
Transverse Beam Dynamics

JUAS tutorial 4 (solutions)

18 January 2013

1 Exercise: chromaticity in a FODO cell

Consider a ring made of N identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are
both of length lq, but their strengths may differ.

1.1 Calculate the maximum and the minimum betatron function in the FODO cell. (Use

the thin-lens approximations)

Answer: First we calculate the transfer matrix for a FODO cell (see figure). We start from the center of the focusing
quadrupole where the betatron function is maximum:

This exercise considers a general case where fF is not necessarily equal to fD. Using the thin lens approximation for
the FODO cell with drifts of length L we get the following matrix:

Mcell =

(

1 0
− 1

2fF
1

)(

1 L
0 1

)(

1 0
1

fD
1

)(

1 L
0 1

)(

1 0
− 1

2fF
1

)

=

(

1− L( 1

fF
− 1

fD
+ L

2fF fD
) 2L+ L2

fD
1

fD
− 1

fF
(1− L

2fF
+ L

fD
− L2

4fF fD
) 1− L( 1

fF
− 1

fD
+ L

2fF fD
)

)

(1)

REMEMBER that in terms of betatron functions and phase advance the matrix of a FODO cell is given by:

Mcell =

(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

(2)

Since β is maximum at the center of the focusing quadrupole: α = −β′/2 = 0, and we can also write:

Mcell =

(

cosµ β sinµ

− sinµ
β

cosµ

)

Then, doing Eq. (1) equal to Eq. (2) we obtain:
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cosµ =
1

2
tr(Mcell) = 1 +

L

fD
− L

fF
− L2

2fDfF
= 1− 2 sin2

µ

2

or

2 sin2
µ

2
=

L

fF
− L

fD
+

L2

2fDfF
(3)

Here we have applied the following trigonometric relation: cosµ = cos(µ
2
+ µ

2
) = cos2 µ

2
− sin2 µ

2
= 1− 2 sin2 µ

2
.

The maximum for the betatron function βmax will occur at the focusing quadrupole. Since Eq. (1) is for a periodic
cell starting at the center of the focusing quadrupole, the m12 component of the matrix gives us

βmax sinµ = 2L+
L2

fD

Rearranging things:

βmax =
2L+ L2

fD

sinµ

On the other hand, the minimum for the betatron function will occur at the defocusing quadrupole position. Therefore,
interchanging fF with −fD for a FODO cell gives:

βmin =
2L− L2

fF

sinµ

1.2 Calculate the natural chromaticities for this machine.

Answer:

Let us remember the definition of natural chromaticity. The so-called “natural” chromaticity is the chromaticity that
derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only from quadrupoles. The
chromaticity is defined in the following way:

ξ =
∆Q

∆p/p0
(4)

where ∆Q is the tune shift due to the chromaticity effects and ∆p/p0 is the momentum offset of the beam or the
particle with respect to the nominal momentum p0.

The natural chromaticity is defined as (remember from the lecture):

ξN = − 1

4π

˛

β(s)k(s)ds (5)

Sometimes, especially for small accelerators, the chromaticity is normalized to the machine tune Q and defined also
as:

ξ =
∆Q/Q

∆p/p0
(6)

ξN = − 1

4πQ

˛

β(s)k(s)ds (7)

For this exercise, either you decide to use Eq. (5) or Eq. (7) it is fine! From now on let me use Eq. (7):
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ξN = − 1

4πQ

˛

β(s)k(s)ds

= − 1

2Ncellµ
×Ncell

ˆ

cell

β(s)k(s)ds

= − 1

2µ

∑

i∈{quads}

βi(klq)i

Here we have used Q = (Ncellµ)/(2π) and the following approximation valid for thin lens:

ˆ

cell

β(s)k(s)ds ≃
∑

i∈{quads}

βi(klq)i

where we sum over each quadrupole i in the cell. In the case of the FODO cell we have two half focusing quadrupoles
and one defocusing quadrupole. Taking into account that (klq)i = 1/fi, we have:

ξN ≃ − 1

2µ

∑

i∈{quads}

βi(klq)i

= − 1

2µ

[

βmax

(

1

2fF

)

+ βmin

(

− 1

fD

)

+ βmax

(

1

2fF

)]

= − 1

2µ

[

βmax

(

1

fF

)

+ βmin

(

− 1

fD

)]

= − 1

2µ sinµ

[(

2L+
L2

fD

)

1

fF
−
(

2L− L2

fF

)

1

fD

]

= − L

µ sinµ

[

1

fF
− 1

fD
+

L

fF fD

]

1.3 Show that for short quadrupoles, if fF ≃ fD,

ξN ≃ −2 tan µ
2

µ

Answer: If fF ≃ fD, we have

ξN ≃ − 1

µ sinµ

L2

fF fD

= − 1

2µ sin µ
2
cos µ

2

4 sin2
µ

2

where we do sinµ = sin(µ
2
+ µ

2
) = 2 sin µ

2
cos µ

2

and considering Eq. (3): 4 sin2 µ
2
= L2

fF fD
we finally obtain

ξN ≃ −2 tan µ
2

µ

2 Exercise: measurement of Twiss parameters

One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called
quadrupole scan. One can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner
(WBS), located at a distance L downstream a focusing quadrupole, as a function of the normalized gradient in this
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quadrupole. This allows to compute the emittance of the beam, as well as the β- and the α- functions at the entrance of
the quadrupole.

Let’s consider a quadrupole Q with a length of l = 20 cm. This quadrupole is installed in an electron transport line
where the particle momentum is 300 MeV/c. At a distance L = 10 m from the quadrupole the transverse beam size is
measured with a WBS, for various values of the current IQ. The maximum value of the quadrupole gradient G is obtained
for a current of 100 A, and is G = 1 T/m. G is proportional to the current.

Advice: use thin-lens approximation.

2.1 How does the normalized focusing strength K vary with IQ?

Answer:

If G proportional to IQ: G = C · IQ where C is the proportionality coefficient. We know that G = 1 T/m when
IQ = 100 A, therefore C = 0.01 T/(A·m).

2.2 Let Σ1 and Σ2 be the 2 × 2 matrices with the twiss parameters, Σ =

(

β −α
−α γ

)

, at

the quadrupole entrance and at the wire scanner, respectively.

It is worth explaining that the matrix Σ multiplied by the emittance ǫ is the covariance matrix of the beam distribution:

Σǫ =

(

βǫ −αǫ
−αǫ γǫ

)

=

(

〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)

The transverse beam size of the beam is given by σx =
√

〈x2〉 =
√
βxǫx (horizontal beam size), and σy =

√

〈y2〉 =
√

βyǫy
(vertical beam size). Here we will simply use the following notation: σ1 =

√
β1ǫ for the beam size (horizontal or vertical)

at position 1, and σ2 =
√
β2ǫ for the beam size (horizontal or vertical) at position 2.

• Give the expression Σ2 as function of α1, β1, and γ1

Answer:

The matrix Σ propagates from position 1 to position 2 as follows:

Σ2 = MΣ1M
T

where M is the transfer matrix of the system and MT its transpose. We have:

Σ2 =

(

β2 −α2

−α2 γ2

)

=

(

1−KlL L
−Kl 1

)(

β1 −α1

−α1 γ1

)(

1−KlL −Kl
L 1

)

=

(

β1L
2(Kl)2 + 2L(α1L− β1)Kl+ β1 − 2α1L+ γ1L

2 β1L(Kl)2 + (2α1L− β1)Kl+ γ1L− α1

β1L(Kl)2 + (2α1L− β1)Kl + γ1L− α1 β1(Kl)2 + 2α1Kl+ γ1

) (8)
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• Show that β2 can be written in the form: β2 = A2 (Kl)2 +A1 (Kl) +A0

• Express A0, A1, and A2 as a function of L, α1, β1, and γ1

Answer:

We can see from Eq. (8) that:

β2 = β1L
2(Kl)2 + 2L(α1L− β1)Kl+ β1 − 2α1L+ γ1L

2

and therefore:

A2 = β1L
2

A1 = 2L(α1L− β1)

A0 = β1 − 2α1L+ γ1L
2

Hint for the next questions: show that if you express β2 as

β2 = B0 +B1 (Kl −B2)
2

you have:
B0 = A0 −A2

1
/4A2

2
= L2/β1

B1 = A2 = L2β1

B2 = −A1/A2 = 1/L− α1/β1

2.3 The transverse beam r.m.s. beam size is σ =
√
ǫβ, where ǫ is the transverse emittance.

Express σ2 as a function of Kl and find its minimum, (Kl)
min

. Give the expression for
dσ2

d(Kl)
.

As we have seen in the previous questions β2 depends quadratically on Kl: β2 = B0 +B1 (Kl−B2)
2. Since ǫ is constant,

if we want to minimize σ2, we have to minimize β2:

dβ2

d(Kl)
= 0 −→ 2B1(Kl−B2) = 0 −→ (Kl)min = B2 =

1

L
− α1

β1

(9)

We can write:

σ2

2 = β2ǫ =
L2

β1

(

1 + β2

1(Kl− (Kl)min)
2
)

ǫ

Why is this useful? By means of a quadrupole scan (changing the strength of the quadrupole) we look for the strength
Kl which minimizes the value σ2

2
. We fit a parabola to the measurements σ2

2
vs. Kl, and select then σ2

2
((Kl)min). The

minimum beam size is given by:

Min(σ2) = L

√

ǫ

β1

=
√

B0ǫ (10)

The derivative of σ2 is: dσ2

d(Kl) = L2β1

σ2

(Kl − (kl)min)ǫ

2.4 How does σ2 vary with Kl when |Kl − (Kl)
min

| ≫ 1/β1 ?

Under this condition:

σ2

2
=

L2

β1

(

1 + β2

1
(Kl − (Kl)min)

2
)

ǫ −→ σ2 ≃ L
√

β1ǫ(Kl− (Kl)min)

For |Kl− (Kl)min| ≫ 1/β1, σ2 depends linearly on Kl, with slope dσ2

d(Kl) = L
√
β1ǫ = Lσ1.
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2.5 Deduce the values of α1, β1, and γ1 from the measurement σ2, as a function of the
quadrupole current IQ.

We know that

Kl =
G · l
p/e

=
C · l · IQ

p/e
=

0.01[T/(Am)]·0.2[m]

(0.3[GeV]/0.3)[Tm]
· IQ = 2× 10−3 · IQ

If we measure σ2 as a function of the quadrupole current IQ, from the minimum value we can get β1 (Eq. (10)), and
since from the measurement we obtain (Kl)min = 2× 10−3(IQ)min, using Eq. (9) we can calculate α1. Once we know β1

and α1, it is then straightforward to calculate γ1 = (1 + α2

1)/β1.
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