a short distance is 

particularly useful.

�At high beam energies, quadrupole focusing 

schemes are more power-efficient, but solenoids 

find a new application as particle physics 

detectors.

�To derive the transfer matrix of a solenoid, it 

is necessary to consider separately the motion in 

the central region and in the two ends.
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Solenoids continued

� Motion in the uniform axial field in the 

central part of the solenoid.

� The angular divergences with respect to the 

longitudinal axis at the entry position are,

and

and, at the exit position,
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Solenoids continued

� Substitute the entry position equations (7) 

into the exit position equations (8) to get,

� The particle positions at the entry and exit are 

similarly derived from the geometry of the 

circle diagram,

� Expanding and substituting from (7) gives
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Solenoids continued

� For a given transit time t, the precession angle 

θθθθ and the length of the solenoid l are related 

by,

so that

� Substitute (13) into (12) and combine with (9), 

to get transfer matrix for the central region of 

a solenoid,
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Solenoids continued

�It has been convenient to use the angle of 

precession θθθθ in this derivation, but in order to relate 

to more basic quantities and to be in line with the 

literature, we define

�With (14) this yields,

Derivation of (15):

Rewrite the cyclotron motion                           as

and substitute into (13) to get (15). 

Tacitly (15) assumes that the transverse momentum is negligible with 

respect to the axial component, so that we can equate the axial 

momentum to total momentum and the magnetic rigidity |Bρ|. 
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Solenoids continued

� Motion in the end fields.

� The end field of a solenoid is usually 

concentrated in an iron end plate with a 

circular hole for the beam to pass through.

Transverse kick.
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Solenoids continued

� These kicks can be represented by thin lenses 

with the transfer matrices,

� Entry

� Exit,
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Solenoids continued

� The end matrices must now be multiplied 

with the central matrix to get the final 

transfer matrix of a solenoid.   

� where 

and

relates the ‘hard-edge’ model to the real 

world. 
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( ) ( ) ( ) ( )21cos 2/1−=+= βµµ szBAZ

( ) ( ) ( ) ( ) 2/12/1 'sin' βαβµµ szszBAZ +=+−= −

Normalised phase space

� From Lecture 4, Eqn (14),

� The phase terms can be isolated and used to 

define new co-ordinates Z(µµµµ) and Z´(µµµµ) that 

are known as normalised co-ordinates.

� Real-space co-ordinates use lower case and 

normalised co-ordinates upper case.

� Real-space co-ordinates use s as the 

independent variable and normalised co-

ordinates use the phase advance µ.µ.µ.µ.

� Real-space coordinates show the phase-space 

motion as an ellipse, while normalised

coordinates show a circle.

( )BssAsz += )(cos)()( 2/1 µβ

( ) ( )[ ]BBAsz +++−= − µµαβ sincos)(' 2/1
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Normalised phase space continued

� The transformations between the two systems 

are conveniently expressed in matrix form as:

� Similarly, there is a normalised form of the 

dispersion function (DN, D′′′′N), which is also 

frequently used,
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Beam steering

� How to change the position and angle (∆∆∆∆y, 

∆∆∆∆y′)  at a given point in a transfer line 

using two upstream dipole kicks (δδδδ1, δδδδ2).

� The system is linear, so the effect of each 

kick at the ‘Observer’ can be calculated 

and the effects added.
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Beam steering continued

� which can be rewritten as,

where ∆∆∆∆ indicates the changes in the 

position and angle seen by the ‘Observer’.  

Inverting (26) gives the kicks required for 

the position and angle changes,

� A similar reasoning can be used to 

transform two independent orbit 

measurements into a position and angle 

measurement at a given point.  

)26(
2

1

2222

1212

















=









′∆

∆

δ
δ

ba

ba

y

y

( )
)27(

1

Observer1222

1222

221212222

1










′∆

∆









−

−

−
=









y

y

aa

bb

ababδ

δ



JUAS13_07- P.J. Bryant  - Lecture 7
Filling some gaps - Slide24

Position & angle measurement

� Transfers to given point from each monitor,

� Eliminate y1′ and y2 ′

� Solve for y and y′

y1 y2 y
s

Transfer matrix, A

Transfer matrix, B

Monitor 1 Monitor 2 Given point

∆y Beam 

trajectory

y’

















=









′















=









′
2

2

2221

1211

1

1

2221

1211

'
  and

' y

y

bb

bb

y

y

y

y

aa

aa

y

y

221222

21

12

11
2

221222

21

12

11
1 and

b

y

b

y

b

b

b

b
y

a

y

a

y

a

a

a

a
y

′
−=








−

′
−=








−

( )
( )

( )
( ) )28(

1

1

222221

22121222

122121

22121222

ayby
baba

y

ayby
baba

y

−
−

=′

−
−

=

Remember: |A|=a11a22-a12a21=1 and |B|=b11b22-b12b21=1.
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πµµ =− 12

)29(
2/1

22

2/1

11 βδβδ =

Half-wavelength bump

� From Lecture 4, Eqn (14), we have,

� If the first kick δδδδ1( = z′′′′1) is put at µµµµ1 = -ππππ/2, 

then B = 0 and A = δδδδ1ββββ1
1/2.  At µµµµ = ππππ/2, just 

half a wavelength later, the excursion will 

again be zero.  At this point the oscillation 

can be killed by a second kick δδδδ2, which is 

equal and opposite to the trajectory slope at 

this point, so that δδδδ2 = - z′′′′2, which gives the 

conditions, 

Imposed condition:

Derived condition:

� The bump height can be controlled at any 

point by scaling the kicks, but the angle of 

the trajectory is a feature of the lattice 

geometry and cannot be controlled.   

( ) ( )[ ]BssAsz += µβ cos)(
2/1

( ) ( )[ ]BBAsz +++−= − µµαβ sincos)(' 2/1
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3-magnet bump

� It is rare that magnets can be placed with a 

phase separation of exactly ππππ.  Even when 

possible, this makes the lattice inflexible for 

future developments. 

� It is therefore useful to know how to correct 

the residual error of an imperfect 2-magnet 

bump with a third dipole.

� Using Lecture 4, Eqn (8), track forwards 

from kick 1 to kick 2. 

� Also using Lecture 4, Eqn (8) track 

backwards from kick 3 to kick 2. 

( ) ( )
( ) ( ) ( )[ ]





∆−∆=
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11,221,2
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3-magnet bump continued

� The forward- and back-track amplitudes at δδδδ2

must be identical and the difference in the 

derivatives must be matched by the dipole 

kick δδδδ2, i.e.

� Some manipulation of the above equations 

yields,

� As with the 2-magnet, half-wavelength bump, 

the excursion of the trajectory can be 

controlled at any point by scaling the kicks, 

but the angle of the trajectory is a feature of 

the lattice geometry and cannot be controlled.

f,2b,22b,2f,2 and yyyy ′−′−== δ

( ) ( ) ( ) )30(
sinsinsin 1,2
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4-magnet bump

� Often a local bump is required that controls 

both the position and angle of the beam at 

some particular position.  This requires four 

magnets with one pair upstream of the 

control point and one pair downstream.

� Calculate the kicks δδδδ1 and δδδδ2 to achieve the 

displacement ∆∆∆∆y, ∆∆∆∆y′ at the Observer position 

by using the steering equation (27).

∆y, ∆y’

δ5

δ4

δ1
δ2

s

Transfer matrix, A

Transfer matrix, B

Point 1 Point 2 Observer

∆y

Point 3 Point 4

Transfer matrix, C

Transfer matrix, D
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4-magnet bump continued

� Eqn (27) can also be used to specify the 

downstream kicks, but because the transfer 

matrices and kicks are defined in the beam 

direction, the downstream kicks that close the 

bump are found by back-tracking.

� Remember,

� This gives,
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