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Recap: Dispersion function and orbit


x (s) = xβ (s) + xD (s)

x (s) = C (s) x0 + S (s) x ′0 + D (s)
∆p

p

In matrix form (
x
x ′

)
s

=

(
C S
C ′ S ′

)(
x
x ′

)
0

+
∆p

p

(
D
D′

)
0

We can rewrite the solution in matrix form: x
x ′

∆p/p


s

=

 C S D
C ′ S ′ D′

0 0 1

 x
x ′

∆p/p


0

Inside a magnet, the dispersion trajectory is solution of D ′′ (s) + K (s)D (s) = 1
ρ
:

D (s) = S (s)

ˆ s

0

1
ρ (t)

C (t) dt − C (s)

ˆ s

0

1
ρ (t)

S (t) dt

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions D0 = D ′0 = 0.
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Recap: Dispersion propagation through the machine

I The equation:

D (s) = S (s)

ˆ s

0

1
ρ (t)

C (t) dt − C (s)

ˆ s

0

1
ρ (t)

S (t) dt

shows that the dispersion inside a magnet does not depend on the dispersion
that might have been generated by the upstreams magnets.

I At the exit of a magnet of length Lm the dispersion reaches the value D (Lm),
then it propagates from there on through the rest of the machine, just like
any other particle:(

D
D ′

)
s

=

(
C S
C ′ S ′

)(
D
D ′

)
0
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Recap: FODO cell and its optical functions
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Tune shift correction
Errors in the quadrupole fields induce tune shift:

∆Q =

˛
quads

∆k (s)β (s) ds
4π

Cure: we compensate the quad errors using other (correcting) quadrupoles

I If you use only one correcting quadrupole, with 1/f = ∆k1L

I it changes both Qx and Qy :

∆Qx =
β1x

4πf1
and ∆Qy = − β1y

4πf1
I We need to use two independent correcting quadrupoles:

∆Qx =
β1x

4πf1
+

β2x

4πf2

∆Qy = − β1y

4πf1
− β2y

4πf2

(
∆Qx

∆Qy

)
=

1
4π

(
β1x β2x

β1y β2y

)(
1/f1
1/f2

)
I Solve by inversion:(

1/f1
1/f2

)
=

4π
β1xβ2y − β2xβ1y

(
β2y −β2x

−β1y β1x

)(
∆Qx

∆Qy

)
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Chromaticity correction
Remember what is chromaticity: the quadrupole focusing experienced by particles
changes with energy

I it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional energy dependent focusing. This is given by sextupoles

I The sextupole magnetic field rises quadratically:

Bx = g̃xy

By =
1
2
g̃
(
x2 − y2) ⇒ ∂Bx

∂y
=
∂By

∂x
= g̃x a "gradient"

it provides a linearly increasing quadrupole gradient
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Chromaticity correction (cont.)

Now remember:

I Normalised quadrupole strength is

k =
g

p/e
[m−2]

I Sextupoles are characterised by a normalised sextupole strength k2, which
carries a focusing quadrupolar component k1:

k2 =
g̃

p/e
[m−3]; k̃1 =

g̃ x

p/e
[m−2]
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in
order to increase the focusing strength for particles with larger energy

I A sextupole at a location with dispersion does the trick: x → x + D · ∆p
p

k̃1 =
g̃
(
x + D ∆p

p

)
p/e

[m−2]

I for x = 0 it corresponds to an energy-dependent focal length

1
fsext

= k̃1Lsext =

k̃1︷ ︸︸ ︷
g̃

p/e︸︷︷︸
k2

D
∆p

p
·Lsext = k2D ·

∆p

p
· Lsext

Now the formula for the chromaticity rewrites:

ξ = − 1
4π

˛
k (s)β (s) ds︸ ︷︷ ︸

chromaticity due to quadrupoles

+
1
4π

˛
k2 (s)Dβ (s) ds︸ ︷︷ ︸

chromaticity due to sextupoles
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Design rules for sextupole scheme

I Chromatic aberrations must be corrected in both planes ⇒ you need at least
two sextupoles

I In each plane the sextupole fields contribute with different signs to the
chromaticity ξx and ξy :

ξx = − 1
4π

˛
[k − SFDx + SDDx ]βx (s) ds

ξy =
1
4π

˛
[k − SFDx + SDDx ]βy (s) ds

I To minimise chromatic sextupoles strengths, sextupoles should be located
near quadrupoles where βxDx and βyDx are maximum.

I Important remark: for offset orbits, the sextupoles introduce geometric
aberrations. They can be reduced by adopting a −I transformation scheme:

I put sextupoles in (2n + 1)π phase advance apart in a periodic lattice to
compensate the effect
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Insertions
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Dispersion suppressor
In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often
want to have η = η′ = 0. ⇒ for instance to keep small the beam size at the interaction point.

We can “match” between these two conditions with a “dispersion suppressor”: a non-periodic set
of magnets that transforms FODO η, η′ to zero

Consider two FODO cells with length L and different total bend angles: θ1, θ2: we want to have(
η
η′

)
entrance

=

(
η0
0

)
to

(
η
η′

)
exit

=

(
0
0

)
Note:

I the two cells have the same quadrupole strengths, so that they have also the same β, and
µ (phase advance per cell)

I remember that α = 0 at both ends, and that, if the incoming beam comes from a FODO
cell with the same length L, phase advance µ, and with a total bending angle θ, then the
initial dispersion is

η0 =
4f 2

L

(
1 +

L

8f

)
θ
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Dispersion suppressor (cont.)
Transport for the dispersion: 0

0
1

 =

 C S D
C ′ S ′ D′

0 0 1


suppressor

 η0
0
1


In 2× 2 form reads (

0
0

)
=

(
C S
C ′ S ′

)(
η0
0

)
+

(
D
D′

)
which has solution (

D
D′

)
= −

(
C S
C ′ S ′

)(
η0
0

)
The transfer matrix for the suppressor is

Msuppressor = MFODO 2 ·MFODO 1

For each FODO cell, MFODO = M1/2F ·Mdipole ·MD ·Mdipole ·M1/2F, in thin-lens
approximation:

MFODO j =


1− L2

8f 2 L
(
1 + l

4f

)
L
2

(
1 + L

8f

)
θj

− L
4f 2

(
1− L

4f

)
1− L2

8f 2

(
1− L

8f −
L2

32f 2

)
θj

0 0 1


where j = 1, 2 (1=first cell, 2=second cell)
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Dispersion suppressor (cont.)
If we do the math, we find

D (s) =
L

2

(
1 +

L

8f

)[(
3− L2

4f 2

)
θ1 + θ2

]
D ′ (s) =

(
1− L

8f
− L2

32f 2

)[(
1− L2

4f 2

)
θ1 + θ2

]
From lecture 3, we remember that the phase advance µ for a FODO cell, in terms of the
length L and the focal length f , is ∣∣∣sin µ

2

∣∣∣ =
L

4f

Thus, one can write the solution as a function of the phase advance µ, and of
θ = θ1 + θ2: 

θ1 =

(
1− 1

4 sin2 µ
2

)
θ

θ2 =
1

4 sin2 µ
2

θ
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Dispersion suppressor (summary)
Dispersion suppressor, a non-periodic set of magnets that transforms FODO η, η′ to zero:

One possibility: two FODO cells with length L, phase advance µ, and different total
bend angles: θ1, θ2: 

θ1 =

(
1− 1

4 sin2 µ
2

)
θ

θ2 =
1

4 sin2 µ
2

θ

An interesting solution is for µ = 60◦: in this case

I then θ1 = 0, and θ2 = θ ⇒ we just leave out two dipole magnets in the first FODO
cell insertion

I this is called the “missing-magnet” scheme
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Intermezzo
Often the insertions are larger than few meters...
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The drift space

The most problematic insertion: the drift space !

Let’s see what happens to the Twiss parameters α, β, and γ if we stop focusing
for a while  β

α
γ


s

=

 C 2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′
C ′2 −2S ′C ′ S ′2

 β
α
γ


0

for a drift:

Mdrift =

(
C S
C ′ S ′

)
=

(
1 s
0 1

)
⇒


β (s) = β0 − 2α0s + γ0s

2

α (s) = α0 − γ0s

γ (s) = γ0
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Let’s study the location of the waist: α = 0

I the location of the point of smallest beam size, β?

Beam waist:
α (s) = α0 − γ0s = 0 → s =

α0

γ0
= lwaist

Beam size at that point

γ (l) = γ0

α (l) = 0

}
→ γ (l) =

1 + α2 (l)

β (l)
=

1
β (l)

→ βmin =
1
γ0

This beta, at l = lwaist, is also called “beta star”:

⇒ β? = βmin

It’s here that the interaction point (IP) is located.
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Drift space with L = lwaist : The low β-insertion
We can assume we have a symmetry point at a distance lwaist:

β (s) = β0 − 2α0s + γ0s
2, atα (s) = 0 → β? =

1
γ0

On each side of the symmetry point

we have

β (s) = β? +
s2

β?

⇒ β grows quadratically with s.

A drift space at the interaction point, with length L = lwaist, is called “low-β insertion”:

typical low-β insertion suitable to accommodate a detector
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Phase advance in a low-β insertion

We have:

β (s) = β? +
s2

β?

The phase advance across the straight section is:

∆µ =

ˆ Lwaist

−Lwaist

ds
β? + s2

β?

= 2 arctan
Lwaist

β?

which is close to ∆µ = π for Lwaist � β?.

In other words: the tune will increase by half an integer!
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Achromatic insertions

There exist insertions (arcs) that don’t introduce dispersion: they are called
achromatic arcs

I In principle, dispersion can be suppressed by one focusing quadrupole and one
bending magnet

I With one focusing quad in between two dipoles, one can get achromat
condition: In between two bends, we call it arc section. Outside the arc
section, we can match dispersion to zero. This is called “Double Bend
Achromat” (DBA) structure

I We need quads outside the arc section to match the betatron functions,
tunes, etc.

I Similarly, one can design “Triple Bend Achromat” (TBA), “Quadruple Bend
Achromat” (QBA), and “Multi Bend Achromat” (MBA or nBA) structure

I For FODO cells structure, dispersion suppression section at both ends of the
standard cells (see previous slides)
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The Double Bend Achromat lattice (DBA)
Consider a simple DBA cell with a single quadrupole in the middle (plus external
quadrupoles for matching).

MDBA = MB ·Mdrift ·M1/2F ·M1/2F︸ ︷︷ ︸
MF

·Mdrift ·MB

In thin-lens approximation, the dispersion matching condition:

 Dcenter

0
1

 =

 1 0 0
− 1

2f 1 0
0 0 1

 1 L1 0
0 1 0
0 0 1

 1 L Lθ/2
0 1 θ
0 0 1

 0
0
1


where f is the focal length of the quad, θ and L are the bend angle and the length of the
dipole, and L1 is the distance between the dipole and the centre of the quad.

f =
1
2

(
L1 +

1
2
L

)
; Dcenter =

(
L1 +

1
2
L

)
θ
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DBA optical functions
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Triple Bend Achromat (TBA)
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QBA, OBA, and nBA
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Last steps: 6-D phase space
In the real life the state vector is six-dimensional:(

x x ′ y y ′ z ∆p/p
)T

and the transfer matrix is typically

x
x ′

y
y ′

z
∆p
p


s

=


R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0
0 0 R43 R44 0 0
R51 R52 0 0 1 R56

0 0 0 0 0 1





x
x ′

y
y ′

z
∆p
p


0

in bold the elements that would couple the x − y motion.

Nota bene: this matrix can still represent only linear elements.

I if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. ⇒ we
need computer simulations ! “particle tracking”

I because such elements introduce non-linear motion, which is too difficult to treat
analytically
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Non-linear dynamics
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Particle tracking with dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable
motion of particles. Numerical simulations of particle tracking aims at determining the
“dynamic aperture”.

Dynamic aperture for hadrons

I in the case of protons or heavy ion accelerators, (or synchrotrons, or storage rings),
there is minimal radiation, and hence the dynamics is symplectic

I for long term stability, a tiny dynamical diffusion can lead an initially stable orbit
slowly into an unstable region

I this makes the dynamic aperture problem particularly challenging: One may need to
consider the stability over billions of turns

For the case of electrons

I in bending magnetic fields, the electrons radiate which causes a damping effect.
I this means that one typically only cares about stability over thousands of turns
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Dynamic Aperture and tracking simulations

a beam of four particles in a storage ring
composed by only linear elements

a beam of four particles in a storage ring
where there is a strong sextupole: it’s a
catastrophe!!!
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The end !
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