[R. Alemany]
[CERN BE/OP]
[Engineer In Charge of LHC]
Lectures JUAS (18.01.2013)

The Large Hadron Collider LHC layout

Beam measurements
LHC performance in 2012 pPb run 2013

I. Basic layout of the machine

I. Basic layout of the machine: the arc

LHC arc cells = FoDo lattice* with

~ 90. phase advance per cell in th- good num plane

Beam

MB: main dipole
MQ: main quadrupole
MQT: Trim quadrupole
MQS: Skew trim quadrupole
MO: Lattice octupole (Landau damping)
MSCB: Skew sextupole +
Orbit corrector (lattice chroma+orbit)
MCS: Spool piece sextupole
MCDO: Spool piece octupole +
Decapole
BPM: Beam position monitor

The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between. (Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

I. Basic layout of the machine: Superconducting magnets

- Superconducting cables of $\mathrm{Nb}-\mathrm{Ti}$

LHC ~ 27 km circumf. with 20 km of superconducting magnets operating @8.3 T. An equivalent machine with normal conducting magnets would have a circumference of 100 km and would consume 1000 MW of power \rightarrow we would need a dedicated nuclear power station for such a machine. LHC consumes ~ 10\% nuclear power station
$6 \mu \mathrm{~m} \mathrm{Ni}$-Ti filament

- Superfluid helium

I. Basic layout of the machine: main cryodipoles (two dipoles in one)

- The geometry of the main dipoles (Total of 1232 cryodipoles)

VERTICAL PLANE

The theoretical shape of the beam channels is a straight line, while the natural vessel (10 ${ }^{-6}$ shape has ~ 0.3 mm deflection between two supports at 5.4 m distance

LHC DIPOLE : STANDARD CROSS-SECTION

I. Basic layout of the machine: main dipoles

- The magnetic field of the main dipoles:

 the stability of the geometry of the superconducting coils is essential to the field homogeneity. Mechanical stress during coil assembly, thermal stresses during cool-down and electromagnetic stresses during operation are the the sources of deformations of the coil geometry. Additional sources of field-shape errors are the dimensional tolerances of the magnet components and of the manufacturing and assembling tooling.The relative variations of the integrated field and of the field shape imperfections must not exceed $\sim 10^{-4}$ and their reproducibility better than 10^{-4}. This is possible if the coil geometry is accurate, reproducible and symmetric and if the structural stability of the magnet assembly during powering is guarantee.

I. Basic layout of the machine: main quadrupoles

LHC quadrupole cross section

[^0]
I. Basic layout of the machine: dipole corrector magnets

I. Basic layout of the machine: quadrupole corrector magnets

I. Basic layout of the machine: Dispersion suppression

The dispersion suppression is located at the transition between the arc and the straight section. The schema above applies to all DS except the ones in IR3 and IR7.
Functions:
I. Adapts the LHC reference orbit to the LEP tunnel geometry
2. Cancels the horizontal dispersion generated on one side by the arc dipoles and on the other by the separation/recombination dipoles and the crossing angle bumps
3. Helps in matching the insertion optics to the periodic solution of the arc

It is like an arc cell but with one missing dipole because of lack of space. If only dipoles are used they cannot fully cancel the dispersion, just by a factor 2.5 . Therefore individual powered quadrupoles are required (Q8-QII with I ~ 6000 A).

I. Basic layout of the machine: Dispersion suppression

- Quadrupole types: MQ, MQM, MQTL

Nominal gradient $=200 / 160 \mathrm{~T} / \mathrm{m}$ Inominal $=5.4 / 4.3 \mathrm{kA}$
Lmag=2.4/3.4/4.8 m
$\mathrm{T}=1.9 / 4.5 \mathrm{~K}$
Cold bore $\varnothing=53 / 50 \mathrm{~mm}$ Individual powered apertures

II. The experiments: High luminosity insertions

II. The experiments:
 High luminosity insertions
 ATLAS

CMS

II. The experiments: Low luminosity insertions: ALICE

LHCINJ.B1

LHCb

II. The experiments:
 Low luminosity insertions: LHCb

Centre of the exp cavern

(c) Bam 1. collision optics

III. LHC Operational cycle

M. Solfaroli Evian 2012

III. LHC Operational cycle:

 Squeeze \rightarrow reduce β^{*}

Squeeze the beam size down as much as possible at the collision point to increase the chances of a collision

Relative beam sizes around IP1 (Atlas) in collision

- So even though we squeeze our 100,000 million protons per bunch down to 16 microns ($1 / 5$ the width of a human hair) at the interaction point. We get only around 20 collisions per crossing with nominal beam currents.
- The bunches cross (every 25 ns) so often we end up with around 600 million collisions per second - at the start of a fill with nominal current.
- Most protons miss each other and carry on around the ring. The beams are kept circulating for hours $\rightarrow 10$ hours

III. LHC Operational cycle: Squeeze \rightarrow reduce β^{*}

III. LHC Operational cycle: Squeeze \rightarrow reduce β^{*}

IV. Momentum and betatron cleaning insertions (IR3, IR7)

S. Redaelli, OP WG on Checkout, 08-11-2007

Settings @7TeV and $\beta^{*}=0.55 \mathrm{~m}$ Beam size (σ) $=300 \mu \mathrm{~m}$ (@arc) Beam size $(\sigma)=17 \mu \mathrm{~m}(@ \operatorname{R} 1$, IR5 $)$

V. Beam trajectory

V. Beam trajectory

V. Beam trajectory

YASP DV LHCRING / INJ-TEST-NB / beam 2

E ${ }^{10}$ Mean $=$ | $0.093 /$ RMS $=2.048$

V. Beam profile measurements: Beam I on TDI screen $-\left.\right|^{\text {st }}$ and $2^{\text {nd }}$ turns

V. Beam profile measurements: Emittance measurement - Wire scanner

Profiles \& Fits Key Param Line Graphs Key Param Histograms Measurement Results Time Plots Expert Options

VI. Aperture scan

Explore a range of particle angles (=kick strength) with one corrector dipole, then go to the next one

VII. Dispersion measurement

horizontal dispersion beam 2, 1st turn

VIII. Longitudinal Bunch Profile

LHC Longitudinal Bunch Profile Beam2

IX. Beta measurement

X. Beta measurement

a quadrupol error leads to a shift of the tune:

$$
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta k \beta(s)}{4 \pi} d s \approx \frac{\Delta k l_{\text {quad }} \bar{\beta}}{4 \pi}
$$

Example: measurement of β in a storage ring: tune spectrum

Courtesy of B. Holzer (lectures)

XI. Integer tunes

YAsP DV LHCRING / INJ-TEST-NB_V1@O_[START] / beam 2

Vertical Harmonics

XII. Non-integer tunes

XIII. Fast BCT (Beam Current Transformer)

XIV. Beam captured - mountain range

display

Beam parameters (nominal)

		Injection	Collision	2012
Proton energy	GeV	450	7000	4000
Particles/bunch		1.15×10^{11}		1.6×10^{11}
Num. bunches		2808		1380
Longitudinal emittance (4б)	eVs	1.0	2.5	
Transverse normalized emittance	$\mu \mathrm{mrad}$	3.5	3.75	
Beam current	A	0.582		
Stored energy/beam	MJ	23.3	362	
$\beta^{*}=0.55 \mathrm{~m}$	Peak luminosity related data			
RMS bunch length $\quad \varepsilon=0.5 \mathrm{~nm}$ rad	cm	11.24	7.55	$\begin{aligned} & \beta^{*}=0.6 \mathrm{~m} \\ & \varepsilon \mathrm{n}=2.5 \mu \mathrm{~m} \\ & \mathrm{rad} \end{aligned}$
RMS beam size @IPI \& IP5 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$	$\mu \mathrm{m}$	375.2	16.7	
RMS beam size @IP2 \& IP8 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$	$\mu \mathrm{m}$	279.6	70.9	
Geometric luminosity reduction factor (F)			0.836	
Instantaneous lumi @IPI \& IP5 (IP2Pb-Pb, IP8)	$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$		$\begin{aligned} & 10^{34}\left(10^{27}\right. \\ & \left.10^{32}\right) \end{aligned}$	710^{33}

2012 Performance evolution - in one slide

2012 - Luminosity Delivered

pPb physics during 2013

Timeseries Chart between 2012-09-12 21:41:26.494 and 2012-09-13 00:52:21.044 (LOCAL_TIME)

\square

$6 \longdiv { 1 4 4 }$ Save Restore ?
\# selected: 1, \# bunches: 1

[^1]
[^0]: CERN AC - SQ1-12/97

[^1]: 02:15:02 - Subscription update 475 of LHC.BWS.5R4.B1V1/Status, Fri Jan 18 02:15:02 CET 2013

