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Introduction

� So far we have:

� Derived the 2nd order differential equations of motion in 
‘hard-edge’ field models for various elements,

� Obtained the corresponding equations of motion,

� Expressed the solutions in terms of 2 × 2 and 2 × 3 
matrices, 

� Used the matrices to track ions though a lattice using a 
local curvilinear co-ordinate system that follows the 
central orbit.  

In this way, we have physical co-ordinates for 
individual ions that are easy to understand.

� An extension of the above approach is the use of 
the Twiss and Dispersion functions to describe 
envelopes as well as individual trajectories.  This 
approach opens the way to other concepts such as 
emittance, aperture and acceptance.  

� Twiss functions and dispersion functions are so 
widely used that they are needed to understand 
virtually all of the literature!
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‘Twiss’ functions

� One of the historical mysteries in 
accelerators is how the ‘Twiss’ functions 
got their name.  Twiss was once asked to 
elucidate this problem and he claimed 
there was no paper that made the link to 
him. 

� There are two ways of looking at Twiss
functions:

� The first is to regard them as a parametric 
way of expressing the motion equation and its 
solution. This makes the bridge from tracking 
single ions to the wider view of calculating 
beam envelopes.

� The second is to regard them as purely 
geometric parameters for defining ellipses and 
hence beam envelopes.  Dropping the strict 
correspondence to individual ions can lead to 
some interesting extensions such as the 
inclusion of scattering.
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Twiss & the transverse motion 

equation

� The general motion equation has the form,

where z can be either x or y.

� Start by parameterising the coordinate z as,

where z(s) represents either of the transverse co-
ordinates, s is the distance along the equilibrium 
orbit, A and B are constants depending on the 
starting conditions, ββββ(s) is the betatron amplitude 
function and σσσσ is the integration variable 
representing distance.

� The phase, µµµµ(s) of the pseudo oscillation is given 
by,

[Of course, we do the above parameterisation with hindsight. 
Annals of Physics, vol. 3, p1-48 [1958] by E.D. Courant & 
H.S. Snyder explains how to come to this point.]
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Twiss & transverse motion 

continued

� To complete this description, the 
derivative of ββββ(s) is added to the set of 
relations,

and

� Note:
� The phase shift for 1 turn in a ring divided by 

2ππππ is known as the tune, Q:

� αααα, ββββ and γγγγ are distinguished from the 
relativistic parameters by a suffix for the 
plane, but this later dropped for brevity.

� Equations (1) to (5) are so widely used that they 
need to be committed to memory.
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More Twiss

� Substitution of (2) into (1) yields a 
differential equation for √√√√ββββz(s) that is 
more complicated than the original 
motion equation, which at first sight seems 
a poor deal,

(To derive this you will need the ααααz function.)

� Equation (7) is rarely used, but it is 
necessary to know it exists.

� Today we will take the approach of 
comparing the matrix equations to the 
equivalent Twiss equations.  This leads to 
a whole battery of equations, but they 
appear so often that they eventually 
become familiar.
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General Twiss transfer matrix

� Re-express equation (2) as,

where A and B are different constants and the 

suffice ‘z’ has been dropped for brevity.

Differentiation gives,

� The constants A and B can be replaced using the 

initial conditions at s = s1,

� To get the general transfer matrix from position s1

to position s2, write the phase advance from s1 to 

s2 as ∆µ∆µ∆µ∆µ, so that,
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Twiss transfer matrix for a single 

turn in a ring or for a matched cell

� When equation (8) is applied to a full turn in a 

ring or to matched cell, the input conditions equal 

the output conditions (i.e. αααα = αααα1 = αααα2, ββββ = ββββ1 = ββββ2, 

∆µ∆µ∆µ∆µ = 2ππππQ), so that,

� Remember Q is known as the tune and is the 

number of betatron oscillations around a ring.

� We will see in the next section that equation (9) 

allows us to unambiguously solve for αααα, ββββ and γγγγ in 

terms of the matrix coefficients, at least for a ring.

� We will treat transfer lines much later because 

they require some further thought.
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Solving Twiss in a ring

� A lattice program can proceed as follows:
� List all the elements in the lattice

� Calculate the transfer matrix of all elements.

� Multiply all the matrices to obtain the single-
turn matrix.

� Compare this matrix to equation (8) and solve 
for αααα, ββββ and γγγγ using,

� To step round the lattice, pre-multiply by the 
matrix of the next element after the 
observation point and post multiply by the 
inverse of the same matrix.
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Solving for Q and µµµµ

� Let Q = 2nπ π π π + q, where n is an integer.

� Equation (10) allows you to solve for sin(2ππππQ).

� Tan(2ππππQ) or cos (2ππππQ) can also be found easily.

� This allows you to find q (the fractional part), but 

NOT n (the integer part).

� To find the integer number of oscillations around 

a ring, or the total phase shift through a long line, 

it is necessary to step through the lattice with 

steps less than 2ππππ and to sum up for the total.

� This can be done in a number of ways but, with 

the information given so far, use the previous slide 

to find αααα, ββββ and γγγγ at all elements in the ring and 

then use equation (8) to cross each element to find 

the ∆µ∆µ∆µ∆µ values.
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Typical output from a lattice 

program

The dispersion function (D) and the derivative of the dispersion function 

(dD/ds) are usually listed and included graphically with the Twiss

parameters to give a complete description of the beam.
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Dispersion

� To complete the parameterisation of the particle 
motion we need to include the motion of off-
momentum ions using,

� D(s) is known as the dispersion function.

� An analytic derivation of the dispersion function 
is possible, but it is usual to rely on lattice 
programs for numerical listings of D(s) and its 
derivative with distance D´(s).

� The dispersion function is found in much the same 
way as was done for αααα and ββββ.

� For rings, the cyclic condition is imposed,

where the matrix is for one turn and the input and 
output values of D(s) and D´(s) are equated.
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Dispersion continued

� The dispersion and its derivative at the point of 

evaluation of the matrix can be solved as,

� Having found the dispersion vector at one point, s0, it is 

simple to tabulate the values at all intermediate points 

in the ring by either stepping the single-turn matrix 

round as was already described, or by tracking the 

vector through the structure from the known point, s0, 

to a new point, s1, by,
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Phase space

� Returning to equation (2) substituted with (3), 

� Differentiating gives,

� If these two equations are used to plot a graph for (z, z') 
for µµµµ = 0 to 2ππππ, one gets an ellipse.

� In the case of a ring or matched cell, the periodicity 
imposes equality on the input and output αααα and ββββ
values.  This means that the particle returns after each 
turn or transit to the same ellipse but at phases µµµµ1=B, 
µµµµ2=B+2π2π2π2πQ, µµµµ3=B+2ππππQ, ….., B+n2ππππQ and so on.
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Motion invariant

� The elimination of the phase advance from (14) 

and (15) yields an invariant of the motion,

� This is known as the Courant & Snyder Invariant.

� The motion invariant, A2, equals the (area/ππππ) of 

the ellipse described by the betatron motion in 

phase space.  When referring to a single ion, this 

area is sometimes called the single-particle 

emittance, although this is strictly incorrect (see 

slide on emittance).

� All ions in the beam will have a value for this 

invariant (area/ππππ) and follow similar ellipses.
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Liouville’s theorem

� Liouville states that phase space is conserved.

� Primarily, this refers to 6-dimensional phase 

space (x-x´, y-y´ and s-dp/p).  You will have 

more detailed descriptions in later lectures 

defining conjugate variables etc.

� When the component phase spaces are 

uncoupled, the phase space is conserved within 

the 2-dimensional and/or 4-dimensional 

spaces.

� The invariant of the motion in the uncoupled 

x-x´or y-y´ spaces is another way of saying the 

phase space is conserved.

� Phase space is not conserved if ions change, 

e.g. by stripping or nuclear fragmentation, or 

if non-Hamiltonian forces appear e.g. 

scattering or photon emission. 
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Transferring Twiss functions

� We have calculated the Twiss functions from the 
single-turn matrix of a ring and shown how to 
step round the ring to make a table of the 
functions.

� We have shown that the Twiss functions define  
an ellipse in phase space and the area of this 
ellipse is a constant of the motion.

� Thus, between two points,

[Note this trick of equating the invariant at 2 points.]

� A trajectory at the two points is related by the 
transfer matrix T(s1 →→→→ s2), which on this occasion 
is more conveniently written in the inverse form 
from points 2 to 1, as,

[Note that the modulus is unity so that the inverse is 
simplified.  Remember this for questions.]
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Transferring Twiss functions 

continued

� Equation (18) can be used to substitute for (z1, z′1) 

on the right hand side of (17).  After regrouping 

the terms, expressions for αααα2, ββββ2 and γγγγ2 can be 

found in terms of αααα1, ββββ1 and γγγγ1.  These results are 

usually written in the form of a 3 ××××3 matrix,

� Special case.  In a drift space, t11 = t22 = 1, t12 = llll

and t21 = 0, so that,

[Note this is often used in questions.]
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Emittance

� The emittance of a beam is related to the phase-space 
area that it occupies and is therefore related to the 
motion invariants of the constituent ions (see previous 
slide).

� A practical definition of emittance requires a choice 
for the limiting ellipse that defines the phase-space 
area of the beam. Usually this is related to some 
number of standard deviations of the beam 
distribution, but it could also be the overall ellipse that 
includes all ions or some fraction of the ions.  The 
definition is best included in the name e.g. ‘the 95% 
emittance equals…’ or ‘the 1-sigma emittance is…’.

� A further problem of definition is whether the 
emittance is the phase-space area or the phase-space 
area divided by ππππ. Since the literature mixes these two 
definitions, it is better to express the emittance with 
the ππππ apparent, i.e. 30ππππ ×××× 10-6 [m rad] or 30 ×××× 10-6 [π π π π m 
rad] . In this way, the user sees that the ππππ is included, 
but can easily remove it if desired.

� In this paper:

Geometric Geometric emittanceemittance, , ε ε ε ε ε ε ε ε = Phase= Phase--space areaspace area

ππππ will be apparent in numerical values and definitions 
AND we write geometric emittance to distinguish it 
from the normalised emittance that comes later.



JUAS13_04- P.J. Bryant  - Lecture 4
Twiss functions - Slide20

Beam envelopes and Acceptance

� Referring back to equation (14),

� The amplitude of the oscillation of an ion is given 
by,

� If we talk of a beam, then the envelope or beam 
width is given by,

where εεεε is the emittance. This is a useful formula.

� The beam envelope or width is subject to the same 
definitions problems as the emittance.  So, for 
example, the beam envelope calculated with the 1-
sigma emittance will be the 1-sigma envelope, the 
beam envelope calculated with the 95% emittance
will be the 95% beam envelope and so on.

� The area (or area/ππππ) of the largest phase-space 
ellipse that can pass through a lattice is know as 
the acceptance. This is a description of the lattice 
and not the beam.
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Typical output from a lattice 

program

In the horizontal plane, the inner pair of lines define the 
dispersion width and the outer lines the betatron width.  In the 
vertical plane, the dispersion is zero and only the betatron width 
is visible.
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Geometry of the phase-space 

ellipse

Practical emittance definition that defines ellipse:
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Transfer lines

� It was mentioned earlier that transfer 

lines were in some way different to rings.

� The lack of periodicity in a transfer line 

removes the constraint that the Twiss

functions at the exit must equal those at 

the entry and consequently the Twiss

functions are undefined unless the user 

supplies the values at some reference 

point, e.g. at the exit from a ring (where 

the functions are known) which is the 

entry to the transfer line.

� Understanding this difference and the 

implications can take some time, so be 

patient.



JUAS13_04- P.J. Bryant  - Lecture 4
Twiss functions - Slide24

Transfer lines continued

� A single ion in phase space provides insufficient 

information to associate it with one unique set of 

Twiss functions (see Figure).  Without additional 

information, a single point can be equally well 

represesented by any of an infinite number of sets 

of Twiss functions (i.e. families of ellipses).  Once 

an arbitrary choice has been made for the Twiss

functions, a unique emittance can always be found 

that places the single ion on just one ellipse in that 

family.  This arbitrary set of parameters can then 

be tracked through the lattice and will always 

represent the ion’s motion correctly.



JUAS13_04- P.J. Bryant  - Lecture 4
Twiss functions - Slide25

Transfer lines continued

� A collection of ions in phase space will, subject to 

interpretation, define a unique set of Twiss

parameters and an emittance that together define 

the beam.

� One can always impose a statistical solution on the 

phrase ‘subject to interpretation’ by making a 

least squares fit of an ellipse to the ion 

distribution.

Distribution of particles 

typically between 108 to 

1011 in number

2-sigma ellipse fitted 

to distribution

Area of ellipse is defined 

as the 2-sigma emittance

of the beam
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What happens when a transfer 

line meets a ring?

� In transfer lines, the ellipse always “belongs” to the beam, or 

at least the user’s interpretation of what the beam should be.  

If one were to be strict, one should mark the Twiss

parameters in some way to show this, but this is rarely done.

� In a ring, the matched ellipse “belongs” to the lattice because it 

is defined by the periodicity.

� If now a beam ellipse, that is not equal to the matched ellipse,

is injected into a ring and observed at the same position in 

the ring over several turns, it will turn with regular angular 

steps inside the matched ellipse (see Figure).

� In this situation, the beam has a mismatched ellipse and the 

ring is effectively behaving like a long transfer line that has a 

repeating structure.
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Debunching and filamentation

� After a few thousand turns the structure of the mismatched 

ellipse will start to be lost and the beam will fill the matched 

ellipse.  The matched ellipse corresponds to the Twiss

parameters as derived earlier for a ring.  These parameters 

“belong” to the lattice and always impose themselves on any 

beam that circulates in the ring for a large number of turns.

� Two processes spread out the ions in the mismatched ellipse 

to fill the matched ellipse.

� A momentum spread, however small, introduces a 

spread in the revolution frequency that destroys the 

initial distribution.  This is a chromatic or debunching

effect. 

� There is always some non-linearity that correlates tune 

value with amplitude.  This effect, called filamentation, 

distorts the initial ellipse into an “S” shape (see Figure).  

As the tails grow longer they grow narrower.  From the 

mathematician’s viewpoint, phase-space area is always 

conserved (Liouville’s theorem), but for all practical 

purposes filamentation is a loss of phase-space density 

and an increase in emittance.
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Chromaticity

� Chromaticity refers to effects caused by a momentum 
dependence.  The name arises because the momentum 
of an ion is closely analogous to the frequency, and 
hence the colour, of light in classical optics.

� The dispersion function that arises from the 
differential bending in dipoles for ions of different 
momenta is strictly a chromaticity effect, but it is not 
referred to as such.

� The effect arising from the differential focusing with 
momentum causes the betatron phase advance or tune 
in a ring to change with momentum.  This is generally 
known as the chromaticity and can be defined in two 
ways:

The first definition is the more widely used, but the 
second definition is liked for its symmetry.

� The next level of chromaticity is the variation of αααα and 
ββββ with momentum.  This is treated by formulating a so-
called w-vector, which is too advanced to be tackled 
here.
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Summary

� We have parameterised the motion equation and 
obtained what are known as the Twiss and Dispersion 
functions.

� The Twiss functions define ellipses in phase space that 
correspond to the invariant of the motion for single 
ions and the emittance for beams.

� We looked at rings first and found that the Twiss
functions are uniquely defined and ‘belong’ to the 
lattice.

� We found how to calculate the Twiss functions around 
a ring. 

� We then went back and considered transfer lines and 
found that the Twiss functions are not uniquely defined 
and it is necessary for the designer to define values at 
one point (that he can choose).

� Twiss values in transfer lines ‘belong’ to the beam.

� Debunching and filamentation were discussed.

� Finally, we defined chromaticity.


