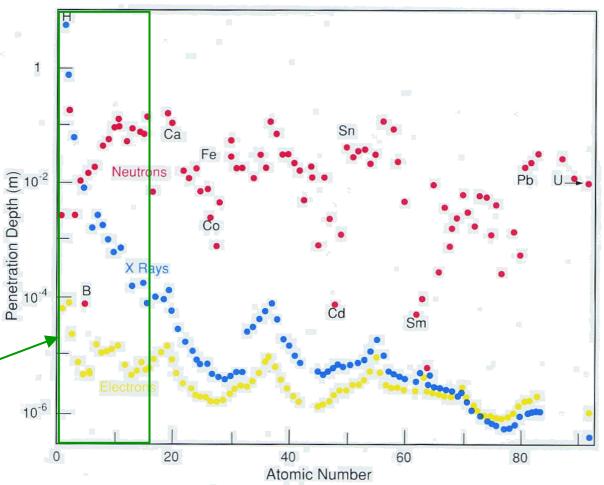


The SLS Storage Ring based light sources

Andreas Streun, PSI Villigen, Switzerland

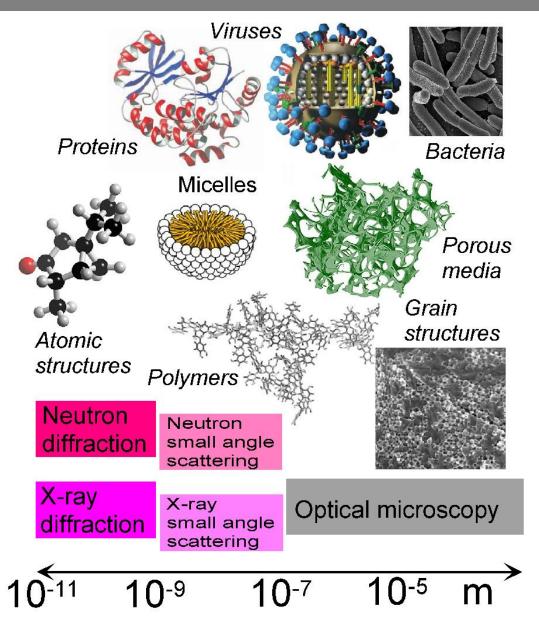

- The needs of materials research
- The properties of synchrotron radiation
- Electron storage rings as light sources
- The Swiss Light Source SLS
- Achievements of SLS operation
- Summary & outlook

JUAS visit to PSI, Feb. 26-27, 2013

Materials research: particles

Neutral particles penetrating matter (no Coulomb interaction)

- → diffraction experiments
- ⇒ neutrons⇒ SINQ
- photons
 organic matter
 very high flux
 SwissFEL
 SLS



Penetration depth for neutrons, photons, electrons of 1.4Å as a function of atomic number Z Figure taken from Roger Pynn, Neutron scattering - a primer, Los Alamos neutron scattering center, 1989

Materials research: energy

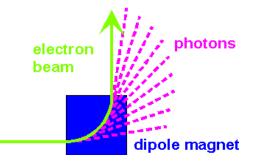
- Molecular scales $\sim 1 \text{\AA} = 10^{-10} \text{ m}$ (Range $10^{-11}...10^{-7} \text{ m}$)
- Photon wavelength $\lambda \sim 1 \text{\AA}$
- Photon energy $E = pc \sim 10 \text{ keV}$
- Neutrons: $E_{\rm kin} \sim 0.1 \, {\rm eV}$

Figure based on Roger Pynn, *Neutron scattering - a primer,* Los Alamos neutron scattering center, 1989 **7**

Materials research: brightness

- small sample size: e.g. protein crystal < 0.1 mm</p>
- high resolution micro- & spectroscopy
- many samples: short measuring time
- ⇒ high photon density on sample:
 - photons per second
 - photons per band width $BW = \Delta E/E$ energy interval (usually 0.1%)
 - photons per area on sample: depends on beam line photon optics
- figure of merit: Brightness
 - = 6-dimensional invariant photon phase space density

photons

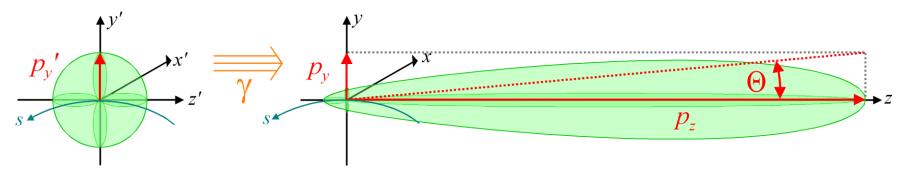

(area) \times (solid angle) \times (time) \times (energy interval)

brightness unit: photons
 s mm²mrad²BW

Synchrotron radiation: power

• Lorentz factor $\gamma = E / m_o c^2 \approx 10^3 \dots 10^4$

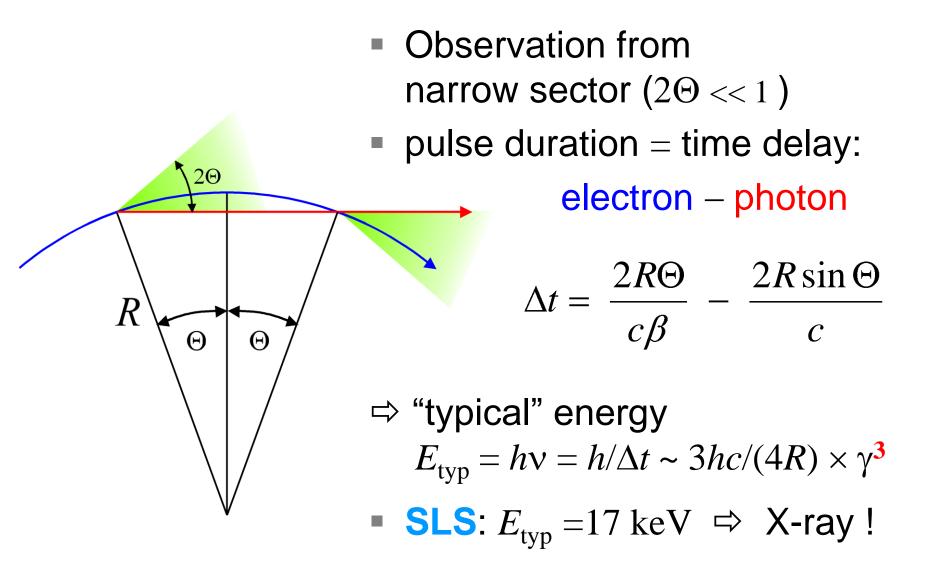
- radiated power of accelerated charge $P_{\rm el} \sim (dp/dt)^2$
- acceleration in moving system $dp/dt = \gamma dp/dt$
- acceleration in lab system dp/dt = E/R
 = centrifugal acceleration in magnet of of radius R
 ⇒ radiated power of electron, scaling P_{el} ~ E⁴
- Total radiated power of storage ring

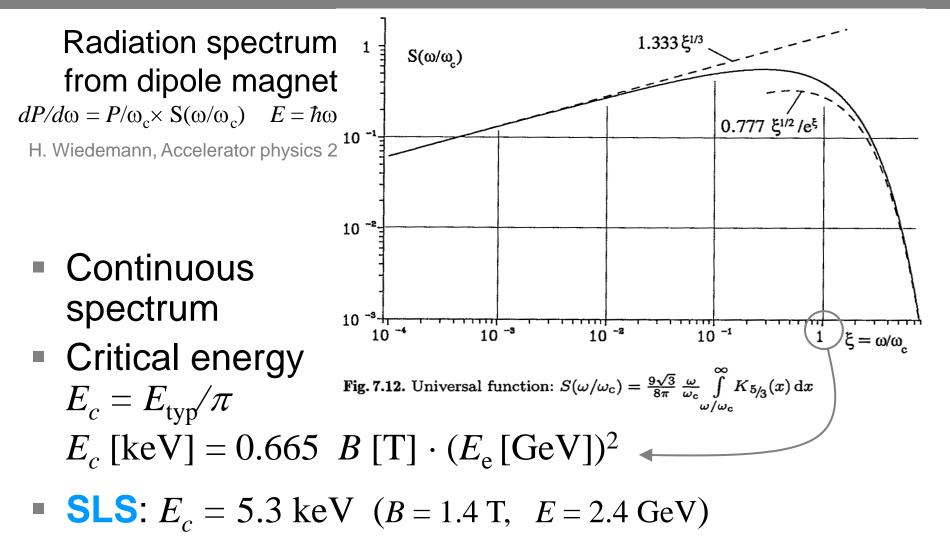

 $P[kW] = 88.5 \text{ kW} \times I_{beam}[A] \frac{(E[GeV])^4}{R[m]}$

• **SLS** : P = 205 kW

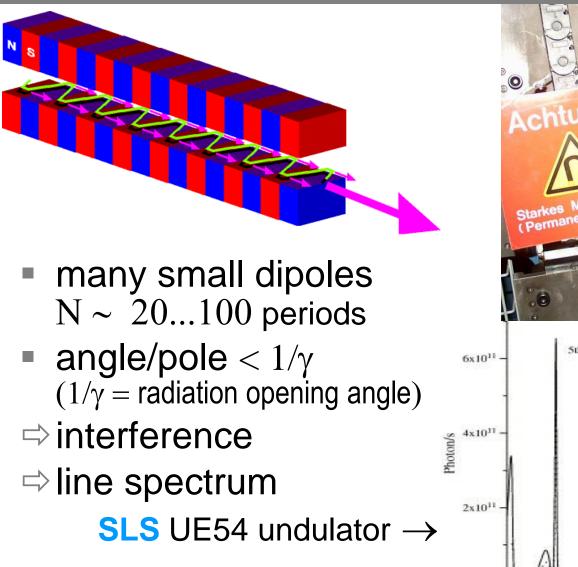
 $I_{\text{beam}} = 0.4 \text{ A}, \quad E = 2.4 \text{ GeV} (\gamma = 4700), \quad R = 5.7 \text{ m} (B = 1.4 \text{ T})$

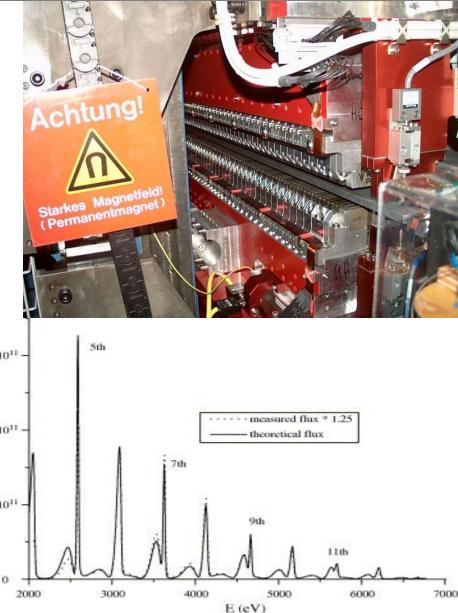
Synchrotron radiation: collimation


Lorentz transformation to laboratory system

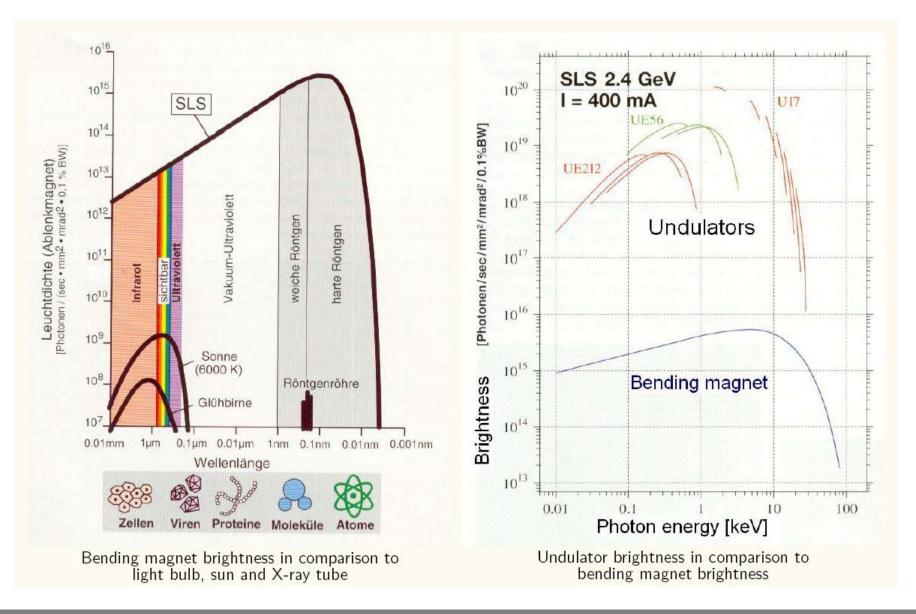

 $p_y' = E'/c$ $p_z' = 0$ $p_y = p_y'$ $p_z = \gamma E'/c = \gamma p_y$

- Collimation angle: $\Theta = p_y/p_z = 1/\gamma$
- **SLS** : $\Theta = 0.2 \text{ mrad}$
 - \Rightarrow beam spot \varnothing 1 cm after 25 m

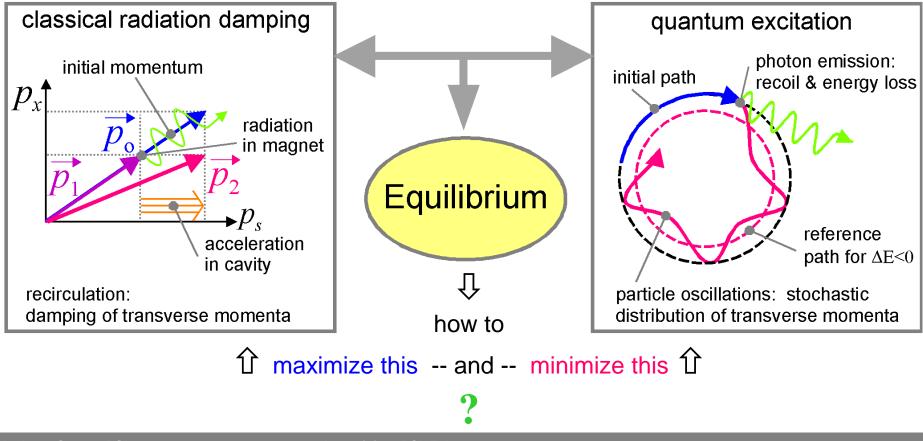

Synchrotron radiation: photon energy

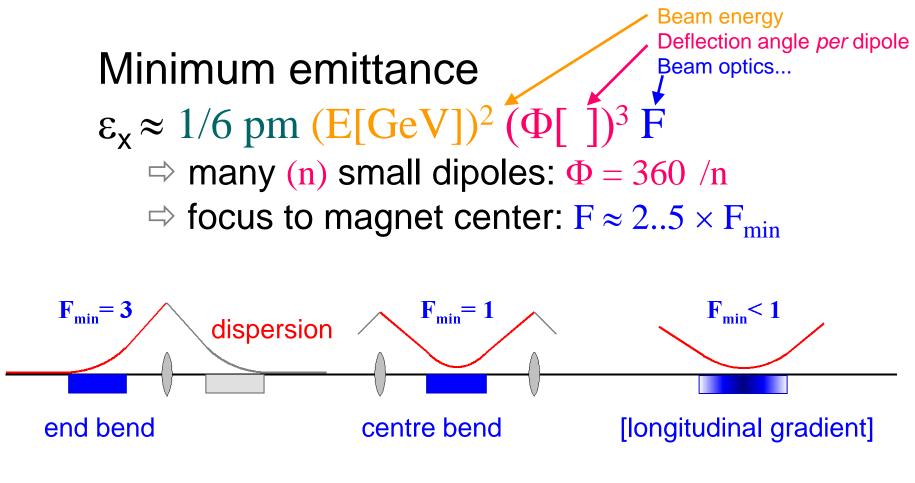


Synchrotron radiation: spectrum



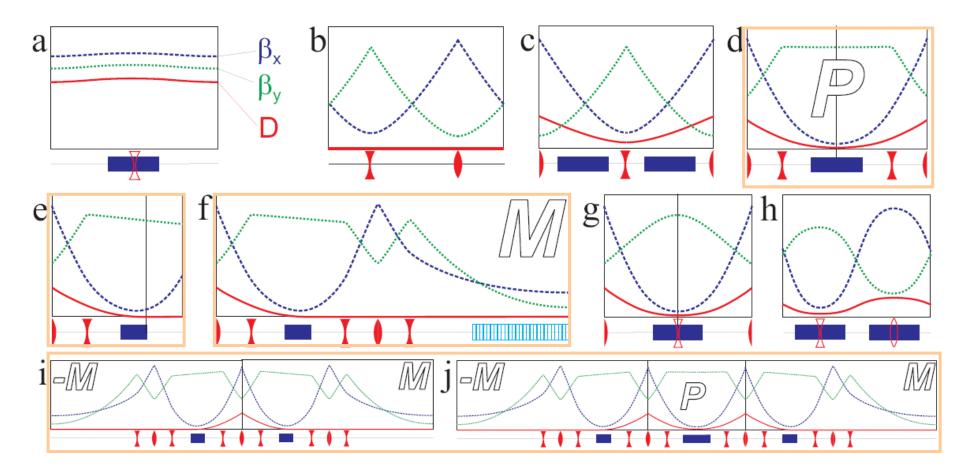
Synchrotron radiation: Undulator


Synchtron radiation: undulator brightness


Synchrotron radiation: brightness $B(E) = \frac{\dot{N}(E)}{(\varepsilon_x \oplus \varepsilon_r(E)) \times (\varepsilon_y \oplus \varepsilon_r(E)) \times BW}$ $\dot{N}(E)$ spectral photon flux (dipole or undulator) ε_x , ε_y electron beam horizontal /vertical *emittance*: Х 2-d phase space area (position & angle) $\pi \epsilon$ units: mm·mrad, nm·rad, pm·rad • **SLS** emittances : $\varepsilon_x = 5.5 \text{ nm}$, $\varepsilon_v \sim 1...10 \text{ pm}$ vertically diffraction $\varepsilon_r(E)$ diffraction emittance: $\varepsilon_r \approx \lambda/4\pi$ ($\lambda = hc/E$) limited e.g. protein crystallography: $E \sim 10 \text{ keV} \Rightarrow \epsilon_r \sim 10 \text{ pm}$ source convolution of 2-d phase space distributions \oplus *matched* distributions: $\oplus \Rightarrow +$ (same aspect ratio and tilt) matched: +

Storage ring: equilibrium emittance

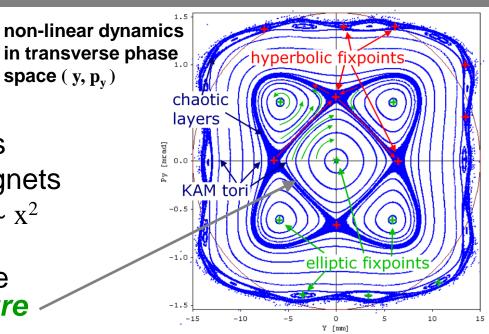
Horizontal emittance in electron storage ring: \downarrow radiation damping $\downarrow \Rightarrow$ equilibrium \leftarrow \uparrow quantum excitation \uparrow *independent from initial conditions !*

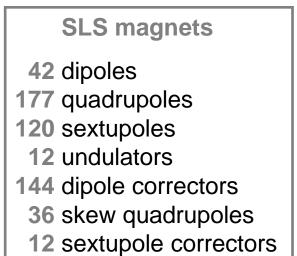


Storage ring: low emittance lattice

 many dispersion-free straight sections for undulators:
 ⇒ combine end & centre bends to double/triple/N-bend *achromats* (DBA, TBA, NBA)

Storage ring: building low emittance lattices...




 β_z = "beta function" = normalized beam size = σ_z^2/ϵ_z (z = x;y) D = dispersion = off-momentum orbit = $\Delta x/(\Delta p/p)$

Storage ring: dynamic aperture challenge

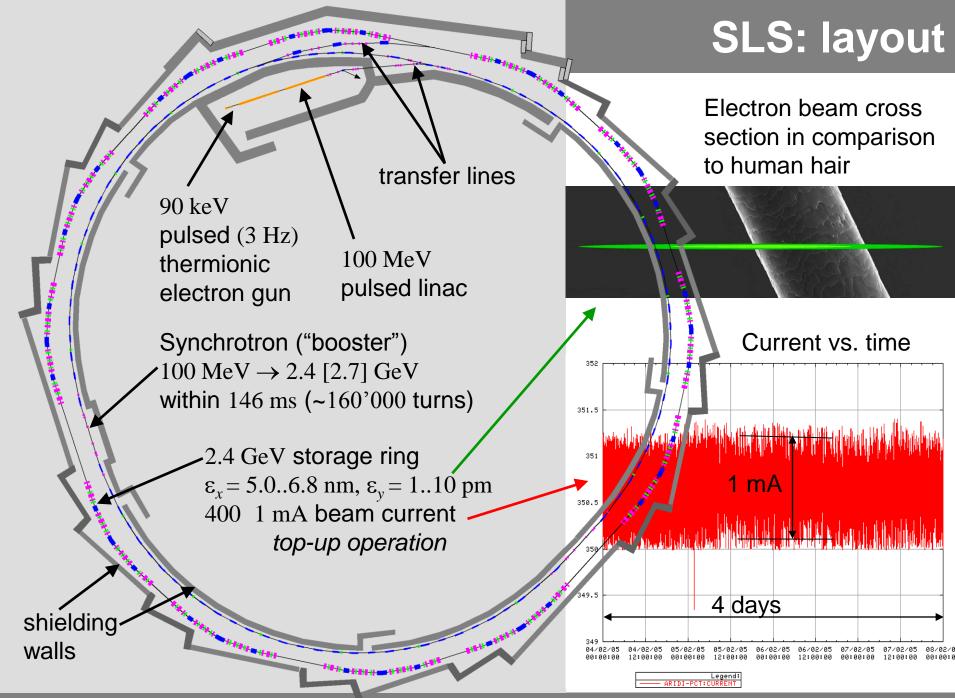
- Bright photon beams
- ⇒ small electron beam
- ⇒ strong focusing
- ⇒ chromatic quadrupole errors
- ⇒ correction by sextupole magnets
- \Rightarrow nonlinear sextupole field B ~ x^2
- deterministic chaos: particle losses beyond some amplitude: *dynamic aperture*
- reduced lifetime of stored beam reduced rate of injection into ring
- ⇔ To do
- ⇒ find optimum sextupole scheme
- ⇒ correct machine imperfections

SLS 2009: measured lifetime agrees with calculation for the *ideal* machine.

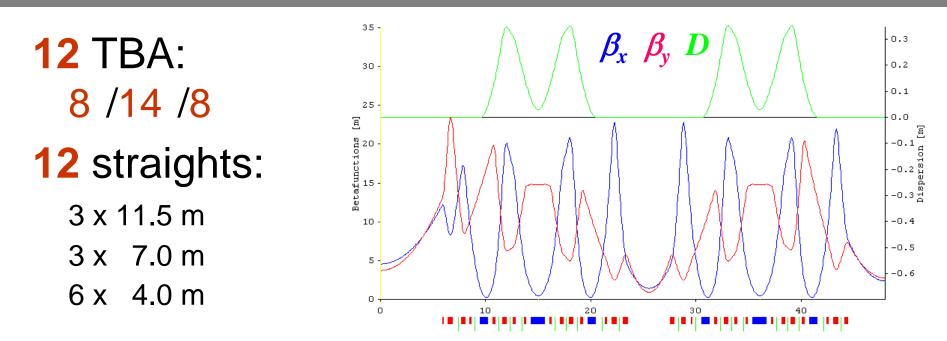
Storage ring: vertical emittance

Quantum emittance

- vertical emittance for ideal, *flat* lattice: no vertical dispersion ⇒ no excitation of oscillation
- only direct photon recoil (1/γ radiation cone)
- independent of beam energy
- **SLS** quantum emittance = 0.20 pm


Coupling emittance

- Magnet misalignments and imperfections: displacements and rotations
- ⇒ spurious vertical dispersion: vertical quantum excitation


⇒ betatron coupling: horizontal oscillation ⇒ vertical oscillation

Vertical equilibrium emittance

usually: coupling emittance >> quantum emittance

SLS: storage ring lattice

Energy	2.4 GeV	Mom. compaction	6.3·10 ⁻⁴
Emittance	5 nm rad	Radiation loss	512 keV
Circumference	288 m	Damping times	9/9/4.5 ms
Radio frequency	500 MHz	Energy spread	8.9-10 ⁻⁴
Tunes	20.41 / 8.17	rms bunch length	3.5 mm
Chromaticities	-66 / -21	Beam current	400 mA

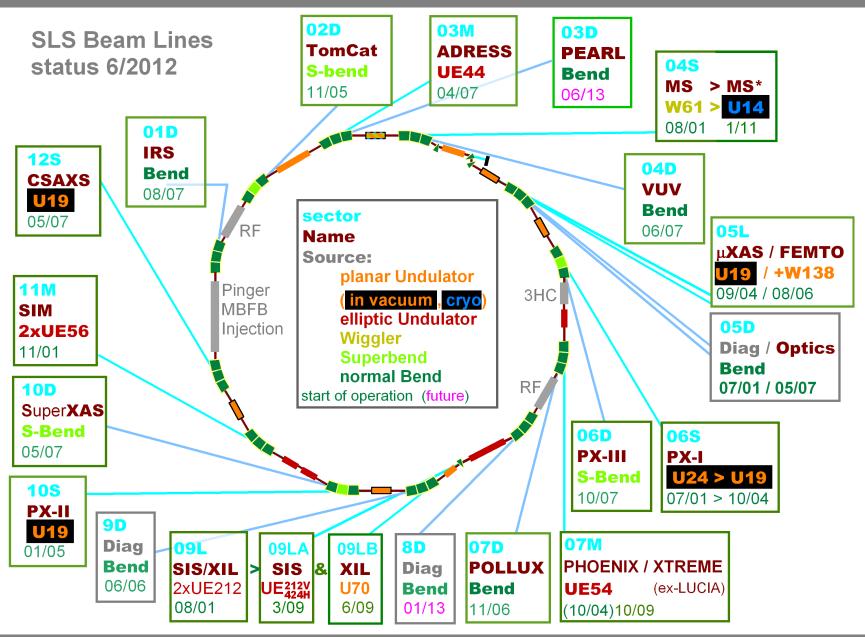
all data before FEMTO upgrade, without insertion devices and without harmonic cavities

Andreas Streun, PSI

SLS: comparison to other ~3 GeV light sources

		SLS	SOLEIL	DIAMOND	ALBA	MA <mark>X-IV</mark>	NSLS-II
Start of operation		2001	2006	2007	2010	2015	2015
Energy	GeV	2.40	2.75	3.00	3.00	3.00	3.00
Circumference	m	288	354	562	267	528	792
Emittance ε	nm	5.50	3.70	2.70	4.30	0.34	2.00
effective*	nm	5.50	6.29	2.95	5.84	0.34	2.00
with IDs	nm	5.00				0.17	0.60
Current	mA	400	500	300 (500)	400	500	500
Lattice type		12xTBA	16xDBA	24xDBA	16xDBA	20x7-BA	30xDBA

*including beam size increase due to non-zero dispersion at source points

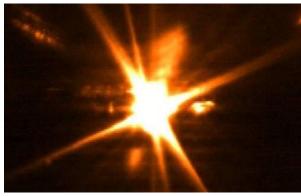

"SLS-generation"

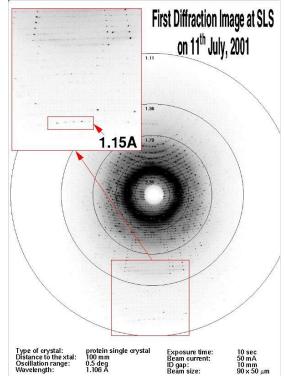
- $\epsilon_{eff} \sim 3..10 \text{ nm}$
- insertion devices have little effect

next generation

- < 1 nm effective emittance
- large circumference: $\epsilon \sim (N_{bend})^{-3}$
- strong insertion devices effects

SLS: beam lines overview


SLS: beam lines properties


Sector	Beamline	Methods	Source	Energy range	Polarization
X01DC	IRS		bend	1 meV – 1.5 eV	\leftrightarrow
X02DA	TOMCAT		superbend	8 – <mark>45 ke</mark> V	\leftrightarrow
X03MA	ADRESS	ARPES, RIXS	UE44	0.4 – <mark>1.8 ke</mark> V	⇔≎୯୯
X04SA	MS	PD, SD, XTM	W61	5–40 keV	\leftrightarrow
X04DB	VUV		bend	5 – 30 eV	\leftrightarrow
X05LA	μXAS/FEMTO	XAS	U19	5.7– 19.5 keV	\Leftrightarrow
X06SA	PX-II		U19	5.7 – 17.5 keV	\leftrightarrow
X06DA	PX-III		superbend	6 – 17.5 keV	\leftrightarrow
X07MA	LUCIA	XAS	UE54	0.8 – 8 keV	⇔ÙƯ
X07DA	PolLux	STXM	bend	0.2 – 1.2 keV	⇔ÇQ
X09LA	SIS/XIL	HR-PES, XES / EUV-IL	2xUE212	10 – 800 eV	⇔\$ひƯ
X10SA	PX-II		U19	6.5 – 20 keV	\leftrightarrow
X10DA	superXAS	XAS	superbend	5 – 35 keV	\leftrightarrow
X11MA	SIM	PEEM, XCD	2xUE56	90 eV – 2 keV	⇔\$ひƯ
X12SA	cSAXS	cSAXS	U19	5.5 – 19.5 keV	\leftrightarrow

Beamline acronyms		Method acronyms		
ADRESS	Advanced resonant spectroscopies	ARPES	Angle resolved photoelectron emission spectroscopy	
FEMTO	(Femto-second laser beam slicing for sub-ps X-ray pulses)	cSAXS	coherent small angle X-ray scattering	
LUCIA	Line for ultimate characterisations by imaging and absorption	EUV-IL	Extreme ultraviolet interference lithography	
MS	Materials sciences	HR-PES	high resolution photoemission spectroscopy	
PX	protein crystallography	IRS	Infra red spectroscopy	
SIM	Surfaces and interfaces microscopy	PEEM	photo emission electron microscopy	
SIS	Surfaces and interfaces spectroscopy	RIXS	resonant inelastic X-ray scattering	
TOMCAT	Tomographic microscopy and coherent radiology experiments	STXM	Scanning transmission X-ray micro-spectroscopy	
VUV	Vacuum ultraviolet	XAS	X-ray absorption spectroscopy	
		XCD	X-ray magnetic circular dichroism	
		XES	X-ray emission spectroscopy	
		XIL	X-ray interference lithography	
		ХТМ	X-ray tomography	

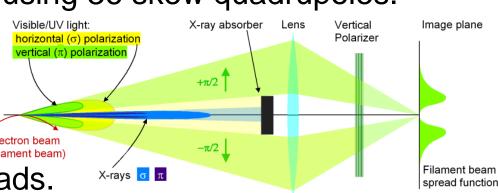
SLS: history

	1990	First ideas for a Swiss Light Source	Same .
	1993	Conceptual Design Report	
June	1997	Approval by Swiss Government	
June	1999	Finalization of Building	1
Dec.	2000	First Stored Beam	
June	2001	Design current 400 mA reached Top up operation started	
July	2001	First experiments	
Jan.	2005	Laser beam slicing "FEMTO"	
May	2006	3 Tesla super bends	
	2010	~completion: 18 beamlines	
Dec.	2011	Vertical emittance record: 1 pm	

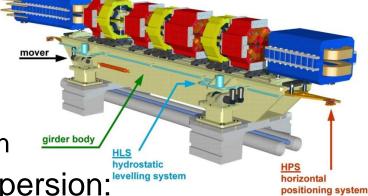
SLS: budget

in **MCHF** (costs < 2002)

Total Project Budget	159	(no salaries included)
Building	63	("turn key", incl. infrastructure)
Accelerators	planned	spent
General	12	11
Linac	6	6
Booster	12	11
Storage Ring	42	40
total	96	924
4 initial beam line	es 24	28 - 4
+ SLS related PSI	budget	~ 90

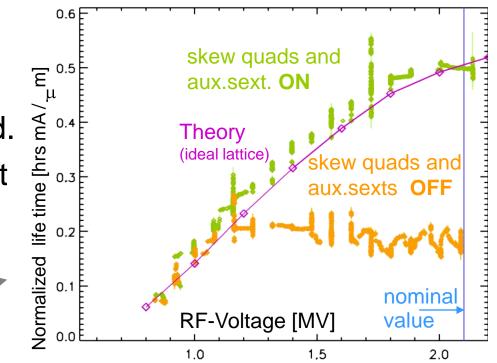

Achievements: beam stability

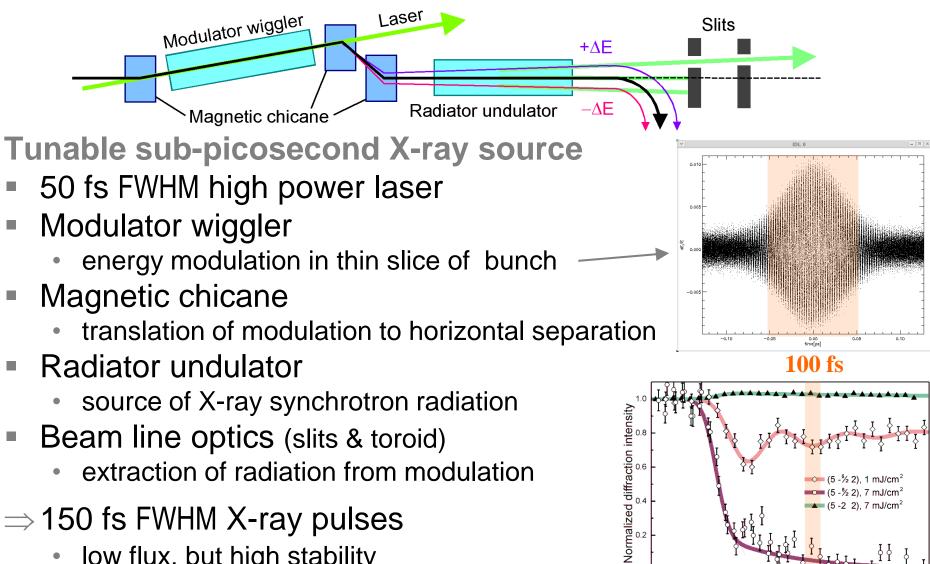
- Top up operation: thermal stability
- Beam position monitors: resolution $< 0.3 \ \mu m$
- Digital power supplies: stability and reproducibility < 30 ppm
- Frequent beam based BPM calibration ("beam based alignment")
- Undulator feed forward tables
- Fast orbit feedback system (< 100 Hz)</p>
- Photon-BPM integration in orbit feedback
- Filling pattern feedback system
- \Rightarrow Photon beam stability <1 μm rms (at frontends)


Achievements: ultra-low vertical emittance

- Dynamic girder alignment system
- Vertical alignment with stored beam and orbit feedback.
- Measurement of coupling matrix: vertical orbit response to horizontal excitation
- Measurement of spurious vertical dispersion: vertical orbit as function of energy
- ⇒ Model based compensation using 36 skew quadrupoles.
- High resolution monitor: beam size from vertical polarized synchrotron light image
- Random walk optimization Electron beam of beam size using skew quads.
- ⇒ World record low vertical emittance:

 $\varepsilon_y = 0.9$ 0.4 pm


(quantum limit: 0.2 pm)


Achievements: optics corrections

- correction of beta functions tuning 177 quadrupoles
- \Rightarrow beta beat (= $\Delta\beta/\beta$) down to ~ 2% rms.
- suppression of coupling using 36 skew quadrupoles
- suppression of sextupole resonances using 12 auxiliary sextupoles
- momentum acceptance
 (=momentum dependent
 dynamic aperture) restored.
- beam lifetime in agreement with design calculations.

Measured beam lifetime (normalized to σ_y and bunch current) as a function of RF voltage

Achievements: FEMTO

- low flux, but high stability
- time resolved sub-ps X-ray experiments

-0.5

0.0

0.5

Delay (ps)

1.0

1.5

Summary and outlook

- 12 years of positive experience with SLS
 - Experimental program
 - Accelerator operation
 - World records: stability and vertical emittance
 - Femto: unique source of sub-ps X-rays
- Complementary: SLS ⇔ SwissFEL
 - FEL: few beam lines, very high peak brightness
 - Storage ring: many beam lines, excellent stability
- Future storage ring based light sources
 - factor 10..100 lower horizontal emittance
 ⇒ major SLS upgrade > 2020 ?