Joint Universities Accelerator School JUAS 2013 Archamps, France, 18th February 2013

Normal-conducting accelerator magnets

Thomas Zickler, CERN

Scope of the lectures

Overview of electro-magnetic technology as used in particle accelerators considering *normal-conducting, iron-dominated* electro-magnets (generally restricted to direct current situations) Main goal is to:

• create a fundmental understanding in accelerator magnet technology

- provide a guide book with practical instructions how to start with the design of a standard accelerator magnet
- focus on applied and practical design aspects using 'real' examples
- introduce finite element codes for practical magnet design

Not covered:

- permanent magnet technology
- super-conducting technology

CERN

Normal-conducting accelerator magnets

0

(14:00 - 15:00)Session 1

Lecture 1 – Introduction & Basic principles A bit of history... Why do we need magnets? Basic principles and concepts Magnet types (15:00 - 16:00)Session 2 Lecture 2 - Analytical design What do we need to know before starting? Yoke design **Coil dimensioning Cooling layout** Magnet manufacturing Coffee break (16:00 – 16:15) (16:15 - 17:15)Session 3 Lecture 3 – Applied numerical design

Creation of a basic 2D finite-element model

Interpretation of results **Outlook into 3D design**

(60')

(60')

(60')

Normal-conducting accelerator magnets

0

Session 4 Wednesday, 20.2. (15:00 – 17:15)

Case study (part 1)

Introduction

Students are invited to design and specify a ,real' magnet

Analytical magnet design on paper

Session 5 Thursday, 21.2. (9:00 – 12:15)

Case study (part 2)

Computer work Numerical magnet design

Session 6 Friday, 22.2. (9:00 – 12:00)

Practical works @ CERN

Manufacturing technologies, materials,

QA tests and magnetic measurements

(2 x 90')

(120')

(180')

Lecture 1: Basic principles

- A bit of history...
- Why do we need magnets?
- Magnet technologies
- Basic principles and concepts
- Magnet types and applications

A bit of history...

1820: Hans Christian Oersted (1777-1851) finds that electric current affects a compass needle

1820: Andre Marie Ampere (1775-1836) in Paris finds that wires carrying current produce forces on each other

1820: Michael Faraday (1791-1867) at

Royal Society in London develops the idea of electric fields and studies the effect of currents on magnets and magnets inducing electric currents

1825: British electrician, William Sturgeon (1783-1850) invented the first electromagnet

1860: James Clerk Maxwell (1831-1879), a Scottish physicist and mathematician, puts the theory of electromagnetism on mathematical basis

Magnetic units

IEEE defines the following units:

- Magnetic field:
 - H (vector) [A/m]
 - the magnetizing force produced by electric currents
- Electromotive force:
 - e.m.f. or U [V or (kg m²)/(A s³)]
 - here: voltage generated by a time varying magnetic field
- Magnetic flux density or magnetic induction:
 - B (vector) [T or kg/(A s²)]
 - the density of magnetic flux driven through a medium by the magnetic field
 - <u>Note</u>: induction is frequently referred to as "Magnetic Field"
 - H, B and μ relates by: B = μ H
- Permeability:
 - $\mu = \mu_0 \mu_r$
 - permeability of free space $\mu_0 = 4 \pi 10^{-7} [V s/A m]$
 - relative permeability μ_r (dimensionless): $\mu_{air} = 1$; $\mu_{iron} > 1000$ (not saturated)
- Magnetic flux:
 - ϕ [Wb or (kg m²)/(A s²)]
 - surface integral of the flux density component perpendicular trough a surface

Ga

History – Introduction – Basic principles – Magnet types – Summary

Maxwell's equations

In 1873, Maxwell published "Treatise on Electricity and Magnetism" in which he summarized the discoveries of Coulomb, Oersted, Ampere, Faraday, et. al. in four mathematical equations:

ו:

Gauss' law for electricity:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
uss' law of flux conservation

$$\nabla \cdot \vec{B} = 0$$

Faraday's law of induction:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Ampere's circuital law:

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

$$\oint_{\partial V} \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

$$\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

$$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A}$$

$$\oint_{\partial A} \vec{B} \cdot d\vec{s} = \int_{A} \mu_0 \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_{A} \mu_0 \varepsilon_0 \vec{E} \cdot d\vec{A}$$

Magnets everywhere...

- Interaction with the beam
 - guide the beam to keep it on the orbit
 - focus and shape the beam
- Lorentz's force: $\vec{F} = e(\vec{E} + \vec{v} \times \vec{B})$
 - for relativistic particles this effect is equivalent if $\overline{E} = c\overline{B}$
 - if B = 1 T then E = $3 \cdot 10^8$ V/m

- Permanent magnets provide only constant magnetic fields
- Electro-magnets can provide adjustable magnetic fields

Maxwell & Ampere:

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

"An electrical current is surrounded by a magnetic field"

Magnetic circuit

Flux lines represent the magnetic field Coil colors indicate the current direction

Magnetic circuit

Coils hold the electrical current Iron holds the magnetic flux

Excitation current in a dipole

Ampere's law $\oint \vec{H} \cdot d\vec{l} = NI$ and $\vec{B} = \mu \vec{H}$ with $\mu = \mu_0 \mu_r$

eads to
$$NI = \oint \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_{gap} \frac{\vec{B}}{\mu_{air}} \cdot d\vec{l} + \int_{yoke} \frac{\vec{B}}{\mu_{iron}} \cdot d\vec{l} = \frac{Bh}{\mu_{air}} + \frac{B\lambda}{\mu_{iron}}$$

assuming, that B is constant along the path

If the iron is not saturated:

$$\frac{h}{\mu_{air}} >> \frac{\lambda}{\mu_{iron}}$$

hen:
$$NI_{(per pole)} \approx \frac{Bh}{2\mu_0}$$

tł

Normal-conducting accelerator magnets © Thomas Zickler, CERN CERN

History – Introduction – Basic principles – Magnet types – Summary

Similar to Ohm's law, one can define the 'resistance' of a magnetic circuit, called 'reluctance', as:

- σ: conductivity [S/m]
- NI: magneto-motive force [A]
- Φ: magnetic flux [Wb]
- I_M: flux path length in iron [m]
- A_M: iron cross section perpendicular to flux [m²]

- Increase of B above 1.5 T in iron requires non-proportional increase of H
- Iron saturation (small μ_{iron}) leads to inefficiencies

CERN

History – Introduction – Basic principles – Magnet types – Summary

Magnetic flux

Flux in the yoke includes the gap flux and stray flux

Total flux in the return yoke:

$$\Phi = \int_{A} B \cdot dA \approx B_{gap} (w + 2h) l_{mag}$$

Keep yoke reluctance small by providing sufficient iron cross-section!

Permeability

Ferro-magnetic materials: high permeability $(\mu_r >>1)$, but not constant

Anisotropy in sheet material can be partly cured by final annealing

Flux density *B(H)* as a function of the field strength is different, when increasing and decreasing excitation

Archamps, 18. February 2013

JUAS 2013

History – Introduction – Basic principles – Magnet types – Summary

1.2

-0.3

-1.8

200

В[Э

Residual field in a magnet

voke

 $B_{residual} = -\mu_0 H_C \frac{l}{q}$

De-gaussing cycle

600

time [ms]

1000

1200

400

In a continuous ferro-magnetic core (transformer) the residual field is determined by the remanent field B_r

In a magnet core (gap), the residual field is determined by the coercivity H_c

Assuming the coil current *I=0*:

Normal-conducting accelerator magnets © Thomas Zickler, CERN CERN

History – Introduction – Basic principles – Magnet types – Summary

Stored energy E_s [J, joules] in a magnet depends on (non-uniform) field distribution in the gap, coils, and iron yoke:

$$E_s = \int_V \int_f^b H \cdot dB \cdot dv$$
 and in case μ_r is linear: $E_s = \frac{1}{2} \int_V H \cdot B \cdot dv$

- difficult to calculate analytically
- usually done by numerical computations
- most of the energy is stored in the air gap

Inductance L [H] of a magnet is given by:

$$L = \frac{2E_s}{I^2}$$

total voltage on a pulsed magnet:

$$V_{tot} = RI + L\frac{dI}{dt} = RI + \frac{2E_s}{I^2}\frac{dI}{dt}$$

- low inductance allows fast changes of magnetic field
- inductance depends on the magnetization in the iron

Eddy currents

Faraday's law: varying magnetic field induces an e.m.f. (voltage) $U = -\frac{\partial \Phi}{\partial t}$

- Circulating (eddy) currents are generated in electrical conducting materials
 - creating a magnetic field opposing the original change in magnetic flux (Lenz's law)
 - opposing to the penetration of the magnetic field (skin effect)
 - producing losses (Joule heating)
 - causing delays to reach stable field value
 - damping high order modes (ripples)

$$H_{y}(z) = H_{0} \cdot e^{-x/\delta}$$

• δ : skin depth [m]

- Magnetic circuits are made of insulated laminations to reduce eddy currents,
 - decrease lamination thickness (d < $\delta/2$)
 - increase resistivity
 - decrease permeability
 - decrease frequency ($\partial \Phi / \partial t$)

CERN

Losses in the coils:

Ohmic power loss P_{Ω} per length unit [W/m] in a coil conductor

$$\frac{P_{\Omega}}{l} = \frac{\rho}{a_{cond}} I^2$$

- *ρ*: resistivity [Ωm] (for copper: 1.86 · 10⁻⁸ Ωm @ 40°C)
- *a_{cond}* : conductor cross-section [m²]

Losses in the iron yoke:

Hysteresis losses: Power loss P_H per mass unit [W/kg] up to 1.5 T using Steinmetz's law $\frac{P_H}{m} = \eta \cdot f \cdot B^x$

- η : material depending coefficient: 0.01 < η < 0.1; $\eta \approx$ 0.02 for silicon steel
- *x*: Steinmetz exponent: for iron *x* = 1.6
- *f*: operation frequency [Hz]

Eddy current losses: Power loss P_E per volume unit [W/m³] if $\delta >> d_{lam}$

$$\frac{P_E}{V} = \frac{\pi^2 d_{lam}^2 f^2 B^2}{6\rho}$$

• *d_{lam}:* lamination thickness [m]

Normal-conducting accelerator magnets © Thomas Zickler, CERN CERN

History – Introduction – Basic principles – Magnet types – Summary

Magnetic length

Coming from ∞, B increases towards the magnet center (stray flux)

Aagnetic length:
$$l_{mag} = \frac{\int B(z) \cdot dz}{B_0}$$

'Magnetic' length > iron length

Approximation for a dipole: $l_{mag} = l_{iron} + 2hk$

Geometry specific constant k gets smaller in case of:

- pole length < gap height
- saturation
- precise determination only by measurements or numerical calculations

CERN

History – Introduction – Basic principles – Magnet types – Summary

Dipoles

Purpose: bend or steer the particle beam

- Equation for normal (non-skew) ideal (infinite) poles: y= ± r (r = half gap height)
- Magnetic flux density: $B_x = 0$; $B_y = b_1 = const$.
- Applications: synchrotrons, transfer lines, spectrometry, beam scanning

JUAS 2013

Quadrupoles

Purpose: focusing the beam (horizontally focused beam is vertically defocused)

- Equation for normal (non-skew) ideal (infinite) poles: 2xy= ± r² (r = aperture radius)
 - Magnetic flux density: $B_x = b_2y$; $B_y = b_2x$

Quadrupole types

JUAS 2013

CERN

History – Introduction – Basic principles – Magnet types – Summary

Sextupoles

Purpose: correct chromatic aberrations of 'off-momentum' particles

- Equation for normal (non-skew) ideal (infinite) poles: 3x²y y³ = ± r³ (r = aperture radius)
- Magnetic flux density: $B_x = b_3 xy$; $B_y = b_3(x^2 y^2)/3$

Octupoles

Purpose: 'Landau' damping

- Equation for normal (non-skew) ideal poles: $4(x^3y xy^3) = \pm r^4$ (r = aperture radius)
- Magnetic flux density: $B_x = b_4(3x^2y y^3)/6$; $B_y = b_4(x^3 3xy^2)/6$

Sextupoles & Octupoles

JUAS 2013

Skew quadrupole

Purpose: coupling horizontal and vertical betatron oscillations

- Beam that has horizontal displacement (but no vertical) is deflected vertically
- Beam that has vertical displacement (but no horizontal) is deflected horizontally

Combined function magnets

Functions generated by pole shape (sum a scalar potentials):

Amplitudes cannot be varied independently

Dipole and quadrupole: PS main magnet (PFW, Fo8...)

Combined function magnets

Functions generated by individual coils:

Amplitudes can be varied independently

Quadrupole and corrector dipole (strong sextupole component in dipole field)

Solenoids

- Weak focusing, non-linear elements
- Main field component in z-direction, focusing by end fields
- Usually only used in experiments or low-energy beam lines

For beam injection and extraction

- Septa
- Kicker magnets
- Bumper magnets

Scanning magnets

Coil-dominated magnets

History – Introduction – Basic principles – Magnet types – Summary

Overview

Pole shape	Field distribution	Pole equation	Β _x , Β _γ
		y= ± r	$B_x = 0$ $B_y = b_1 = B_0 = const.$
	ran	$2xy=\pm r^2$	$B_{x} = b_{2}y$ $B_{y} = b_{2}x$
	Normal State	$3x^2y - y^3 = \pm r^3$	$B_x = b_3 xy$ $B_y = b_3 (x^2 - y^2)/2$
	Normal State	$4(x^3y - xy^3) = \pm r^4$	$B_{x} = b_{4}(3x^{2}y - y^{3})/6$ $B_{y} = b_{4}(x^{3} - 3xy^{2})/6$

Summary

- Magnets are needed to guide and shape particle beams
- Coils carry the electrical current, the iron yoke carries the magnets flux
- Steel properties have a significant influence on the magnet performance
- In case of time-varying fields, eddy currents can appear
- Different magnet types providing different functions

Normal-conducting accelerator magnets

0

- What do we need to know before starting?
- Deriving the main parameters
- Coil design and cooling
- Cost estimate & optimization
- Magnet manufacturing & testing

Goals in magnet design

The goal is to produce a product just good enough to perform reliably with a sufficient safety factor at the lowest cost and on time.

- Good enough:
 - Obvious parameters clearly specified, but tolerance difficult to define
 - Tight tolerances lead to increased costs
- Reliability:
 - Get MTBF and MTTR reasonably low
 - Reliability is usually unknown for new design
 - Requires experience to search for a compromise between extreme caution and extreme risk (expert review)
- Safety factor:
 - Allows operating a device under more demanding condition as initially foreseen
 - To be negotiated between the project engineer and the management
 - Avoid inserting safety factors a multiple levels (costs!)

Magnet life cycle

disposal

Design process

Electro-magnetic design is an iterative process:

- Field strength (gradient) and magnetic length
- Integrated field strength (gradient)
- Aperture and ,good field region'
- Field quality:
 - field homogeneity
 - maximum allowed multipole errors
 - settling time (time constant)
- Operation mode: continous, cycled
- Electrical parameters
- Mechanical dimensions
- Cooling
- Environmental aspects

Normal-conducting accelerator magnets © Thomas Zickler, CERN

© Thomas Zickler, CER

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

General requirements

Magnet type and purpose	 Dipole: bending, steering, extraction Quadrupole, sextupole, octupole Combined function, solenoid, special magnet 	
Installation	 Storage ring, synchrotron light source, collider Accelerator Beam transport lines 	
Quantity	 Installed units Spare units (~10 %) 	

Performance requirements

Performance requirements

Field quality

- Homogeneity (uniformity)
- Maximum allowed multipole errors
- Stability & reproducibility
- Settling time (time constant)
- Allowed residual field)

Normal-conducting accelerator magnets © Thomas Zickler, CERN

JUAS 2013 Archamps, 18. February 2013 Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

Physical requirements

Geometric boundaries

- Available space
- Transport limitations
- Weight limitations

Accessibility

- Crane
- Connections (electrical, hydraulic)
- Alignment targets

Equipment linked to the magnet is defining the boundaries and constraints

Power converter	 Max. current (peak, RMS) Max. voltage Pulsed/dc 	
Cooling	 Max. flow rate and pressure drop Water quality (aluminium/copper circuit) Inlet temperature Available cooling power 	
Vacuum	 Size and material of vacuum chamber Space for pumping ports, bake out Captive vacuum chamber 	

Environmental aspects

Other aspects, which can have an influence on the magnet design

Normal-conducting accelerator magnets © Thomas Zickler, CERN

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

Magnet Components

Alignment targets <u>Yoke</u> <u>Coils</u> Sensors **Cooling circuit** Connections Support

Translate the beam optic requirements into a magnetic design

Beam rigidity

Beam rigidity $B\rho$ [Tm]: $B\rho = \frac{1}{qc}\sqrt{T^2 + 2TE_0}$

- particle charge number [Coulombs] *q*:
- c: speed of light [m/s]
- *T*: kinetic beam energy [eV]
- *E₀*: particle rest mass energy [eV] (0.51 MeV for electrons, 938 MeV for protons)

Dipole bending field *B* [T]:

- B: Flux density or magnetic induction (vector) [T]
- *r_M*: magnet bending radius [m]

$$B = \frac{B\rho}{r_M}$$

Quadrupole field gradient B' [T/m]:
$$B' = B\rho k$$

k: quadrupole strength [m⁻²]

Sextupole differential gradient B'' [T/m²]: $B'' = B\rho m$

• *m*: sextupole strength [m⁻³]

Aperture =

Good field region

Maximum beam size

- Lattice functions: beta functions and dispersion
- Geometrical transverse emittancies (energy depended)
- Momentum spread
- Envelope (typical 3-sigma)
- Largest beam size usually at injection
- + Closed orbit distortions (few mm)
- + Vacuum chamber thickness (0.5 5 mm)
- + Installation and alignment margin (0 10 mm)

Excitation current in a dipole

Ampere's law $\oint \vec{H} \cdot d\vec{l} = NI$ and $\vec{B} = \mu \vec{H}$ with $\mu = \mu_0 \mu_r$

leads to
$$NI = \oint \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_{gap} \frac{\vec{B}}{\mu_{air}} \cdot d\vec{l} + \int_{yoke} \frac{\vec{B}}{\mu_{iron}} \cdot d\vec{l} = \frac{Bh}{\mu_{air}} + \frac{B\lambda}{\mu_{iron}}$$

assuming, that B is constant along the path

If the iron is not saturated:

$$rac{h}{\mu_{air}} >> rac{\lambda}{\mu_{iron}}$$

then:
$$NI_{(per pole)} \approx \frac{Bh}{2\eta\mu_0}$$

- *h*: gap height [m]
- η: efficiency (typically 95% 99 %)

Reluctance and efficiency

Reluctance:

$$R_M = \frac{NI}{\Phi} = \frac{l_M}{A_M \mu_r \mu_0}$$

- *Φ*: magnetic flux [Wb]
- *I_M*: flux path length in iron [m]
- A_M: iron cross section perpendicular to flux [m²]

Term ($\frac{\lambda}{\mu_{iron}}$) in previous slide is called 'normalized reluctance' of the yoke

Keep iron yoke reluctance less than a few % of air reluctance $(\frac{h}{\mu_0})$ by providing sufficient iron cross section (B_{iron} < 1.5 T)

Efficiency:

$$\eta = \frac{R_{M,gap}}{R_{M,gap} + R_{M,yoke}} \approx 99\%$$

Excitation current in a Quadrupole JUAS

Choosing the shown integration path gives:

$$NI = \oint \vec{H} \cdot \vec{dl} = \int_{s_1} \vec{H}_1 \cdot \vec{dl} + \int_{s_2} \vec{H}_2 \cdot \vec{dl} + \int_{s_3} \vec{H}_3 \cdot \vec{dl}$$

For a quadrupole, the gradient $B' = \frac{dB}{dr}$ is constant
and $B_y = B'x$ $B_x = B'y$
Field modulus along s_1 : $H(r) = \frac{B'}{\mu_0} \sqrt{x^2 + y^2} = \frac{B'}{\mu_0} r$
Neglecting H in s_2 because: $R_{M,s_2} = \frac{s_2}{\mu_{iron}} << \frac{s_1}{\mu_{air}}$
and along s_3 : $\int_{s_3} \vec{H}_3 \cdot \vec{dl} = 0$
Leads to: $NI \approx \int_{0}^{R} H(r) dr = \frac{B'}{\mu_0} \int_{0}^{R} r dr$ $NI_{(perpole})$

 $B'r^2$

 $2\eta\mu_0$

Normal-conducting accelerator magnets

Magnetic length for a quadrupole:

$$l_{mag} = l_{iron} + 2r k$$

• k: geometry specific constant (≈ 0.45)

NI increases with the square of the quadrupole aperture:

$$NI \propto r^2$$
 $P \propto r^4$

 \rightarrow truncating the hyperbola leads to a decrease in field quality

Excitation current in a Sextupole

Same approach as for quadrupole:

For a sextupole, the field is parabolic and $B'' = \frac{d^2 B}{dr^2}$ is constant

so
$$H(r) = \frac{B''}{2\mu_0}r^2$$

leads to: $NI = \oint \vec{H} \cdot \vec{dl} \approx \int_0^R H(r) dr = \frac{B''}{2\mu_0} \int_0^R r^2 dr$ $NI_{(perpole)} = \frac{B''r^3}{6\eta\mu_0}$

NI increases with the 3rd power of the aperture:

$$NI \propto r^3$$
 $P \propto r^6$

Fortunately, sextupole fields are usually much smaller than quadrupole fields

Ampere-turns NI are determined, but the current density j, the number of turns N and the coil cross section need to be decided

Standard coil types

JUAS 2013

Assuming the magnet cross-section and the yoke length are known, one can calculate the total dissipated power per magnet:

$$P_{dipole} =
ho rac{Bh}{\eta \mu_0} j l_{avg}$$

$$P_{qudrupole} = 2\rho \frac{B'r^2}{\eta \mu_0} j l_{avg}$$

$$P_{sextupole} = \rho \frac{B''r^3}{\eta \mu_0} j l_{avg}$$

• j: current density [A/m²]:
$$j = \frac{NI}{f_e A} = \frac{I}{a_{acc}}$$

- ρ: resistivity [Ωm]
- I_{avg} : average turn length [m]; approximation: 2.5 $I_{iron} < I_{avg} < 3 I_{iron}$ for racetrack coils
- *a_{cond}*: conductor cross section [m²]
- A: coil cross section [m²]
- f_c : filling factor = $\frac{\text{net conductor area}}{\text{coil cross section}}$ (includes geometric filling factor, insulation, cooling duct, edge rounding)

Note: for a constant geometry, the power loss *P* is proportional to the current density *j*

Number of turns

The determined power can be divided into voltage and current: P = UI

Basic relations: $R_{magnet} \propto N^2 j$ $V_{magnet} \propto N j$ $P_{magnet} \propto j$

The number of turns N are chosen to match the impedances of the power converter and connections:

Large N = low current = high voltage

- Small terminals
- Small conductor cross-section
- Thick insulation for coils and cables
- Less good filling factor in the coils
- Large coil volume
- Low power transmission loss

Small N = high current = low voltage

- Large terminals
- Large conductor cross-section
- Thin insulation in coils and cables
- Good filling factor in the coils
- Small coil volume
- High power transmission loss

Conductor materials

	AI	Cu (OF)
Purity	99.7 %	99.95 %
Resistivity @ 20°C	2.83 μΩ cm	1.72 μΩ cm
Thermal resistivity coeff.	0.004 K ⁻¹	0.004 K ⁻¹
Specific weight	2.70 g/cm ³	8.94 g/cm ³
Thermal conductivity	2.37 W/cm K	3.91 W/cm K

Key-stoning: risk of insulation damage & decrease of cooling duct cross-section

Normal-conducting accelerator magnets

0

Coil cooling

Air cooling by natural convection:

- Current density
 - $j \le 2 \text{ A/mm}^2$ for small, thin coils
- Cooling enhancement:
 - Heat sink with enlarged radiation surface
 - Forced air flow (cooling fan)
- Only for magnets with limited strength (e.g. correctors)

Direct water cooling:

- − Typical current density $j \le 10 \text{ A/mm}^2$
- Requires demineralized water (low conductivity) and hollow conductor profiles

Indirect water cooling:

- Current density $j \le 3 \text{ A/mm}^2$
- Tap water can be used

Direct water cooling

Practical recommendations and canonical values:

- Water cooling: 2 A/mm² \leq j \leq 10 A/mm²
- Pressure drop: $0.1 \le \Delta p \le 1.0$ MPa (possible up to 2.0 MPa)
- Low pressure drop might lead to more complex and expensive coil design
- Flow velocity should be high enough so flow is turbulent
- Flow velocity $u_{avg} \le 5$ m/s to avoid erosion and vibrations
- − Acceptable temperature rise: $\Delta T \le 30^{\circ}C$
- − For advanced stability: $\Delta T \le 15^{\circ}C$

Assuming:

- Long, straight and smooth pipes without perturbations
- Turbulent flow = high Reynolds number (Re > 4000)
- Good heat transfer from conductor to cooling medium
- Temperature of inner conductor surface equal to coolant temperature
- Isothermal conductor cross section

Direct water cooling

Useful simplified formulas using water as cooling fluid:

Reynolds number *Re* []: Re = $\frac{u_{avg}d}{V}$

Average coolant velocity u_{avg} [m/s]: $u_{avg} \approx 0.3926 \cdot d^{0.714} \left(\frac{\Delta p}{l}\right)^{0.571}$

Water flow *Q* [litre/s] necessary to remove heat *P*: $Q_{water} = 0.2388 \frac{P}{\Delta T}$

Water flow *Q* [litre/s] inside a round tube : $Q = u_{avg} \frac{\pi d^2}{4} 10^3$

Temperature increase ΔT [°C] : $\Delta T = 304 \frac{P}{u_{avg} d^2}$

- P: power [W]
- *l,d*: cooling circuit length [m] and diameter [m]
- *v:* kinematic viscosity of coolant is temperature depending, for simplification it is assumed to be constant $(9.85 \cdot 10^{-7} \text{ m}^2/\text{s} \otimes 21^\circ\text{C} \text{ for water})$

Direct water cooling

Number of cooling circuits per coil: $\Delta p \propto \frac{1}{K_w^3}$

Doubling the number of cooling circuits reduces the pressure drop by a factor of eight for a constant flow

- Diameter of cooling channel: $\Delta p \propto \frac{1}{d^5}$
 - Increasing the cooling channel by a small factor can reduce the required pressure drop significantly

Cooling water properties

- For the cooling of hollow conductor coils demineralised water is used (exception: indirect cooled coils)
- Water quality essential for the performance and the reliability of the coil (corrosion, erosion, short circuits)
- Resistivity > $0.1 \times 10^6 \Omega m$
- pH between 6 and 6.5 (= neutral)
- Dissolved oxygen below 0.1 ppm
- Filters to remove particles and loose deposits to avoid cooling duct obstruction

Magnet manufacturing

JUAS 2013

Magnetic steel

Massive (cast ingot) iron only for dc magnets

Today's standard: cold rolled, non-oriented electro-steel sheets (EN 10106)

- Magnetic and mechanical properties can be adjusted by final annealing
- Reproducible steel quality even over large productions
- Magnetic properties (permeability, coercivity) within small tolerances
- Homogeneity and reproducibility among the magnets of a series can be enhanced by selection, sorting or shuffling
- Organic or inorganic coating for insulation and bonding
- Material is usually cheaper, but laminated yokes are labour intensive and require more expensive tooling (fine blanking, stacking)

ISOVAC 1300-100A: H_c = 65 A/m

Steel anisotropy (VOEST Isovac 250-35 HP)

ISOVAC 250-35HP: $H_c = 30 \text{ A/m}$

Sheet thickness: $0.3 \le t \le 1.5 \text{ mm}$

Specific weight: 7.60 $\leq \delta \leq$ 7.85 g/cm³ Electr. resistivity @20°C: 0.16 (low Si) $\leq \rho$ $\leq 0.61 \mu\Omega m$ (high Si)

Yoke manufacturing

Stamping laminations

Stacking laminations into yokes

Gluing and/or welding

Machining

Assembly (preliminary)

CERN

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

Coil manufacturing

Define conductor type and material

Conductor insulation

Winding

Ground insulation

Epoxy impregnation

Archamps, 18. February 2013

JUAS 2013

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

QA & Acceptance tests

QA is important at each production stage Constant monitoring of critical items

Acceptance test include electrical, hydraulic, mechanical measurements

Archamps, 18. February 2013

JUAS 2013

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

Magnetic measurements

Magnetic measurements as final proof if design and manufacturing is correct

MQZ-B001 field quality in the GFR at I=1.42 A start

MCX-A005 H plane field quality in the GFR at I=14.897 A upward

Cost estimate

Production specific tooling:

5 to 15 k€/tooling

Material:

- Steel sheets: 1.0 1.5 € /kg
- Copper conductor: 10 to 20 € /kg

Yoke manufacturing:

Dipoles: 6 to 10 € /kg (> 1000 kg) Quads/Sextupoles: 50 to 80 € /kg (> 200 kg) Small magnets: up to 300 € /kg

Coil manufacturing:

Dipoles: 30 to 50 € /kg (> 200 kg) Quads/Sextupoles: 65 to 80 € /kg (> 30 kg) Small magnets: up to 300 € /kg

Contingency:

10 to 20 %

et	Magnet type	Dipole	
Magn	Number of magnets (incl. spares)	18	
	Total mass/magnet	8330	kg
Fixed costs	Design	14	kEuros
	Punching die	12	kEuros
	Stacking tool	15	kEuros
	Winding/molding tool	30	kEuros
Yoke	Yoke mass/magnet	7600	kg
	Used steel (incl. blends)/magnet	10000	kg
	Yoke manufacturing costs	8	Euros/kg
	Steel costs	1.5	Euros/kg
Coil	Coil mass/magnet	730	kg
	Coil manufacturing costs	50	Euros/kg
	Cooper costs (incl. insulation)	12	Euros/kg
Total costs	Total order mass	150	Tonnes
	Total fixed costs	71	kEuros
	Total Material costs	428	kEuros
	Total manufacturing costs	1751	kEuros
	Total magnet costs	2250	kEuros
	Contingency	20	%
	Total overall costs	2700	kEuros

NOT included: magnetic design, supports, cables, water connections, alignment equipment, magnetic measurements, transport, installation Prices for 2011

JUAS 2013 Archamps, <u>18. February 2013</u>

Normal-conducting accelerator magnets © Thomas Zickler, CERN

FRI

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

CERN

Input parameters – Magnetic design – Coil design – Cooling – Manufacturing – Costs – Summary

Focus on economic design!

Design goal: Minimum total costs over projected magnet life time by optimization of capital (investment) costs against running costs (power consumption)

- Magnetic desing means translating beam optic requirements
- Before starting the design, all input parameters, requirements, contraints and interfaces have to be known and well understood
- Analytical design is neccessary to derive the main parameters of the future magnet before entering into a detailed design using numerical methods
- Magnet design is an iterative process often requiring a high level of experience
- Cost optimization is an important design aspect, in particular in view of future energy costs

Lecture 3: Numerical design

Which code shall I use? Introduction to 2D numerical design How to evaluate the results Typical application examples A brief look into 3D...

Numerical design

Common computer codes: Opera (2D) or Tosca (3D), Poisson, ANSYS, Roxie, Magnus, Magnet, Mermaid, Radia, FEMM, etc...

Technique is iterative

- calculate field generated by a defined geometry
- adjust geometry until desired distribution is achieved

Advanced codes offer:

- modeller, solver and post-processors
- mesh generator with elements of various shapes
- multiple solver iterations for non-linear material properties
- anisotropic material characterisation
- optimization routines
- combination with structural and thermal analysis
- time depended analysis (steady state, transient)

FEM codes are powerful tools, but be cautious:

Always check results if they are 'physical reasonable' Use FEM for quantifying, not to qualify

Which code shall I use ?

Selection criteria:

- The more powerful, the harder to learn
- Powerful codes require powerful CPU and large memory
- More or less user-friendly input (text and/or GUI, scripts)
- OS compatibility and lincense costs
- Computing time <u>increases</u> for high accuracy solutions, non-linear problems and time dependent analysis
 - Compromise between accuracy and computing time
 - Smart modelling can help to minimize number of elements

2D	3D
 2D analysis is often sufficient magnetic solvers allow currents	 produces large amount of elements mesh generation and computation
only perpendicular to the plane fast	takes significantly longer end effects included powerful modeller

Numerical design process

Design process in 2D (similar in 3D):

Create the model (pre-processor or modeller)

Define boundary conditions, set material properties

Calculations (solver)

Visualize and asses the results (post-processor)

Optimization by adjusting the geometry (manually or optimization code)

Creating the model

Model symmetries

Note: one eighth of quadrupole could be used with opposite symmetries defined on horizontal and y = x axis

Boundary conditions

Material properties

Permeability:

- either fixed for linear solution
- or permeability curve for nonlinear solution
- can be anisotropic
- apply correction for steel packing factor
- pre-defined curves available

Conductivity:

- for coil and yoke material
- required for transient eddy current calculations

Mechanical and thermal properties:

 in case of combined structural or thermal analysis

Current density in the coils

Mesh generation

Data processing

Solution	 linear: predefined constant permeability for a single calculation non-linear: permeability table for iterative calculations
Solver types	 static steady state (sine function) transient (ramp, step, arbitrary function,)
Solver settings	 number of iterations, convergence criteria precision to be achieved, etc

Analyzing the results

With the help of the post-processor, field distribution and field quality and be visualized in various forms on the pre-processor model:

- Field lines and colour contours plots of flux, field, and current density
- Graphs showing absolute or relative field distribution
- Homogeneity plots

PROBLEM DATA

SH 0.6 mm, SL 12.5 mm, SP 105.0 mm, HH 65.0 mm, HR 8.0 mm, GL 84.0 mm, GH 19.6 mm

Field homogeneity in a dipole

A simple judgment of the field quality can be done by plotting the field homogeneity

$$\frac{\Delta B}{B_0} = \frac{B_y(x, y)}{B_y(0, 0)} - 1$$

Field homogeneity in a dipole

Saturation and field quality

Field quality can vary with field strength due to saturation

Also very low fields can disturb the field quality significantly

Field homogeneity in a quadrupole JUAS

Gradient homogeneity along circular GFR

Saturation and field quality

Field quality varies with field strength due to saturation

Multipole expansion

The amplitude and phase of the harmonic components in a magnet are good 'figures of merit' to asses the field quality of a magnet

$$B_{y} + iB_{x} = B_{ref} \sum_{n=1}^{\infty} (b_{n} + ia_{n}) \cdot \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

- The normal (b_n) and the skew (a_n) multipole coefficients are useful:
 - to describe the field errors and their impact on the beam in the lattice, so the magnetic design can be evaluated
 - in comparison with the coefficients resulting from magnetic measurements to judge acceptability of a manufactured magnet
- Due to the finite size of the poles, higher order multipole components appear
- They are intrinsic to the design and called ,allowed' multipoles

$$n = N(2m+1)$$

- *n*: order of multipole component
- *N*: order of the fundamental field
- *m*: integer number ($m \ge 1$)
- ,Non-allowed' multipoles result from a violation of symmetry and indicate a fabrication or assembly error

Asymmetries

Asymmetries generating 'non-allowed' harmonics

n = 2, 4, 6, ...

n = 3, 6, 9, ...

Comprehensive studies about the influence of manufacturing errors on the field quality have been done by K. Halbach.

These errors can seriously affect machine behaviour and must be controlled!

Asymmetry in a C-magnet

- C-magnet: one-fold symmetry
- Since $NI = \oint \vec{H} \cdot \vec{dl} = const$. the contribution to the integral in the iron has different path lengths
- Finite (low) permeability will create lower B on the outside of the gap than on the inside
- Generates 'forbidden' harmonics with n = 2, 4, 6, ... changing with saturation
- Quadrupole term resulting in a gradient around 0.1% across the pole

Pole tip design

It is easy to derive perfect mathematical pole configurations for a specific field configuration

In practice poles are not ideal: finite width and end effects result in multipole errors disturbing the main field

The uniform field region is limited to a small fraction of the pole width

Estimate the size of the poles and calculate the resulting fields

Better approach: calculate the necessary pole overhang using:

$$x_{unoptimized} = 2\frac{a}{h} = -0.36\ln\frac{\Delta B}{B_0} - 0.90$$

- *x*: pole overhang normalized to the gap
- *a*: pole overhang: excess pole beyond the edge of the good field region to reach the required field uniformity
- *h*: magnet gap

Pole optimization

,Shimming' (often done by 'try-and-error') can improve the field homogeneity

- 1. Add material on the pole edges: field will rise and then fall
- 2. Remove some material: curve will flatten
- 3. Round off corners: takes away saturation peak on edges
- 4. Pole tapering: reduces pole root saturation

The 'Rogowsky' profile provides the maximum rate of increase in gap with a monotonic decrease in flux density at the surface, i.e. no saturation at the pole edges!

The edge profile is shaped according to:

 $y = \frac{h}{2} + \left(\frac{h}{\pi}\right) \exp\left(\left(\frac{x\pi}{h}\right) - 1\right)$

For an optimized pole:

$$C_{optimized} = 2\frac{a}{h} = -0.14\ln\frac{\Delta B}{B_0} - 0.25$$

CERN

FE-codes – 2D-design – Result evaluation – Examples – 3D-design – Summary

Pole optimization

Similar technique can be applied for quadrupoles:

$$\frac{x_c}{R} = \sqrt{\frac{1}{2}} \left(\sqrt{(\rho^2 + x_d)^2 + 1 + \rho^2 + x_d} \right)$$
$$\frac{y_c}{R} = \sqrt{\frac{1}{2}} \left(\sqrt{(\rho^2 + x_d)^2 + 1 - \rho^2 - x_d} \right)$$

- *x_c*: un-optimized resp. optimized pole overhang from dipole
- *ρ*: normalized good field radius r/R

Pole optimization:

- Tangential extension of the hyperbola
- Additional bump = shim
- Round off sharp edge
- Tapered pole

Normal-conducting accelerator magnets

FE-codes – 2D-design – Result evaluation – Examples – 3D-design – Summary

A material problem...

Welding seam on stainless-steel vacuum chamber:

- GFR radius: 30 mm
- Chamber radius: 35 mm •
- Welding seam diameter: 1 mm •
- Rel. permeability of 316 LN: < 1.001 •

JUAS 2013

A small distortion in the GFR can significantly influence the field quality!

Normal-conducting accelerator magnets © Thomas Zickler, CERN

JUAS 2013 Archamps, <u>18. February 2013</u>

3D Design

Becomes necessary to study:

- the longitudinal field distribution
- end effects in the yoke
- end effects from coils
- magnets where the aperture is large compared to the length

Magnet ends

Special attention has to be paid to the magnet ends:

- A square end will introduce significant higher order multi-poles
- Therefore, it is necessary to terminate the magnet in a controlled way by shaping the end either by cutting away or adding material → longitudinal shimming

The goal of successful shimming is to:

- adjust the magnetic length
- prevent saturation in a sharp corner
- maintain magnetic length constant across the good field region
- prevent flux entering perpendicular to the laminations inducing eddy currents

Summary

- A large varity of FE-codes with different features exist the right choice depends of the complexity of the problem
- The FE-models shall be as simple as possible and adapted to the problem to reduce computing time
- Numeric computations should be used to quantify, not to qualify
- Benchmarking the results with measurements is a good practice

- Fifth General Accelerator Physics Course, CAS proceedings, University of Jyväskylä, Finland, September 1992, CERN Yellow Report 94-01
- International Conference on Magnet Technology, Conference proceedings
- Iron Dominated Electromagnets, J. T. Tanabe, World Scientific Publishing, 2005
- Magnetic Field for Transporting Charged Beams, G. Parzen, BNL publication, 1976
- Magnete, G Schnell, Thiemig Verlag, 1973 (German)
- Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization, S. Russenschuck, Wiley-VCH, 2010
- CAS proceedings, Magnetic measurements and alignment, Montreux, Switzerland, March 1992, CERN Yellow Report 92-05
- CAS proceedings, Measurement and alignment of accelerator and detector magnets, Anacapri, Italy, April 1997, CERN Yellow Report 98-05
- Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, K. Wille, Teubner Verlag, 1996
- CAS proceedings, Magnets, Bruges, Belgium, June 2009, CERN Yellow Report 2010-004

Thanks for your attention...

Normal-conducting accelerator magnets © Thomas Zickler, CERN