Introduction to Transverse Beam Dynamics
 Lecture 5: Chromaticity correction / Insertions / Stability

Andrea Latina (CERN)

JUAS 2013

21st January 2013

Recap: Dispersion function and orbit

$$
\left\{\begin{array}{l}
x(s)=x_{\beta}(s)+x_{D}(s) \\
x(s)=C(s) x_{0}+S(s) x_{0}^{\prime}+D(s) \frac{\Delta p}{p}
\end{array}\right.
$$

In matrix form

$$
\binom{x}{x^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{0}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}_{0}
$$

We can rewrite the solution in matrix form:

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Inside a magnet, the dispersion trajectory is solution of $D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho}$:

$$
D(s)=S(s) \int_{0}^{s} \frac{1}{\rho(t)} C(t) \mathrm{d} t-C(s) \int_{0}^{s} \frac{1}{\rho(t)} S(t) \mathrm{d} t
$$

Exercise: show that $D(s)$ is a solution for the equation of motion, with the initial conditions $D_{0}=D_{0}^{\prime}=0$.

Recap: Dispersion propagation through the machine

- The equation:

$$
D(s)=S(s) \int_{0}^{s} \frac{1}{\rho(t)} C(t) \mathrm{d} t-C(s) \int_{0}^{s} \frac{1}{\rho(t)} S(t) \mathrm{d} t
$$

shows that the dispersion inside a magnet does not depend on the dispersion that might have been generated by the upstreams magnets.

- At the exit of a magnet of length L_{m} the dispersion reaches the value $D\left(L_{m}\right)$, then it propagates from there on through the rest of the machine, just like any other particle:

$$
\binom{D}{D^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{D}{D^{\prime}}_{0}
$$

Recap: FODO cell and its optical functions

Tune shift correction

Errors in the quadrupole fields induce tune shift:

$$
\Delta Q=\oint_{\text {quads }} \frac{\Delta k(s) \beta(s) \mathrm{d} s}{4 \pi}
$$

Cure: we compensate the quad errors using other (correcting) quadrupoles

- If you use only one correcting quadrupole, with $1 / f=\Delta k_{1} L$
- it changes both Q_{x} and Q_{y} :

$$
\Delta Q_{x}=\frac{\beta_{1 x}}{4 \pi f_{1}} \quad \text { and } \quad \Delta Q_{y}=-\frac{\beta_{1 y}}{4 \pi f_{1}}
$$

- We need to use two independent correcting quadrupoles:

$$
\begin{aligned}
& \Delta Q_{x}=\frac{\beta_{1 x}}{4 \pi f_{1}}+\frac{\beta_{2 x}}{4 \pi f_{2}} \\
& \Delta Q_{y}=-\frac{\beta_{1 y}}{4 \pi f_{1}}-\frac{\beta_{2 y}}{4 \pi f_{2}}
\end{aligned} \quad\binom{\Delta Q_{x}}{\Delta Q_{y}}=\frac{1}{4 \pi}\left(\begin{array}{ll}
\beta_{1 x} & \beta_{2 x} \\
\beta_{1 y} & \beta_{2 y}
\end{array}\right)\binom{1 / f_{1}}{1 / f_{2}}
$$

- Solve by inversion:

$$
\binom{1 / f_{1}}{1 / f_{2}}=\frac{4 \pi}{\beta_{1 x} \beta_{2 y}-\beta_{2 x} \beta_{1 y}}\left(\begin{array}{cc}
\beta_{2 y} & -\beta_{2 x} \\
-\beta_{1 y} & \beta_{1 x}
\end{array}\right)\binom{\Delta Q_{x}}{\Delta Q_{y}}
$$

Chromaticity correction

Remember what is chromaticity: the quadrupole focusing experienced by particles changes with energy

- it induces tune shift, which can cause beam lifetime reduction due to resonances Cure: we need additional energy dependent focusing. This is given by sextupoles

- The sextupole magnetic field rises quadratically:

$$
\begin{aligned}
& B_{x}=\tilde{g} x y \\
& B_{y}=\frac{1}{2} \tilde{g}\left(x^{2}-y^{2}\right)
\end{aligned} \quad \Rightarrow \frac{\partial B_{x}}{\partial y}=\frac{\partial B_{y}}{\partial x}=\tilde{g} x \quad \text { a "gradient" }
$$

it provides a linearly increasing quadrupole gradient

Chromaticity correction (cont.)

Now remember:

- Normalised quadrupole strength is

$$
k=\frac{g}{p / e}\left[m^{-2}\right]
$$

- Sextupoles are characterised by a normalised sextupole strength k_{2}, which carries a focusing quadrupolar component k_{1} :

$$
k_{2}=\frac{\tilde{g}}{p / e}\left[m^{-3}\right] ; \quad \tilde{k}_{1}=\frac{\tilde{g} x}{p / e}\left[m^{-2}\right]
$$

Cure for chromaticity: we need sextupole magnets installed in the storage ring in order to increase the focusing strength for particles with larger energy

- A sextupole at a location with dispersion does the trick: $x \rightarrow x+D \cdot \frac{\Delta p}{p}$

$$
\tilde{k}_{1}=\frac{\tilde{g}\left(x+D \frac{\Delta p}{p}\right)}{p / e}\left[\mathrm{~m}^{-2}\right]
$$

- for $x=0$ it corresponds to an energy-dependent focal length

$$
\frac{1}{f_{\text {sext }}}=\tilde{k}_{1} L_{\text {sext }}=\overbrace{\underbrace{\frac{\tilde{g}}{p / e}}_{k_{2}} D \frac{\Delta p}{\tilde{k}_{1}}}^{\overbrace{\text { sext }}}=k_{2} D \cdot \frac{\Delta p}{p} \cdot L_{\text {sext }}
$$

Now the formula for the chromaticity rewrites:

$$
\xi=\underbrace{-\frac{1}{4 \pi} \oint k(s) \beta(s) \mathrm{d} s}_{\text {chromaticity due to quadrupoles }}+\underbrace{\frac{1}{4 \pi} \oint k_{2}(s) D \beta(s) \mathrm{d} s}_{\text {chromaticity due to sextupoles }}
$$

Design rules for sextupole scheme

- Chromatic aberrations must be corrected in both planes \Rightarrow you need at least two sextupoles
- In each plane the sextupole fields contribute with different signs to the chromaticity ξ_{x} and ξ_{y} :

$$
\begin{aligned}
\xi_{x} & =-\frac{1}{4 \pi} \oint\left[k-S_{F} D_{x}+S_{D} D_{x}\right] \beta_{x}(s) \mathrm{d} s \\
\xi_{y} & =\frac{1}{4 \pi} \oint\left[k-S_{F} D_{x}+S_{D} D_{x}\right] \beta_{y}(s) \mathrm{d} s
\end{aligned}
$$

- To minimise chromatic sextupoles strengths, sextupoles should be located near quadrupoles where $\beta_{x} D_{x}$ and $\beta_{y} D_{x}$ are maximum.
- Important remark: for offset orbits, the sextupoles introduce geometric aberrations. They can be reduced by adopting a - I transformation scheme:
- put sextupoles in $(2 n+1) \pi$ phase advance apart in a periodic lattice to compensate the effect

Insertions

Dispersion suppressor

In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often want to have $\eta=\eta^{\prime}=0 . \quad \Rightarrow$ for instance to keep small the beam size at the interaction point. We can "match" between these two conditions with a "dispersion suppressor": a non-periodic set of magnets that transforms FODO η, η^{\prime} to zero

Consider two FODO cells with length L and different total bend angles: θ_{1}, θ_{2} : we want to have

$$
\binom{\eta}{\eta^{\prime}}_{\text {entrance }}=\binom{\eta_{0}}{0} \text { to }\binom{\eta}{\eta^{\prime}}_{\text {exit }}=\binom{0}{0}
$$

Note:

- the two cells have the same quadrupole strengths, so that they have also the same β, and μ (phase advance per cell)
- remember that $\alpha=0$ at both ends, and that, if the incoming beam comes from a FODO cell with the same length L, phase advance μ, and with a total bending angle θ, then the initial dispersion is

$$
\eta_{0}=\frac{4 f^{2}}{L}\left(1+\frac{L}{8 f}\right) \theta
$$

Dispersion suppressor (cont.)

Transport for the dispersion:

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)_{\text {suppressor }}\left(\begin{array}{c}
\eta_{0} \\
0 \\
1
\end{array}\right)
$$

In 2×2 form reads

$$
\binom{0}{0}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{\eta_{0}}{0}+\binom{D}{D^{\prime}}
$$

which has solution

$$
\binom{D}{D^{\prime}}=-\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{\eta_{0}}{0}
$$

The transfer matrix for the suppressor is

$$
M_{\text {suppressor }}=M_{\mathrm{FODO}_{2}} \cdot M_{\mathrm{FODO} 1}
$$

For each FODO cell, $M_{\text {FODO }}=M_{1 / 2 \mathrm{~F}} \cdot M_{\text {dipole }} \cdot M_{\mathrm{D}} \cdot M_{\text {dipole }} \cdot M_{1 / 2 \mathrm{~F}}$, in thin-lens approximation:

$$
M_{\text {FODO }^{j}}=\left(\begin{array}{ccc}
1-\frac{L^{2}}{8 f^{2}} & L\left(1+\frac{L}{4 f}\right) & \frac{L}{2}\left(1+\frac{L}{8 f}\right) \theta_{j} \\
-\frac{L}{4 f^{2}}\left(1-\frac{L}{4 f}\right) & 1-\frac{L^{2}}{8 f^{2}} & \left(1-\frac{L}{8 f}-\frac{L^{2}}{32 f^{2}}\right) \theta_{j} \\
0 & 0 & 1
\end{array}\right)
$$

where $j=1,2(1=$ first cell, $2=$ second cell $)$

Dispersion suppressor (cont.)

If we do the math, we find

$$
\left\{\begin{aligned}
D(s) & =\frac{L}{2}\left(1+\frac{L}{8 f}\right)\left[\left(3-\frac{L^{2}}{4 f^{2}}\right) \theta_{1}+\theta_{2}\right] \\
D^{\prime}(s) & =\left(1-\frac{L}{8 f}-\frac{L^{2}}{32 f^{2}}\right)\left[\left(1-\frac{L^{2}}{4 f^{2}}\right) \theta_{1}+\theta_{2}\right]
\end{aligned}\right.
$$

From lecture 3, we remember that the phase advance μ for a FODO cell, in terms of the length L and the focal length f, is

$$
\left|\sin \frac{\mu}{2}\right|=\frac{L}{4 f}
$$

Thus, one can write the solution as a function of the phase advance μ, and of $\theta=\theta_{1}+\theta_{2}$:

$$
\left\{\begin{array}{l}
\theta_{1}=\left(1-\frac{1}{4 \sin ^{2} \frac{\mu}{2}}\right) \theta \\
\theta_{2}=\frac{1}{4 \sin ^{2} \frac{\mu}{2}} \theta
\end{array}\right.
$$

Dispersion suppressor (summary)

Dispersion suppressor, a non-periodic set of magnets that transforms FODO η, η^{\prime} to zero:

One possibility: two FODO cells with length L, phase advance μ, and different total bend angles: θ_{1}, θ_{2} :

$$
\left\{\begin{array}{l}
\theta_{1}=\left(1-\frac{1}{4 \sin ^{2} \frac{\mu}{2}}\right) \theta \\
\theta_{2}=\frac{1}{4 \sin ^{2} \frac{\mu}{2}} \theta
\end{array}\right.
$$

An interesting solution is for $\mu=60^{\circ}$: in this case

- then $\theta_{1}=0$, and $\theta_{2}=\theta \Rightarrow$ we just leave out two dipole magnets in the first FODO cell insertion
- this is called the "missing-magnet" scheme

Intermezzo

Often the insertions are larger than few meters...

The drift space

The most problematic insertion: the drift space!
Let's see what happens to the Twiss parameters α, β, and γ if we stop focusing for a while

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

for a drift:

$$
M_{\mathrm{drift}}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} \\
\alpha(s)=\alpha_{0}-\gamma_{0} s \\
\gamma(s)=\gamma_{0}
\end{array}\right.
$$

Let's study the location of the waist: $\alpha=0$

- the location of the point of smallest beam size, β^{\star}

Beam waist:

$$
\alpha(s)=\alpha_{0}-\gamma_{0} s=0 \quad \rightarrow \quad s=\frac{\alpha_{0}}{\gamma_{0}}=l_{\text {waist }}
$$

Beam size at that point

$$
\left.\begin{array}{l}
\gamma(I)=\gamma_{0} \\
\alpha(I)=0
\end{array}\right\} \quad \rightarrow \gamma(I)=\frac{1+\alpha^{2}(I)}{\beta(I)}=\frac{1}{\beta(I)} \quad \rightarrow \beta_{\min }=\frac{1}{\gamma_{0}}
$$

This beta, at $I=I_{\text {waist }}$, is also called "beta star":

$$
\Rightarrow \beta^{\star}=\beta_{\min }
$$

It's here that the interaction point (IP) is located.

Drift space with $L=I_{\text {waist }}$: The low β-insertion

We can assume we have a symmetry point at a distance $I_{\text {waist }}$:

$$
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}, \text { at } \alpha(s)=0 \quad \rightarrow \beta^{\star}=\frac{1}{\gamma_{0}}
$$

On each side of the symmetry point

we have

$$
\beta(s)=\beta^{\star}+\frac{s^{2}}{\beta^{\star}}
$$

$\Rightarrow \beta$ grows quadratically with s.
A drift space at the interaction point, with length $L=I_{\text {waist }}$, is called "low- β insertion":

Phase advance in a low- β insertion

We have:

$$
\beta(s)=\beta^{\star}+\frac{s^{2}}{\beta^{\star}}
$$

The phase advance across the straight section is:

$$
\Delta \mu=\int_{-L_{\text {waist }}}^{L_{\text {waist }}} \frac{\mathrm{ds}}{\beta^{\star}+\frac{s^{2}}{\beta^{\star}}}=2 \arctan \frac{L_{\text {waist }}}{\beta^{\star}}
$$

which is close to $\Delta \mu=\pi$ for $L_{\text {waist }} \gg \beta^{\star}$.

In other words: the tune will increase by half an integer!

Achromatic insertions

There exist insertions (arcs) that don't introduce dispersion: they are called achromatic arcs

- In principle, dispersion can be suppressed by one focusing quadrupole and one bending magnet
- With one focusing quad in between two dipoles, one can get achromat condition: In between two bends, we call it arc section. Outside the arc section, we can match dispersion to zero. This is called "Double Bend Achromat" (DBA) structure
- We need quads outside the arc section to match the betatron functions, tunes, etc.
- Similarly, one can design "Triple Bend Achromat" (TBA), "Quadruple Bend Achromat" (QBA), and "Multi Bend Achromat" (MBA or nBA) structure
- For FODO cells structure, dispersion suppression section at both ends of the standard cells (see previous slides)

The Double Bend Achromat lattice (DBA)

Consider a simple DBA cell with a single quadrupole in the middle (plus external quadrupoles for matching).

In thin-lens approximation, the dispersion matching condition:

$$
\left(\begin{array}{c}
D_{\text {center }} \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2 f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & L_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & L & L \theta / 2 \\
0 & 1 & \theta \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

where f is the focal length of the quad, θ and L are the bend angle and the length of the dipole, and L_{1} is the distance between the dipole and the centre of the quad.

$$
f=\frac{1}{2}\left(L_{1}+\frac{1}{2} L\right) ; \quad D_{\text {center }}=\left(L_{1}+\frac{1}{2} L\right) \theta
$$

DBA optical functions

Triple Bend Achromat (TBA)

Combined function dipoles

QBA, OBA, and nBA

Last steps: 6-D phase space

In the real life the state vector is six-dimensional:

$$
\left(\begin{array}{llllll}
x & x^{\prime} & y & y^{\prime} & z & \Delta p / p
\end{array}\right)^{T}
$$

and the transfer matrix is typically

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
z \\
\frac{\Delta p}{p}
\end{array}\right)_{s}=\left(\begin{array}{cccccc}
R_{11} & R_{12} & 0 & 0 & 0 & R_{16} \\
R_{21} & R_{22} & 0 & 0 & 0 & R_{26} \\
0 & 0 & R_{33} & R_{34} & 0 & 0 \\
0 & 0 & R_{43} & R_{44} & 0 & 0 \\
R_{51} & R_{52} & 0 & 0 & 1 & R_{56} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
z \\
\frac{\Delta p}{p}
\end{array}\right)_{0}
$$

in bold the elements that would couple the $x-y$ motion.
Nota bene: this matrix can still represent only linear elements.

- if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. \Rightarrow we need computer simulations! "particle tracking"
- because such elements introduce non-linear motion, which is too difficult to treat analytically

Non-linear dynamics

- $\mathrm{Q}=0.2516$
- linear motion near center (circles)
- More and more square
- Non-linear tuneshift
- Islands
- Limit of stability
- Dynamic Aperture
- Crucial if strong quads and chromaticity correction in s.r. light sources
$\binom{x_{n+1}}{x_{n+1}^{\prime}}=\left(\begin{array}{cc}\cos (2 \pi Q) & \sin (2 \pi Q) \\ -\sin (2 \pi Q) & \cos (2 \pi Q)\end{array}\right)\binom{x_{n}}{x_{n}^{\prime}+x_{n}^{2}}$
- many non-linearities in LHC due to s.c. magnet and finite manufacturing tolerances

Particle tracking with dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable motion of particles. Numerical simulations of particle tracking aims at determining the "dynamic aperture".

Dynamic aperture for hadrons

- in the case of protons or heavy ion accelerators, (or synchrotrons, or storage rings), there is minimal radiation, and hence the dynamics is symplectic
- for long term stability, a tiny dynamical diffusion can lead an initially stable orbit slowly into an unstable region
- this makes the dynamic aperture problem particularly challenging: One may need to consider the stability over billions of turns

For the case of electrons

- in bending magnetic fields, the electrons radiate which causes a damping effect.
- this means that one typically only cares about stability over thousands of turns

Dynamic Aperture and tracking simulations

\boldsymbol{x}
a beam of four particles in a storage ring composed by only linear elements

a beam of four particles in a storage ring where there is a strong sextupole: it's a catastrophe!!!

The end!

I'd like to thank a lot:

you students,

Javier Resta-Lopez, Reyes Alemany, Guido Sterbini, and Bernard Holzer (my predecessor at JUAS)

