Transverse Beam Dynamics

JUAS tutorial 4

18 January 2013

1 Exercise: chromaticity in a FODO cell

Consider a ring made of N identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both of length l_q , but their strengths may differ.

- 1.1 Calculate the maximum and the minimum betatron function in the FODO cell as a function of the length l_q , the focal lengths f_F , f_D and the phase advance μ . (Use the thin lens approximations)
- 1.2 Calculate the natural chromaticities for this machine.
- **1.3** Show that for short quadrupoles, if $f_F \simeq f_D$,

$$\xi_N \simeq -\frac{2\tan\frac{\mu}{2}}{\mu}$$

2 Exercise: measurement of Twiss parameters

One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole scan. One can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner (WBS), located at a distance L downstream a focusing quadrupole, as a function of the normalized gradient in this quadrupole. This allows to compute the emittance of the beam, as well as the β - and the α - functions at the entrance of the quadrupole.

Let's consider a quadrupole Q with a length of l = 20 cm. This quadrupole is installed in an electron transport line where the particle momentum is 300 MeV/c. At a distance L = 10 m from the quadrupole the transverse beam size is measured with a WBS, for various values of the current I_Q . The maximum value of the quadrupole gradient G is obtained for a current of 100 A, and is G = 1 T/m. G is proportional to the current.

Advice: use thin-lens approximation.

2.1 How does the normalized focusing strength K vary with I_Q ?

2.2 Let Σ_1 and Σ_2 be the 2×2 matrices with the twiss parameters, $\Sigma = \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$, at the quadrupole entrance and at the wire scanner, respectively.

- Give the expression Σ_2 as function of α_1 , β_1 , and γ_1
- Show that β_2 can be written in the form: $\beta_2 = A_2 (Kl)^2 + A_1 (Kl) + A_0$
- Express A_0 , A_1 , and A_2 as a function of L, α_1,β_1 , and γ_1

Hint for the next questions: show that if you express β_2 as

$$\beta_2 = B_0 + B_1 \left(Kl - B_2 \right)^2$$

you have:

$$\begin{split} B_0 &= A_0 - A_1^2/4A_2^2 = L^2/\beta_1 \\ B_1 &= A_2 = L^2\beta_1 \\ B_2 &= -A_1/A_2 = 1/L - \alpha_1/\beta_1 \end{split}$$

- 2.3 The transverse beam r.m.s. beam size is $\sigma = \sqrt{\epsilon \beta}$, where ϵ is the transverse emittance. Express σ_2 as a function of Kl and find its minimum, $(Kl)_{\min}$. Give the expression for $\frac{d\sigma_2}{d(Kl)}$.
- 2.4 How does σ_2 vary with Kl when $|Kl (Kl)_{\min}| \gg 1/\beta_1$?
- 2.5 Deduce the values of α_1, β_1 , and γ_1 from the measurement σ_2 , as a function of the quadrupole current I_Q .