# Introduction to Transverse Beam Dynamics 

Lecture 1：Magnetic fields and particle trajectories

Andrea Latina（CERN）

JUAS 2013
14th January 2013

## Luminosity run of a typical storage ring

Storage ring: Protons are accelerated and stored for $\sim 12$ hours distance of particles traveling at nearly the speed of light, $v \approx c$

$$
d=12 \times 10^{11} \mathrm{~km}
$$

$\rightarrow$ it's about 86 times the Earth-Sun distance!

## Introduction and basic ideas

It's a circular machine: we need a transverse deflecting force $\rightarrow$ the Lorentz force

$$
\vec{F}=q \cdot(\vec{E}+\vec{v} \wedge \vec{B})
$$

where, in high energy machines, $|\vec{v}| \approx c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$. Usually there is no electric field, and the transverse deflection is given by a magnetic field only.

Example

$$
\begin{aligned}
F & =q \cdot 3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1 \mathrm{~T} \\
B=1 \mathrm{~T} \rightarrow \quad & =q \cdot 3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
& =q \cdot 300 \frac{\mathrm{MV}}{\mathrm{~m}}
\end{aligned}
$$

Notice that there is a technical limit for an electric field:

$$
E \lesssim 1 \frac{M V}{m}
$$

A general rule is : in an accelerator, use magnetic fields wherever it's possible
$\left.\begin{array}{rll}\text { Lorentz force } & F_{L} & =e v B \\ \text { Centrifugal force } & F_{\text {centr }}=\frac{\gamma m v^{2}}{\rho} \\ & \frac{\gamma m v \neq}{\rho}=e \psi B\end{array}\right\} \quad \begin{gathered}\frac{p}{q}=B \rho \\ B \rho=\text { "beam ridigity" }\end{gathered}$

Accelerating cavity
It accelerates particles with high frequency by applying an electric
Beam is sent to synchrotron


## Dipole magnets: the magnetic guide

- Dipole magnets:
- define the ideal orbit
- in a homogeneous field created by two flat pole shoes, $B=\frac{\mu_{0} n l}{h}$

- Normalise magnetic field to momentum:

$$
\frac{p}{e}=B \rho \Rightarrow \frac{1}{\rho}=\frac{e B}{p} \quad B=[T]=\left[\frac{V s}{m^{2}}\right] \quad \mathrm{p}=\left[\frac{G e V}{c}\right]
$$

- Example: the LHC

$$
\left.\begin{array}{rl}
B & =8.3 \mathrm{~T} \\
p & =7000 \frac{\mathrm{GeV}}{\mathrm{c}}
\end{array}\right\} \begin{aligned}
\frac{1}{\rho} & =\mathrm{e} \frac{8.3 \frac{\mathrm{~V}_{\mathrm{s}}}{\mathrm{~m}^{2}}}{7000 \cdot 10^{9} \frac{\mathrm{eV}}{\mathrm{c}}}=\frac{8.3 \mathrm{~s} \cdot 3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{7000 \cdot 10^{9} \mathrm{~m}^{\wedge} 2}= \\
& =0.333 \cdot \frac{8.3}{7000} \frac{1}{\mathrm{~m}}=\frac{1}{2.53} \frac{1}{\mathrm{~km}}
\end{aligned}
$$

## Dipole magnets: the magnetic guide

In the LHC, $\rho=2.53 \mathrm{~km}$. The circumference $2 \pi \rho=17.6 \mathrm{~km} \approx 66 \%$ of the entire LHC.

The field $B$ is $\approx 1 \ldots 8 \mathrm{~T}$
Rule of thumb:

$$
\frac{1}{\rho[m]} \approx 0.3 \frac{B[T]}{p[\mathrm{GeV} / \mathrm{c}]}
$$

which is the "normalised bending strength"

## Quadrupole magnets: the focusing force

Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit They exert a linearly increasing Lorentz force, thru a linearly increasing magnetic field:

$$
\begin{aligned}
& B_{x}=-g y \\
& B_{y}=-g x
\end{aligned} \quad \Rightarrow \begin{aligned}
& F_{x}=-e v g x \\
& F_{y}=\text { evgy }
\end{aligned}
$$

Gradient of a quadrupole magnet:

$$
g=\frac{2 \mu_{0} n l}{r^{2}}\left[\frac{T}{m}\right]=\frac{B_{\text {poles }}}{r_{\text {aperture }}}\left[\frac{T}{m}\right]
$$

- LHC main quadrupole magnets:

$$
g \approx 25 \ldots 220 \mathrm{~T} / \mathrm{m}
$$


the arrows show the force exerted on a particle

Focusing strength:

$$
k=\frac{g}{p / e}\left[m^{-2}\right]
$$

A simple rule: $k\left[m^{-2}\right] \approx 0.3 \frac{g[T / m]}{p[G e V / c]}$.

## The equation of motion

Linear approximation:

- the ideal particle $\Rightarrow$ stays on the design orbit
- any other particle $\Rightarrow$ has coordinates $x, y$
- which are small quantities $x, y \ll \rho$
- only linear terms in $x$ and $y$ of $B$ are taken
 into account

Taylor expansion of the $B$ field:

$$
B_{y}(x)=B_{y 0}+\frac{\partial B_{y}}{\partial x} x+\frac{1}{2} \frac{\partial^{2} B_{y}}{\partial x^{2}} x^{2}+\frac{1}{3!} \frac{\partial^{3} B_{y}}{\partial x^{3}} x^{3}+\ldots
$$

if we normalise to the momentum $p / e=B \rho$

$$
\frac{B(x)}{p / e}=\frac{B_{0}}{B_{0} \rho}+\frac{g}{p / e} x+\frac{1}{2} \frac{e g^{\prime}}{p / e} x^{2}+\frac{1}{3!} \frac{e g^{\prime \prime}}{p / e} x^{3}+\ldots
$$

## The equation of motion

$$
\begin{gathered}
\frac{B(x)}{p / e}=\frac{B_{0}}{B_{0} \rho}+\frac{g}{p / e} x+\frac{1}{2} \frac{e g^{\prime}}{p / e} x^{2}+\frac{1}{3!} \frac{e g^{\prime \prime}}{p / e} x^{3}+\ldots \\
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2} m x^{2}+\frac{1}{3!} n x^{3}+\ldots
\end{gathered}
$$

In the linear approximation, only the terms linear in $x$ and $y$ are taken into account:

- dipole fields
- quadrupole fields

It is more practical to use "separate function" machines:

- split the magnets and optimise them regarding their function
- bending
- focusing, etc.


## The equation of motion in radial coordinates

Let's consider a local segment of one particle's trajectory:

the radial acceleration is $a_{r}=\frac{d^{2} \rho}{d t^{2}}-\rho\left(\frac{d \theta}{d t}\right)^{2}=\frac{d^{2} \rho}{d t^{2}}-\rho \omega^{2}$. In our case, for the ideal orbit: $\rho=$ const $\Rightarrow \frac{\mathrm{d} \rho}{\mathrm{d} t}=0$
$\Rightarrow$ the force is $\quad F=m \rho\left(\frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right)^{2}=m \rho \omega^{2}$

$$
F=m v^{2} / \rho
$$

For a general trajectory:

$$
\rho \rightarrow \rho+x: \quad F=m \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}(\rho+x)-\frac{m v^{2}}{\rho+x}=e B_{y} v
$$

$$
F=\underbrace{m \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}(\rho+x)}_{\text {term 1 }}-\underbrace{\frac{m v^{2}}{\rho+x}}_{\text {term 2 }}=e B_{y} v
$$

- Term 1. As $\rho=$ const...

$$
m \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}(\rho+x)=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} x
$$

- Term 2. Remember: $x \approx \mathrm{~mm}$ whereas $\rho \approx \mathrm{m} \rightarrow$ we develop for small $x$

$$
\begin{gathered}
\begin{array}{c}
\text { remember } \\
\frac{1}{\rho+x} \approx \frac{1}{\rho}\left(1-\frac{x}{\rho}\right)
\end{array} \left\lvert\, \begin{array}{l}
\text { Taylor expansion: } \\
f(x)=f\left(x_{0}\right)+ \\
+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\cdots
\end{array}\right. \\
m \frac{d^{2} x}{d t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=e B_{y} v
\end{gathered}
$$

The guide field in linear approximation $B_{y}=B_{0}+x \frac{\partial B_{y}}{\partial x}$

$$
\begin{aligned}
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right) & =e v\left\{B_{0}+x \frac{\partial B_{y}}{\partial x}\right\} \quad \text { let's divide by } m \\
\frac{\mathrm{~d}^{2} x}{\mathrm{~d} t}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right) & =\frac{e v B_{0}}{m}+\frac{e v x g}{m}
\end{aligned}
$$

Independent variable: $t \rightarrow s$

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} t} \\
\frac{d^{2} x}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} x}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} t}\right)=\frac{\mathrm{d}}{\mathrm{~d} s}(\underbrace{\frac{\mathrm{~d} x}{\mathrm{~d} s}}_{x^{\prime}} \underbrace{\frac{\mathrm{d} s}{\mathrm{~d} t}}_{v}) \frac{\mathrm{d} s}{\mathrm{~d} t} \\
\frac{d^{2} x}{\mathrm{~d} t^{2}}=x^{\prime \prime} v^{2}+\frac{\mathrm{d} x}{d s} \mathrm{~d} v_{\mathrm{d} s} v \\
x^{\prime \prime} v^{2}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e v B_{0}}{m}+\frac{e v x g}{m} \quad \text { let's divide by } v^{2}
\end{gathered}
$$

$$
\begin{array}{rlrl}
x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right) & =\frac{e B_{0}}{m v}+\frac{e x g}{m v} & & \text { Remember: } \\
x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}} & =\frac{B_{0}}{p / e}+\frac{x g}{p / e} & & \text { Normalise to the momentum of } \\
x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}} & =-\frac{1}{\rho}+k x & \text { the particle: } \\
& \frac{g}{p / e} \frac{B_{0}}{p / e}=-\frac{1}{\rho} ; \quad \frac{g}{p / e}=k \\
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right) & =0
\end{array}
$$

Equation for the vertical motion

- $\frac{1}{\rho^{2}}=0$ usually there are not vertical bends
- $k \longleftrightarrow-k \quad$ quadrupole field changes sign

$$
y^{\prime \prime}+k y=0
$$

## Coordinates



## Remarks

- Weak focusing:

$$
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}-k\right) x=0
$$

there is a focusing force even without a quadrupole gradient

$$
k=0 \quad \Rightarrow \quad x^{\prime \prime}=-\frac{1}{\rho^{2}} x
$$

even without quadrupoles there is retrieving force (focusing) in the bending plane of the dipole magnets

- In large machine this effect is very weak...


Mass spectrometer: particles are separated according to their energy and focused due to the $1 / \rho$ effect of the dipole

## Fringe fields

- Hard edge model:

$$
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}-k\right) x=0
$$

this equation is not really correct

- Bending and focusing forces -even inside a magnet- depend on the position $s$

$$
x^{\prime \prime}(s)+\left\{\frac{1}{\rho^{2}(s)}-k(s)\right\} x(s)=0
$$



Dipole fringe field. Quadrupole and sextupole field components can be seen by looking at the transverse slope and curvature, respectively.

But still: inside the magnet the focusing properties hold:

$$
\begin{aligned}
& \frac{1}{\rho}=\text { const } \\
& k=\text { const }
\end{aligned}
$$

## Effective length

$$
B \cdot L_{e f f}=\int_{0}^{I_{m a g}} B d s
$$

## Field or multipole component



## Multipoles

Taylor expansion of the $B$ field:

$$
B_{y}(x)=B_{y 0}+\frac{\partial B_{y}}{\partial x} x+\frac{1}{2} \frac{\partial^{2} B_{y}}{\partial x^{2}} x^{2}+\frac{1}{3!} \frac{\partial^{3} B_{y}}{\partial x^{3}} x^{3}+\ldots \quad \text { divide by } B_{y 0}
$$



Multipole coefficients:

- divide by the main field to get the relative error contribution


## Solution of the trajectory equations: focusing quadrupole

 Definition:$$
\left.\begin{array}{rll}
\text { horizontal plane } & K=1 / \rho^{2}-k \\
\text { vertical plane } & K & =k
\end{array}\right\} \quad x^{\prime \prime}+K x=0
$$

This is the differential equation of a harmonic oscillator ... with spring constant $K$. We make an ansatz:

$$
x(s)=a_{1} \cos (\omega s)+a_{2} \sin (\omega s)
$$

General solution: a linear combination of two independent solutions:

$$
\begin{aligned}
& x^{\prime}(s)=-a_{1} \omega \sin (\omega s)+a_{2} \omega \cos (\omega s) \\
& x^{\prime \prime}(s)=-a_{1} \omega^{2} \cos (\omega s)+a_{2} \omega^{2} \sin (\omega s)=-\omega^{2} x(s) \quad \rightarrow \quad \omega=\sqrt{K}
\end{aligned}
$$

General solution, for $K>0$ :

$$
x(s)=a_{1} \cos (\sqrt{K} s)+a_{2} \sin (\sqrt{K} s)
$$

We determine $a_{1}, a_{2}$ by imposing the following boundary conditions:

$$
s=0 \rightarrow \begin{cases}x(0)=x_{0}, & a_{1}=x_{0} \\ x^{\prime}(0)=x_{0}^{\prime}, & a_{2}=\frac{x_{0}^{\prime}}{\sqrt{K}}\end{cases}
$$

Horizontal focusing quadrupole, $K>0$ :

$$
\begin{aligned}
x(s) & =x_{0} \cos (\sqrt{K} s)+x_{0}^{\prime} \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
x^{\prime}(s) & =-x_{0} \sqrt{K} \sin (\sqrt{K} s)+x_{0}^{\prime} \cos (\sqrt{K} s)
\end{aligned}
$$

For convenience we can use a matrix formalism:

$$
\binom{x}{x^{\prime}}_{s_{1}}=M_{f o c}\binom{x_{0}}{x_{0}^{\prime}}_{s_{0}}
$$



Where:

$$
M_{\mathrm{foc}}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right)
$$

## Defocusing quadrupole

The equation of motion is

$$
x^{\prime \prime}+K x=0
$$

with $K<0$


Remember:

$$
\begin{aligned}
f(s) & =\cosh (s) \\
f^{\prime}(s) & =\sinh (s)
\end{aligned}
$$

Now the solution is in the form:

$$
x(s)=a_{1} \cosh (\omega s)+a_{2} \sinh (\omega s)
$$

and the transfer matrix:

$$
M_{\mathrm{defoc}}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} s) \\
\sqrt{|K|} \sinh (\sqrt{|K|} s) & \cosh (\sqrt{|K|} s)
\end{array}\right)
$$

Notice that for a drift space, when $K=0 \rightarrow M_{\text {drift }}=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$

## Summary of the transfer matrices

- Focusing quad, $K>0$

$$
M_{\mathrm{foc}}=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right)
$$

- Defocusing quad, $K<0$

$$
M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} L) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} L) \\
\sqrt{|K|} \sinh (\sqrt{|K|} L) & \cosh (\sqrt{|K|} L)
\end{array}\right)
$$

- Drift space, $K=0$

$$
M_{\mathrm{drift}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

With the assumptions we have made, the motion in the horizontal and vertical planes is independent: "... the particle motion in $x$ and $y$ is uncoupled"

## Thin-lens approximation

When the focal length, $f$, of the lens is much bigger than the length of the magnet $L$

$$
f=\frac{1}{K \cdot L} \quad \gg L
$$

we can derive the limit for $L \rightarrow 0$ while we keep $K \cdot L=$ const.
The transfer matrices are

$$
M_{x}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \quad M_{y}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)
$$

focusing, and defocusing respectively.
This approximation (yet quite accurate, in large machines) is useful for fast calculations... and for the guided studies !

## Transformation through a system of lattice elements

One can compute the solution of a system of elements, by multiplying the matrices of each single element:

$$
\begin{gathered}
M_{\text {total }}=M_{\mathrm{QF}} \cdot M_{\mathrm{D}} \cdot M_{\text {Bend }} \cdot M_{\mathrm{D}} \cdot M_{\mathrm{QD}} \cdot \ldots \\
\binom{x}{x^{\prime}}_{s_{2}}=M_{s_{1} \rightarrow s_{2}} \cdot M_{s_{0} \rightarrow s_{1}} \cdot\binom{x}{x^{\prime}}_{s_{0}}
\end{gathered}
$$



In each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator.

...typical values are:

$$
\begin{gathered}
x \approx \mathrm{~mm} \\
x^{\prime} \leq \mathrm{mrad}
\end{gathered}
$$

## Orbit and Tune

Tune: the number of oscillations per turn.
Example:
64.31
59.32


Relevant for beam stability studies is : the non-integer part

## Envelope

Question: what will happen, if the particle performs a second turn ?

- ... or a third one or ... $10^{10}$ turns ...



## Summary

$$
\text { beam rigidity: } \quad B \rho=\frac{p}{q}
$$

bending strength of a dipole: $\quad \frac{1}{\rho}\left[m^{-1}\right]=\frac{0.2998 \cdot B_{0}[T]}{p[\mathrm{GeV} / \mathrm{c}]}$
focusing strength of a quadruple: $\quad k\left[m^{-2}\right]=\frac{0.2998 \cdot g}{p[\mathrm{GeV} / c]}$ focal length of a quadrupole: $\quad f=\frac{1}{k \cdot L_{\mathbf{Q}}}$

$$
\text { equation of motion: } \quad x^{\prime \prime}+K x=\frac{1}{\rho} \frac{\Delta p}{p}
$$

transfer matrix of a foc. quad: $\quad x_{s_{2}}=M \cdot x_{s_{1}}$

$$
\begin{gathered}
M_{\mathrm{QF}}=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right) \\
M_{\mathrm{QD}}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} L) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} L) \\
\sqrt{|K|} \sinh (\sqrt{|K|} L) & \cosh (\sqrt{|K|} L)
\end{array}\right) \quad M_{\mathrm{D}}=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)
\end{gathered}
$$

## Bibliography

1. Edmund Wilson: Introduction to Particle Accelerators Oxford Press, 2001
2. Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilities, Teubner, Stuttgart 1992
3. Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
4. Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5. M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York,1962
6. The CERN Accelerator School (CAS) Proceedings
7. Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
8. D. Edwards, M. Syphers: An Introduction to the Physics of Particle Accelerators, SSC Lab 1990
