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Scope of the lectures 

Overview of electro-magnetic technology as used in particle 
accelerators considering normal-conducting, iron-dominated 
electro-magnets (generally restricted to direct current situations) 

Main goal is to: 
• create a fundmental understanding in accelerator magnet technology  
• provide a guide book with practical instructions how to start with the design of 

a standard accelerator magnet 
• focus on applied and practical design aspects using ‘real’ examples 
• introduce finite element codes for practical magnet design 

Not covered: 
– permanent magnet technology 
– super-conducting technology 
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Program (1) 
Session 1  (14:00 – 15:00) 

Lecture 1 – Introduction & Basic principles   (60’) 
A bit of history… 
Why do we need magnets? 
Basic principles and concepts 
Magnet types 

Session 2  (15:00 – 16:00) 
Lecture 2 - Analytical design     (60’) 

What do we need to know before starting? 
Yoke design 
Coil dimensioning 
Cooling layout 
Magnet manufacturing 

Coffee break  (16:00 – 16:15)       
Session 3 (16:15 – 17:15) 

Lecture 3 – Applied numerical design   (60’) 
Creation of a basic 2D finite-element model 
Interpretation of results 
Outlook into 3D design 
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Program (2) 

Session 4  Wednesday, 20.2. (15:00 – 17:15) 
Case study (part 1)     (120’) 

Introduction 
Students are invited to design and specify a ‚real‘ magnet 
Analytical magnet design on paper 

     
Session 5 Thursday, 21.2. (9:00 – 12:15) 

Case study (part 2)     (180’) 
Computer work 
Numerical magnet design 
 

Session 6  Friday, 22.2. (9:00 – 12:00) 
Practical works @ CERN    ( 2 x 90’) 

Manufacturing technologies, materials, 
QA tests and magnetic measurements 
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Lecture 1: Basic principles 

• A bit of history… 
• Why do we need magnets? 
• Magnet technologies 
• Basic principles and concepts 
• Magnet types and applications 
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A bit of history... 
1820: Hans Christian Oersted (1777-1851) 

finds that electric current affects a 
compass needle 

1820: Andre Marie Ampere (1775-1836) in 
Paris finds that wires carrying current 
produce forces on each other 

1820: Michael Faraday (1791-1867) at 
Royal Society in London develops the 
idea of electric fields and studies the 
effect of currents on magnets and 
magnets inducing electric currents 

1825: British electrician, William Sturgeon 
(1783-1850) invented the first 
electromagnet 

1860: James Clerk Maxwell (1831-1879), a 
Scottish physicist and mathematician, 
puts the theory of electromagnetism on 
mathematical basis 

 Joseph Henry 

William Sturgeon 

History – Introduction – Basic principles – Magnet types – Summary 
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Magnetic units 
IEEE defines the following units: 
• Magnetic field: 

– H (vector) [A/m] 
– the magnetizing force produced by electric currents 

• Electromotive force: 
– e.m.f. or U [V or (kg m2)/(A s3)] 
– here: voltage generated by a time varying magnetic field 

• Magnetic flux density or magnetic induction:  
– B (vector) [T or kg/(A s2)]  
– the density of magnetic flux driven through a medium by the magnetic field 
– Note: induction is frequently referred to as "Magnetic Field“ 
–  H, B and µ relates by: B = µH 

• Permeability: 
– µ = µ0 µr 

– permeability of free space µ0 = 4 π 10-7 [V s/A m] 
– relative permeability µr (dimensionless): µair = 1; µiron > 1000 (not saturated) 

• Magnetic flux: 
– φ [Wb or (kg m2)/(A s2)] 
– surface integral of the flux density component perpendicular trough a surface 

 
 
 

 

History – Introduction – Basic principles – Magnet types – Summary 
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Maxwell‘s equations 
 

 
 

 

In 1873, Maxwell published "Treatise on Electricity and Magnetism" in which he 
summarized the discoveries of Coulomb, Oersted, Ampere, Faraday, et. al. in four 
mathematical equations: 
Gauss‘ law for electricity: 

 
 

Gauss‘ law of flux conservation: 
 

 
Faraday‘s law of induction: 

 
 

Ampere‘s circuital law: 

0ε
ρ

=⋅∇ E


0ε
qAdE

V

=⋅∫
∂



t
BE
∂
∂

−=×∇



∫∫ ⋅−=

Φ
−=⋅

∂ AA

AdB
dt
d

dt
dsdE



0=⋅∇ B


0=⋅∫
∂V

AdB


t
EJB
∂
∂

+=×∇



000 εµµ ∫∫∫ ⋅+⋅=⋅

∂ AAA

AdE
dt
dAdJsdB


000 εµµ

History – Introduction – Basic principles – Magnet types – Summary 
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Magnets everywhere… 

 
 

History – Introduction – Basic principles – Magnet types – Summary 
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Why do we need magnets? 
• Interaction with the beam 

– guide the beam to keep it on the orbit 

– focus and shape the beam 

• Lorentz‘s force: 
– for relativistic particles  this effect is equivalent if   

– if B = 1 T then E = 3∙108 V/m 
 
 
 

)( BvEeF


×+=
BcE


=

History – Introduction – Basic principles – Magnet types – Summary 
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Magnet technologies 

 
 
 

Magnets 

Electro-magnets 

Superconducting 

Coil dominated 
B < 9 T 

Iron dominated 
B < 2 T 

Normal-conducting 

Coil dominated 
B < 1 T 

Iron dominated 
B < 2 T 

Permanent magnets  

History – Introduction – Basic principles – Magnet types – Summary 
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How does a magnet work? 

• Permanent magnets provide only constant magnetic fields 
• Electro-magnets can provide adjustable magnetic fields 

 Maxwell & Ampere: 
 
 

 
„An electrical current is surrounded by 

a magnetic field“ 

t
DJH
∂
∂

+=×∇




History – Introduction – Basic principles – Magnet types – Summary 



N
or

m
al

-c
on

du
ct

in
g 

ac
ce

le
ra

to
r m

ag
ne

ts
 

©
 T

ho
m

as
 Z

ic
kl

er
, C

ER
N

 
JU

AS
 2

01
3 

Ar
ch

am
ps

, 1
8.

 F
eb

ru
ar

y 
20

13
 

Magnetic circuit 

Flux lines represent the magnetic field 
Coil colors indicate the current direction 

History – Introduction – Basic principles – Magnet types – Summary 
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Magnetic circuit 

Coils hold the electrical current 
Iron holds the magnetic flux 

History – Introduction – Basic principles – Magnet types – Summary 
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Excitation current in a dipole 

Ampere’s law        and    with 

 

leads to          

 

assuming, that B is constant along the path 

 

If the iron is not saturated: 

 

then:             

 
 
 

 
 

ironair

h
µ
λ

µ
>>

λ

h

0
)( 2µ

BhNI poleper ≈

∫ =⋅ NIldH


HB


µ= rµµµ 0=

∫ ∫ ∫ +=⋅+⋅=⋅=
gap yoke ironairironair

BBhldBldBldBNI
µ
λ

µµµµ










History – Introduction – Basic principles – Magnet types – Summary 
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Reluctance and efficiency 

Similar to Ohm’s law, one can define the ‘resistance’ of a magnetic 
circuit, called ‘reluctance’, as:     

• σ: conductivity [S/m] 
• NI: magneto-motive force [A] 
• Φ:  magnetic flux [Wb] 
• lM:  flux path length in iron [m] 
• AM: iron cross section perpendicular to flux [m2] 

 
 
 
 
 
 

 
• Increase of B above 1.5 T  in iron requires non-proportional increase of H 
• Iron saturation  (small µiron) leads to inefficiencies 

0µµrM

M
M A

lNIR =
Φ

=
σE

E
E A

l
I

UR ==

History – Introduction – Basic principles – Magnet types – Summary 
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Magnetic flux 

Flux in the yoke  includes the gap flux and stray flux 
 
 
Total flux in the return yoke:  
 
 
 
 
 
 

 
Keep yoke reluctance small by providing sufficient  

iron cross-section!   
 

 

∫ +≈⋅=Φ
A

maggap lhwBdAB )2( w

h

h

History – Introduction – Basic principles – Magnet types – Summary 
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Permeability 

Ferro-magnetic materials: high permeability 
(µr >>1), but not constant  

Anisotropy in sheet material can 
be partly cured by final annealing 

Data source: Thyssen/Germany 

History – Introduction – Basic principles – Magnet types – Summary 



N
or

m
al

-c
on

du
ct

in
g 

ac
ce

le
ra

to
r m

ag
ne

ts
 

©
 T

ho
m

as
 Z

ic
kl

er
, C

ER
N

 
JU

AS
 2

01
3 

Ar
ch

am
ps

, 1
8.

 F
eb

ru
ar

y 
20

13
 

 
 
 
          

Steel hysteresis 

Flux density B(H) as a function of the field strength is different,  
when increasing and decreasing excitation 

Remanent field (Retentivity): 
H = 0  B = Br > 0 

Coercivity or coercive force: 
B = 0   H = Hc < 0 
 

History – Introduction – Basic principles – Magnet types – Summary 
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In a continuous ferro-magnetic core (transformer) the residual field is 
determined by the remanent field Br 

In a magnet core (gap), the residual field is determined by the 
coercivity Hc  

Assuming the coil current I=0: 
 
 
 
          

Residual field in a magnet 

0=⋅+⋅=⋅ ∫∫∫ dlHdlHdlH
yoke

c

gap

gap

g
lHB Cresidual 0µ−=

Demagnetization cycle! 

History – Introduction – Basic principles – Magnet types – Summary 
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Stored energy & Inductance 
Stored energy ES [J, joules] in a magnet depends on (non-uniform) field 

distribution in the gap, coils, and iron yoke: 
 

    and in case μr is linear: 
 

 
– difficult to calculate analytically 
– usually done by numerical computations  
– most of the energy is stored in the air gap 

 
Inductance L [H] of a magnet is given by: 
    

 
– total voltage on a pulsed magnet: 

 
– low inductance allows fast changes of magnetic field 
– inductance depends on the magnetization in the iron   

      

∫ ⋅⋅=
V

S dvBHE
2
1

2

2
I
EL S=

dt
dI

I
ERI

dt
dILRIV S

tot 2

2
+=+=

∫ ∫ ⋅⋅=
V

b

f
S dvdBHE

History – Introduction – Basic principles – Magnet types – Summary 
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Eddy currents 
Faraday’s law: varying magnetic field induces an e.m.f. (voltage) 

• Circulating (eddy) currents are generated in electrical conducting materials  
– creating a magnetic field opposing the original change in magnetic flux (Lenz’s law) 
– opposing to the penetration of the magnetic field (skin effect) 
– producing losses (Joule heating)  
– causing  delays to reach stable field value 
– damping high order modes (ripples) 

 
         

• δ: skin depth [m] 

• Magnetic circuits are made of insulated laminations to reduce eddy currents,    
– decrease lamination thickness (d < δ/2) 
– increase resistivity  
– decrease permeability 
– decrease frequency (∂Φ/∂t ) 

 
 

t
U

∂
Φ∂

−=

δ/
0)( x

y eHzH −⋅= σµµπ
δ

⋅⋅⋅⋅
=

fr0

1

History – Introduction – Basic principles – Magnet types – Summary 
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Losses 

Losses in the coils: 
Ohmic power loss PΩ per length unit [W/m] in a coil conductor 

 
 

• ρ:  resistivity [Ωm] (for copper: 1.86 ∙ 10-8 Ωm @ 40°C) 
• acond : conductor cross-section [m2] 

Losses in the iron yoke: 
Hysteresis losses: Power loss PH per mass unit [W/kg] up to 1.5 T using Steinmetz’s 

law 
 
• η: material depending coefficient: 0.01 < η < 0.1; η ≈ 0.02 for silicon steel 
• x: Steinmetz exponent: for iron x = 1.6 
• f: operation frequency [Hz] 

Eddy current losses: Power loss PE per volume unit [W/m3] if δ >> dlam 

 
 

• dlam: lamination thickness [m] 

 
 

2I
al

P

cond

ρ
=Ω

xH Bf
m
P

⋅⋅=η

ρ
π

6

2222 Bfd
V
P lamE =

History – Introduction – Basic principles – Magnet types – Summary 
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B/B0

distance in beam direction

Iron length

Magnetic length

Magnetic length 
Coming from ∞, B increases towards 

the magnet center (stray flux) 
 

 

Magnetic length:  
 

 
‘Magnetic’ length > iron length 
 
Approximation for a dipole:    

  

Geometry specific constant k gets smaller in case of:  
• pole length < gap height 
• saturation 
• precise determination only by  

measurements or numerical calculations 

hkll ironmag 2+=

0

)(

B

dzzB
lmag

∫
∞

∞−

⋅
=

History – Introduction – Basic principles – Magnet types – Summary 
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Dipoles 

• Purpose: bend or steer the particle beam 
 
 
 
 
 
 
 

• Equation for normal (non-skew) ideal (infinite) poles: y=  ± r   
(r = half gap height) 

• Magnetic flux density: Bx = 0; By= b1 = const. 
• Applications: synchrotrons, transfer lines, spectrometry, beam scanning 

x-axis

By

N

S

History – Introduction – Basic principles – Magnet types – Summary 
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O-Shape 
 
 
 
 
 
 
 
 
 
 

Dipole types 

C-Shape 
 
 
 
 
 
 
 
 
 

H-Shape 
 
 
 
 
 
 
 
 
 

History – Introduction – Basic principles – Magnet types – Summary 
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Quadrupoles 

• Purpose: focusing the beam (horizontally focused beam is vertically 
defocused) 
 

 
 
 
 

 
 
 
 

• Equation for normal (non-skew) ideal (infinite) poles: 2xy= ± r2   
(r = aperture radius) 

• Magnetic flux density: Bx= b2y; By= b2x 

x-axis

By

S N

SN

History – Introduction – Basic principles – Magnet types – Summary 
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Quadrupole types 

Standard quadrupole Standard quadrupole Collins or Figure-of-Eight 

History – Introduction – Basic principles – Magnet types – Summary 
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Sextupoles 

• Purpose: correct chromatic aberrations of ‘off-momentum’ particles 
 
 
 
 
 
 
 
 
 

• Equation for normal (non-skew) ideal (infinite) poles: 3x2y - y3 = ± r3   
(r = aperture radius) 

• Magnetic flux density: Bx= b3xy; By= b3(x2- y2)/3 

x-axis

By

S

N

S

NN

S

History – Introduction – Basic principles – Magnet types – Summary 
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• Purpose: ‘Landau’ damping  
 
 
 
 
 
 

 
 

 
 

 
• Equation for normal (non-skew) ideal poles: 4(x3y – xy3) = ± r4   

(r = aperture radius) 
• Magnetic flux density: Bx= b4(3x2y – y3)/6; By= b4(x3 - 3xy2)/6 

Octupoles 

x-axis

By

S

N S

N

N

S

N

S

History – Introduction – Basic principles – Magnet types – Summary 
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Sextupoles & Octupoles 
History – Introduction – Basic principles – Magnet types – Summary 
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• Purpose: coupling horizontal and vertical betatron oscillations 
 
 
 
 
 

            Rotation by π/2n 
 

 
 
 

 
• Beam that has horizontal displacement (but no vertical) is deflected 

vertically 
• Beam that has vertical displacement (but no horizontal) is deflected 

horizontally 

Skew quadrupole 

S

N

S

N

History – Introduction – Basic principles – Magnet types – Summary 
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Combined function magnets 

Functions generated by pole shape (sum a scalar potentials): 
Amplitudes cannot be varied independently 
Dipole and quadrupole: PS main magnet (PFW, Fo8…) 

History – Introduction – Basic principles – Magnet types – Summary 
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Functions generated by individual coils: 
Amplitudes can be varied independently 

 

Combined function magnets 

0.00

0.01

0.02

0.03

0.04

0.05

-20 -15 -10 -5 0 5 10 15 20
B

y
[T

]
x [mm]

Quadrupole and corrector dipole 
(strong sextupole component in dipole 
field) 
 

History – Introduction – Basic principles – Magnet types – Summary 
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Solenoids 

• Weak focusing, non-linear elements 
• Main field component in z-direction, focusing by end fields 
• Usually only used in experiments or low-energy beam lines 

 

History – Introduction – Basic principles – Magnet types – Summary 
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Special magnets 
For beam injection and extraction 

 
• Septa 
• Kicker magnets 
• Bumper magnets 

 

Scanning magnets 

 

Coil-dominated magnets 

History – Introduction – Basic principles – Magnet types – Summary 
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Overview 

x-axis

By

x-axis

By

x-axis

By

x-axis

By

Pole shape Field distribution  Pole equation Bx, By 

 
y=  ± r  

 
Bx= 0  

By= b1 = B0 = const. 

 
2xy= ± r2  

 
Bx= b2y 
By= b2x 

 

3x2y - y3 = ± r3  Bx= b3xy 
By= b3(x2- y2)/2 

 
4(x3y – xy3) = ± r4 

 
Bx= b4(3x2y – y3)/6 
By= b4(x3 - 3xy2)/6 

History – Introduction – Basic principles – Magnet types – Summary 
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Summary 

• Magnets are needed to guide and shape particle beams 

• Coils carry the electrical current, the iron yoke carries the 
magnets flux 

• Steel properties have a significant influence on the magnet 
performance 

• In case of time-varying fields, eddy currents can appear 

• Different magnet types providing different functions 

 

History – Introduction – Basic principles – Magnet types – Summary 
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Lecture 2: Analytical design 

• What do we need to know before starting? 
• Deriving the main parameters 
• Coil design and cooling 
• Cost estimate & optimization 
• Magnet manufacturing & testing 
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Goals in magnet design 

The goal is to produce a product just good enough to perform reliably 
with a sufficient safety factor at the lowest cost and on time.  

• Good enough:  
– Obvious parameters clearly specified, but tolerance difficult to define 
– Tight tolerances lead to increased costs 

• Reliability:  
– Get MTBF and MTTR reasonably low 
– Reliability is usually unknown for new design 
– Requires experience  to search for a compromise between extreme caution 

and extreme risk (expert review) 
• Safety factor: 

– Allows operating a device under more demanding condition as initially 
foreseen 

– To be negotiated between the project engineer and the management 
– Avoid inserting safety factors a multiple levels (costs!) 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Magnet life cycle 

A magnet is not a stand-alone device! 

Input

Design & calculations

Specification & 
drawings

Series production

Tests

Prototyping

Magnetic 
Measurements

Installation & 
comissioning

De-installation

Operation

Storage, destruction, 
disposal

Magnet 

Beam 
Optics 

Power 

Cooling 

Vacuum 
Integration 

Transport 

Survey 

Management 

Safety 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Design process 

• Field strength (gradient) and magnetic length 
• Integrated field strength (gradient) 
• Aperture and ‚good field region‘ 
• Field quality: 

 field homogeneity 
 maximum allowed multipole errors 
 settling time (time constant) 

• Operation mode: continous, cycled 
• Electrical parameters 
• Mechanical dimensions 
• Cooling 
• Environmental aspects 

 
 
 

 

0

1.5

0 200 400 600 800 1000 1200 1400

B 
[T

]
time [ms]

Magnetic cycle

Electro-magnetic design is an iterative process: 
Collect input 

data 
Analytical 

design 

Numerical 
2D/3D 

simulations 

Mechanical 
design 

Drawings & 
specifications 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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General requirements 

• Dipole: bending, steering, extraction 
• Quadrupole, sextupole, octupole 
• Combined function, solenoid, special magnet 

Magnet type and 
purpose 

• Storage ring, synchrotron light source, collider 
• Accelerator 
• Beam transport lines 

Installation 

• Installed units 
• Spare units (~10 %) Quantity 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Performance requirements 

• Type of beam, energy range, deflection angle 
• Integrated field (gradient) 
• Local field (gradient) and magnetic length 

Beam parameters 

• Physical aperture  
• ‘Good field region’ 

Aperture 

• Continuous  
• Pulse-to-pulse modulation (ppm) 
• Ramp rate (T/s) 

Operation mode 

0

1.5

0 200 400 600 800 1000 1200 1400

B 
[T

]

time [ms]

Magnetic cycle

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Performance requirements 

• Homogeneity (uniformity) 
• Maximum allowed multipole errors 
• Stability & reproducibility 
• Settling time (time constant) 
• Allowed residual field) 

Field quality 

-0.70%

-0.60%

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

10 100 1000 10000 100000
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fie
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ne
t c
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e 
[%

]

Time [ms]

Relative field attenuation (Imax = 3000 A)

dI/dt = 1250 A/s

dI/dt = 2500 A/s

dI/dt = 5000 A/s

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Physical requirements 

• Available space 
• Transport limitations 
• Weight limitations 

Geometric 
boundaries 

• Crane 
• Connections (electrical, hydraulic) 
• Alignment targets 

Accessibility 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Interfaces 

• Max. current (peak, RMS) 
• Max. voltage 
• Pulsed/dc 

Power converter 

• Max. flow rate and pressure drop 
• Water quality (aluminium/copper circuit) 
• Inlet temperature 
• Available cooling power 

Cooling 

• Size and material of vacuum chamber 
• Space for pumping ports, bake out  
• Captive vacuum chamber 

Vacuum 

Equipment linked to the magnet is defining the boundaries and 
constraints 

 
 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Other aspects, which can have an influence on the magnet design 
 

 

Environmental aspects 

• Risk of condensation 
• Heat dissipation into the tunnel 

Environment 
temperature 

• High radiation levels require radiation hard 
materials 

• Special design to allow fast repair/replacement 
Ionizing radiation 

• Magnetic fringe fields disturbing other 
equipment (beam diagnostics) 

• Surrounding equipment perturbing field quality 

Electro-magnetic 
compatibility 

• Electrical safety 
• Interlocks Safety 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Magnet Components 

Alignment targets 

Yoke 

Coils 

Sensors 

Cooling circuit 

Connections 

Support 

 

 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Magnetic design 

Translate the beam optic requirements into a magnetic design  
 
 
 

Required magnetic induction 

Aperture size 

Magnet excitations (Amp-turns) 

Yoke cross-section 

Yoke material 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Beam rigidity 

Beam rigidity Bρ [Tm]:      
 
 

• q:   particle charge number [Coulombs] 
• c:   speed of light [m/s] 
• T:   kinetic beam energy [eV] 
• E0: particle rest mass energy [eV]  

( 0.51 MeV for electrons, 938 MeV for protons) 

 

0
2 21 ETT

qc
B +=ρ

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Magnetic induction 

Dipole bending field B [T]:       
• B:  Flux density or magnetic induction 

(vector) [T] 
• rM: magnet bending radius [m]  

 
Quadrupole field gradient B’ [T/m]:     

• k:  quadrupole strength [m-2]  
 

Sextupole differential gradient B’’ [T/m2]:    
• m:  sextupole strength [m-3]  

 

Mr
BB ρ

=

kBB ρ='

mBB ρ=''

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Aperture size 

Aperture = 
 
Good field region         

Maximum beam size 
• Lattice functions: beta functions and dispersion 
• Geometrical transverse emittancies (energy depended) 
• Momentum spread 
• Envelope (typical 3-sigma) 
• Largest beam size usually at injection 

+ Closed orbit distortions (few mm) 

+ Vacuum chamber thickness (0.5 – 5 mm) 
+ Installation and alignment margin (0 – 10 mm) 

2








 ∆
+=

p
pDβεσ

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Excitation current in a dipole 
Ampere’s law        and    with 

 

leads to         
         

 

assuming, that B is constant along the path 

 

If the iron is not saturated: 

 

then:                   

 
• h:  gap height [m] 
• η: efficiency (typically 95% - 99 %) 

 
 
 

 
 

ironair

h
µ
λ

µ
>>

λ

h

0
)( 2ηµ

BhNI poleper ≈

∫ =⋅ NIldH


HB


µ= rµµµ 0=

∫ ∫ ∫ +=⋅+⋅=⋅=
gap yoke ironairironair

BBhldBldBldBNI
µ
λ

µµµµ










Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Reluctance and efficiency 

 
Reluctance:        
  

• Φ:  magnetic flux [Wb] 
• lM:  flux path length in iron [m] 
• AM: iron cross section perpendicular to flux [m2] 

 
Term (           ) in previous slide is called ‘normalized reluctance’ of the yoke 
 
Keep iron yoke reluctance less than a few % of air reluctance (      ) by providing 

sufficient iron cross section (Biron < 1.5 T) 
 
Efficiency:  
 

ironµ
λ

0µ
h

%99
,,

, ≈
+

=
yokeMgapM

gapM

RR
R

η

0µµrM

M
M A

lNIR =
Φ

=

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Excitation current in a Quadrupole 

Choosing the shown integration path gives: 
 

 
For a quadrupole, the gradient             is constant 
and 
Field modulus along s1:  
 
Neglecting H in s2  because: 
and along s3 : 
 
Leads to:        

∫ ∫∫∫ ⋅+⋅+⋅=⋅=
2 3

32

1

1

s ss

dlHdlHdlHdlHNI

yBBx '=xBBy '=

rByxBrH
0

22

0

'')(
µµ

=+=

0
3

3 =⋅∫
s

dlH

∫∫ =≈
RR

drrBdrrHNI
00 0

')(
µ 0

2

)( 2
'
ηµ

rBNI poleper =

dr
dBB ='

S1

S2

S3

airiron
sM

ssR
µµ

12
2, <<=

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Magnetic length 

Magnetic length for a quadrupole:  
 
     
 

• k: geometry specific constant (≈ 0.45)  

 
NI increases with the square of the  

quadrupole aperture: 
 
 
More difficult to accommodate the necessary Ampere-turns (= coil 

cross section) 
  truncating the hyperbola leads to a decrease in field quality 

 

2rNI ∝

krll ironmag 2+=

4rP ∝

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Excitation current in a Sextupole 

Same approach as for quadrupole: 
For a sextupole, the field is parabolic and         is constant 
 
so 
 
leads to:        
 
NI increases with the 3rd power of the aperture:  
 
 
Fortunately, sextupole fields are usually much smaller than quadrupole 

fields       

2

02
'')( rBrH

µ
=

∫∫∫ =≈⋅=
RR

drrBdrrHdlHNI
0

2

0 02
'')(

µ 0

3

)( 6
''
ηµ

rBNI poleper =

3rNI ∝

2

2

''
dr

BdB =

6rP ∝

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Coil design 

Ampere-turns  NI are determined,  but  the current density j, the 
number of turns N and the coil cross section need to be 
decided 

 
 
 

Coil type selection 

Power requirements 

Cooling circuit computation 

Conductor selection 

Optimization 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Standard coil types 

Bedstead or saddle coil 

Racetrack coil 

Tapered quadrupole coil 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Power requirements 
Assuming the magnet cross-section and the yoke length are known, one can 

calculate the total dissipated power per magnet: 
 
   
 

 
• j:    current density [A/m2]:                             

• ρ:    resistivity [Ωm] 

• lavg:    average turn length [m]; approximation: 2.5 liron < lavg < 3 liron  for racetrack coils 

• acond:  conductor cross section [m2] 

• A:       coil cross section [m2] 

• fc:       filling factor =                                (includes geometric filling factor, insulation, 
cooling duct, edge rounding) 

Note: for a constant geometry, the power loss P is proportional to the current 
density j 

condc a
I

Af
NIj ==

sectioncrosscoil
areaconductornet

avgdipole jlBhP
0ηµ

ρ=
avgqudrupole jlrBP

0

2'2
ηµ

ρ= avgsextupole jlrBP
0

3''
ηµ

ρ=

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 



N
or

m
al

-c
on

du
ct

in
g 

ac
ce

le
ra

to
r m

ag
ne

ts
 

©
 T

ho
m

as
 Z

ic
kl

er
, C

ER
N

 
JU

AS
 2

01
3 

Ar
ch

am
ps

, 1
8.

 F
eb

ru
ar

y 
20

13
 

Number of turns 

The determined power can be divided into voltage and current: 

Basic relations:  

The  number of turns N are chosen to match the impedances of the 
power converter and connections: 
 
 

UIP =

jNRmagnet
2∝ NjVmagnet ∝ jPmagnet ∝

Large N = low current = high voltage 

• Small terminals 
• Small conductor cross-section 
• Thick insulation for coils and cables 
• Less good filling factor in the coils 
• Large coil volume 
• Low power transmission loss  

Small N = high current = low voltage 

• Large terminals 
• Large conductor cross-section 
• Thin insulation in coils and cables 
• Good filling factor in the coils 
• Small coil volume 
• High power transmission loss  

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Conductor materials 

Key-stoning: risk of insulation damage & decrease of cooling duct cross-section  
 
 
 
 
 

%6.33 =
∆

⇒⋅=
A
AAR

Al Cu (OF) 

Purity 99.7 % 99.95 % 

Resistivity @ 20°C 2.83 μΩ cm 1.72 μΩ cm 

Thermal resistivity coeff. 0.004 K-1 0.004 K-1 

Specific weight 2.70 g/cm3 8.94 g/cm3 

Thermal conductivity 2.37 W/cm K 3.91 W/cm K 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Coil cooling 

Air cooling by natural convection: 
– Current density  

• j ≤ 2 A/mm2  for small, thin coils  
– Cooling enhancement:  

• Heat sink with enlarged radiation surface 
• Forced air flow (cooling fan) 

– Only for magnets with limited strength (e.g. correctors) 
Direct water cooling: 

– Typical current density j ≤ 10 A/mm2 

– Requires demineralized water (low conductivity)  
and hollow conductor profiles 

Indirect water cooling: 
– Current density j ≤ 3 A/mm2 

– Tap water can be used 
 

Picture of water cooled 
coil 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Direct water cooling 

Practical recommendations and canonical values: 
– Water cooling: 2 A/mm2 ≤ j ≤ 10 A/mm2 

– Pressure drop: 0.1 ≤ Δp ≤ 1.0 MPa (possible up to 2.0 MPa) 
– Low pressure drop might lead to more complex and expensive coil design 
– Flow velocity should be high enough so flow is turbulent 
– Flow velocity uavg ≤ 5 m/s to avoid erosion and vibrations 
– Acceptable temperature rise: ΔT ≤ 30°C 
– For advanced stability: ΔT ≤ 15°C 

 
Assuming: 

– Long, straight and smooth pipes without perturbations 
– Turbulent flow = high Reynolds number (Re > 4000)  
– Good heat transfer from conductor to cooling medium 
– Temperature of inner conductor surface equal to coolant temperature 
– Isothermal conductor cross section 

 
 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 



N
or

m
al

-c
on

du
ct

in
g 

ac
ce

le
ra

to
r m

ag
ne

ts
 

©
 T

ho
m

as
 Z

ic
kl

er
, C

ER
N

 
JU

AS
 2

01
3 

Ar
ch

am
ps

, 1
8.

 F
eb

ru
ar

y 
20

13
 

Direct water cooling 
Useful simplified formulas using water as cooling fluid: 
 

Reynolds number Re []: 

 

Average coolant velocity uavg [m/s]: 

 

Water flow Q [litre/s] necessary to remove heat P: 

 

Water flow Q [litre/s] inside a round tube : 

 

Temperature increase ΔT [°C] : 
 

• P:   power [W] 
• l,d:  cooling circuit length [m] and diameter [m] 
• ν:   kinematic viscosity of coolant is temperature depending, for simplification it is    

  assumed to be constant (9.85 ∙ 10-7 m2/s @ 21°C for water)   
 

ν
duavg=Re

T
PQwater ∆

= 2388.0

571.0
714.03926.0 






 ∆⋅≈

l
pduavg

2304
du

PT
avg

=∆

3
2

10
4
duQ avg

π
=
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Direct water cooling 

 
Number of cooling circuits per coil: 

 
 Doubling the number of cooling circuits reduces the pressure drop by 

a factor of eight for a constant flow 
 
 
Diameter of cooling channel: 

 
 Increasing the cooling channel by a small factor can reduce the 

required pressure drop significantly   

3

1

WK
p ∝∆

5

1
d

p ∝∆
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Cooling water properties 

 
• For the cooling of hollow conductor coils demineralised water is 

used (exception: indirect cooled coils) 
• Water quality essential for the performance and the reliability of the 

coil (corrosion, erosion, short circuits) 
• Resistivity > 0.1 x 106 Ωm  
• pH between 6 and 6.5 (= neutral) 
• Dissolved oxygen below 0.1 ppm 
• Filters to remove particles and loose deposits to avoid cooling duct 

obstruction 
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Magnet manufacturing 

Mechanical 
design 

Procurement 
• Raw materials 
• Tooling  

Yoke 
production 

Coil production Magnet 
assembly 

Test & 
measurements 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Magnetic steel 

Massive (cast ingot) iron only for dc magnets 
Today’s standard: cold rolled, non-oriented electro-steel sheets (EN 10106) 

– Magnetic and mechanical properties can be adjusted by final annealing 
– Reproducible steel quality even over large productions  
– Magnetic properties (permeability, coercivity) within small tolerances   
– Homogeneity and reproducibility among the magnets of a series can be 

enhanced by selection, sorting or shuffling 
– Organic or inorganic coating  for insulation and bonding 
– Material is usually cheaper, but laminated yokes are labour intensive and 

require more expensive tooling (fine blanking, stacking) 
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NGO steel 

Data source: VOESTalpine Austria 

Data source: VOESTalpine Austria 

ISOVAC 1300-100A: Hc = 65 A/m 

ISOVAC 250-35HP: Hc = 30 A/m 

Sheet thickness:  
0.3 ≤ t ≤  1.5 mm 

Specific weight:  
7.60 ≤ δ ≤ 7.85 g/cm3  

Electr. resistivity @20°C:   
0.16 (low Si) ≤ ρ  
≤ 0.61 μΩm (high Si) 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Yoke manufacturing 

 
 
 

Stamping laminations 

Stacking laminations into yokes  

Gluing and/or welding 

Machining 

Assembly (preliminary) 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Coil manufacturing 

 
 
 

Define conductor type and material 

Conductor insulation  

Winding 

Ground insulation 

Epoxy impregnation  

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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QA & Acceptance tests 

QA is important at each production stage 
Constant monitoring of critical items 
Acceptance test include electrical, hydraulic, mechanical measurements 
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Magnetic measurements 

Magnetic measurements as final proof if design and manufacturing is correct 
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Cost estimate 
Production specific tooling:  

5 to 15 k€/tooling 

Material:  
Steel sheets: 1.0 - 1.5 € /kg 
Copper conductor: 10 to 20 € /kg 

Yoke manufacturing:  
Dipoles: 6 to 10 € /kg (> 1000 kg) 
Quads/Sextupoles:  50 to 80 € /kg (> 200 kg) 
Small magnets: up to 300 € /kg 

Coil manufacturing: 
Dipoles: 30 to 50 € /kg (> 200 kg) 
Quads/Sextupoles:  65 to 80 € /kg (> 30 kg) 
Small magnets: up to 300 € /kg 

Contingency:  
10 to 20 % 
 

Magnet type Dipole
Number of magnets (incl. spares) 18
Total mass/magnet 8330 kg
Design 14 kEuros
Punching die 12 kEuros
Stacking tool 15 kEuros
Winding/molding tool 30 kEuros
Yoke mass/magnet 7600 kg
Used steel (incl. blends)/magnet 10000 kg
Yoke manufacturing costs 8 Euros/kg
Steel costs 1.5 Euros/kg
Coil mass/magnet 730 kg
Coil manufacturing costs 50 Euros/kg
Cooper costs (incl. insulation) 12 Euros/kg
Total order mass 150 Tonnes
Total fixed costs 71 kEuros
Total Material costs 428 kEuros
Total manufacturing costs 1751 kEuros
Total magnet costs 2250 kEuros
Contingency 20 %
Total overall costs 2700 kEuros

To
ta

l c
os

ts
M

ag
ne

t
Fi

xe
d 

co
st

s
Yo

ke
Co

il

NOT included: magnetic design, supports, cables, 
water connections, alignment equipment, magnetic 
measurements, transport, installation 
Prices for 2011 
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Cost estimate 

0
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kg
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ag

ne
t

Total mass of order [x 1000 kg]

Upper limit: sextupoles

Mid-range: complicated 
dipoles & quadrupoles
Lower limit: simple dipoles
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Cost optimization 

Focus on economic design! 
Design goal: Minimum total costs over projected magnet life time by 

optimization of capital (investment) costs against running costs  
(power consumption) 

 
Total costs include:  

 
 

capital costs of 
magnets 

capital costs 
of power 

converters 

capital costs of 
power 

distribution 

capital costs 
of cooling 

system  

estimated 
operation costs 
of these items  

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Summary 

• Magnetic desing means translating beam optic requirements 
• Before starting the design, all input parameters, requirements, 

contraints and interfaces have to be known and well 
understood  

• Analytical design is neccessary to derive the main parameters 
of the future magnet before entering into a detailed design 
using numerical methods 

• Magnet design is an iterative process often requiring a high 
level of experience 

• Cost optimization is an important design aspect, in particular 
in view of future energy costs 

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary 
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Lecture 3: Numerical design 

Which code shall I use? 
Introduction to 2D numerical design 

How to evaluate the results 
Typical application examples 

A brief look into 3D... 
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Numerical design 
Common computer codes: Opera (2D) or Tosca (3D), Poisson, ANSYS, Roxie, 
Magnus, Magnet, Mermaid, Radia, FEMM, etc… 
 
Technique is iterative 

– calculate field generated by a defined geometry 
– adjust geometry until desired distribution is achieved 

 
Advanced codes offer: 

– modeller, solver and post-processors 
– mesh generator with elements of various shapes 
– multiple solver iterations for non-linear material properties 
– anisotropic material characterisation 
– optimization routines 
– combination with structural and thermal analysis 
– time depended analysis (steady state, transient) 

 
FEM codes are powerful tools, but be cautious: 

– Always check results if they are ‘physical reasonable’ 
– Use FEM for quantifying, not to qualify 

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Which code shall I use ? 

Selection criteria: 
– The more powerful, the harder to learn 
– Powerful codes require powerful CPU and large memory 
– More or less user-friendly input (text and/or GUI, scripts) 
– OS compatibility and lincense costs 

Computing time increases for high accuracy solutions, non-linear problems 
and time dependent analysis  
– Compromise between accuracy and computing time 
– Smart modelling can help to minimize number of elements 

 
 
 

 
 

2D 

• 2D analysis is often sufficient 
• magnetic solvers allow currents 

only perpendicular to the plane 
• fast 

3D 

• produces large amount of elements 
• mesh generation and computation 

takes significantly longer 
• end effects included 
• powerful modeller 

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Numerical design process 

Design process in 2D (similar in 3D): 
 
 
 
 
 
 
 
 
 
 

Create the model (pre-processor or modeller) 

Define boundary conditions, set material properties 

Calculations (solver) 

Visualize and asses the results (post-processor) 

Optimization by adjusting the geometry (manually 
or optimization code) 

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Creating the model 
FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Model symmetries 

Note: one eighth of quadrupole could be used with opposite symmetries 
defined on horizontal and y = x axis  

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Boundary conditions 
FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Material properties 

Permeability: 
– either fixed for linear solution 
– or permeability curve  for non-

linear solution 
– can be anisotropic 
– apply correction for steel packing 

factor 
– pre-defined curves available 

Conductivity: 
– for coil and yoke material 
– required for transient eddy 

current calculations  
Mechanical and thermal properties: 

– in case of combined structural or 
thermal analysis 

Current density in the coils 
Data source: Thyssen/Germany 

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Mesh generation 
FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Data processing 

• linear: predefined constant permeability for a 
single calculation 

• non-linear: permeability table for iterative 
calculations 

Solution 

• static 
• steady state (sine function) 
• transient (ramp, step, arbitrary function, ...) 

Solver types  

• number of iterations,  
• convergence criteria 
• precision to be achieved, etc... 

Solver settings 

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Analyzing the results 

With the help of the post-processor, field distribution and field quality and be 
visualized in various forms on the pre-processor model: 
– Field lines and colour contours plots of flux, field, and current density 
– Graphs showing absolute or relative field distribution 
– Homogeneity plots  

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 
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Field homogeneity in a dipole 

Homogeneity along the x-axis 

Homogeneity along  GFR boundary 
A simple judgment of the field quality can 
be done by plotting the field homogeneity 
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Field homogeneity in a dipole 

Second Level Master in Hadrontherapy 
CNAO, Pavia, Italy, 4th - 5th June 2012 

Normal-conducting accelerator magnets 
© Th. Zickler, CERN 
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Saturation and field quality 

Field quality can vary with field 
strength due to saturation 

Also very low fields can disturb the 
field quality significantly 
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Field homogeneity in a quadrupole 
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Saturation and field quality 

Field quality varies with field strength due to saturation 
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Saturation 
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Multipole expansion 
The amplitude and phase of the harmonic components in a magnet are good 

‘figures of merit’ to asses the field quality of a magnet 
 

          
 
 

• The normal (bn) and the skew (an) multipole coefficients are useful: 
– to describe the field errors and their impact on the beam in the lattice, so the magnetic 

design can be evaluated 
– in comparison with the coefficients resulting from magnetic measurements to judge 

acceptability of a manufactured magnet 
• Due to the finite size of the poles, higher order multipole components appear 
• They are intrinsic to the design and called ‚allowed‘ multipoles 

         
• n:   order of multipole component 
• N:  order of the fundamental field 
• m:   integer number (m≥1) 

 
• ‚Non-allowed‘ multipoles  result from a violation of symmetry and indicate a 

fabrication or assembly error 
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Asymmetries 

Asymmetries generating ‘non-allowed’ harmonics 
 

n = 2, 4, 6, ... n = 3, 6, 9, ... 

n = 4  (neg.) n = 4  (pos.) n = 3 n = 2, 3 

These errors can seriously affect machine behaviour and must be controlled! 

Comprehensive studies about 
the influence of manufacturing 
errors on the field quality have 
been done by K. Halbach.  
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Asymmetry in a C-magnet 

 

• C-magnet: one-fold symmetry 

• Since             the contribution to the integral in the iron has 
different path lengths 

• Finite (low) permeability will create lower B on the outside of the gap than 
on the inside 

• Generates ‘forbidden’ harmonics with  
n = 2, 4, 6, ... changing with saturation 

• Quadrupole term resulting  in a gradient  
around 0.1% across the pole  

 

.constdlHNI =⋅= ∫
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Pole tip design 
It is easy to derive perfect mathematical pole configurations for a specific 

field configuration 

In practice poles are not ideal: finite width and end effects result in multi-
pole errors disturbing the main field 

The uniform field region is limited to a small fraction of the pole width 
Estimate the size of the poles and calculate the resulting fields 

Better approach: calculate the necessary pole overhang using: 

 
 

 
• x: pole overhang normalized to the gap  
• a: pole overhang: excess pole beyond  
 the edge of the good field region to  
 reach the required field uniformity 
• h: magnet gap 
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‚Shimming‘ (often done by ‘try-and-error’) can improve the field homogeneity 
 

1. Add material on the pole edges: field will rise and then fall 
2. Remove some material: curve will flatten 
3. Round off corners: takes away saturation peak on edges 
4. Pole tapering: reduces pole root saturation 

Pole optimization 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

ΔB
/B

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

ΔB
/B

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

ΔB
/B

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

ΔB
/B

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

ΔB
/B

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

ΔB
/B

Case 1

Case 2

Case 3

Case 4

Case 5

FE-codes –  2D-design –  Result evaluation – Examples – 3D-design – Summary 



N
or

m
al

-c
on

du
ct

in
g 

ac
ce

le
ra

to
r m

ag
ne

ts
 

©
 T

ho
m

as
 Z

ic
kl

er
, C

ER
N

 
JU

AS
 2

01
3 

Ar
ch

am
ps

, 1
8.

 F
eb

ru
ar

y 
20

13
 

Rogowsky roll-off 
The ‘Rogowsky’ profile provides the maximum rate of increase in gap with a 

monotonic decrease in flux density at the surface, i.e. no saturation at the 
pole edges! 

The edge profile is shaped according to: 
 
 
          
 
 
 
 
 
For an optimized pole: 
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Pole optimization 

Similar technique can be applied for quadrupoles: 
 

       
       
 
       

• xc: un-optimized resp. optimized pole overhang from dipole 
• ρ: normalized good field radius r/R 

Pole optimization: 
– Tangential extension of the hyperbola 
– Additional bump = shim 
– Round off sharp edge 
– Tapered pole 
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A material problem... 
Welding seam on stainless-steel  
vacuum chamber: 

• GFR radius: 30 mm 
• Chamber radius: 35 mm 
• Welding seam diameter: 1 mm 
• Rel. permeability of 316 LN: < 1.001 

μr=1.01 

μr=1.1 μr=1.001 

A small distortion in the GFR can significantly  influence the field quality! 
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Eddy currents - static case 

 
 μr ≈ 1 (tension straps) 

μr >> 1 (tension straps) 
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Eddy currents - dynamic behavior 
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Eddy currents – field lag 
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3D Design 

Becomes necessary to study: 
– the longitudinal field distribution 
– end effects in the yoke 
– end effects from coils 
– magnets where the aperture is large  

compared to the length 
 

 
10 Gauss iso-potential surface 

Interference study 

3D-field homogeneity 
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Magnet ends  

Special attention has to be paid to the magnet ends: 
• A square end will introduce significant higher order multi-poles 
• Therefore, it is necessary to terminate the magnet in a controlled way by shaping 

the end either by cutting away or adding material  longitudinal shimming 

The goal of successful shimming is to:  
• adjust the magnetic length 
• prevent saturation in a sharp corner 
• maintain magnetic length constant across the good field region 
• prevent flux entering perpendicular to the laminations inducing eddy currents  
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Summary 

• A large varity of FE-codes with different features exist – the 
right choice depends of the complexity of the problem 

• The FE-models shall be as simple as possible and adapted to 
the problem to reduce computing time 

• Numeric computations should be used to quantify, not to 
qualify 

• Benchmarking the results with measurements is a good 
practice 
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Thanks for your attention… 
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