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1 Introduction to Electromagnetic Radiation

1.1 Units and Dimensions

In the following onlyMKSA units will be used. In this system the dimensions of the important
physical quantities are

physcal quantity symbol dimension
length I meter [m]
mass m kilogram [kg]
time t second [s]
current I Ampere [A]
velocity of light c 2.99792800° m/s
charge q 1C=1As
charge of an electron e 1.6020%0"° C
dielectric constant a 8.8541900"% As/Vm
permeability Ho 4pA0’ Vs/Am
voltage V 1 volt [V]
electric field E V/m
magnetic field B 1tesla [T]
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1.2 Rotating electric dipole

Before we start with the quantitative discussion of electromagnetic radiation, some simple examples
may makesomething clear of the general physics behind. At first we will look at a static electrical
dipole as shown in fig. 1.1. An observer notices a longer distance apart a field with downward
direction. When the dipole is turned upside down within a very simog and turned back
immediately after, only in the vicinity of the dipole the field follows the motion nearly without

delay. At that time the observer don6t notice
velocity of the information (i.ethe velocity of light) it takes a certain time until this happens.
E-field

iﬁ?ﬁmummw -
TT e T g
lu I e
memmmmm A

Fig. 1.1Generation of electromagnetic waves by rotating a static dipole

One can see in fig. 1.1 that the delay (etdrdatiort’) of the field spreading immediately leads to a
wave of he electric field. According toMa x we | | 6 s" this mealépendantselectric field
generates also a corresponding magnetic field and we end up with an electromagetic wave.
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1.3 Rotating magnetic dipole

In the first picture of fig. 1.2 the simplified fielgattern of a magnetic dipole is sketched. When the
magnet starts rotating around the axis perpendicular to the dipole axis the field distribution at a
given time changes because of the limited velocity of the field spread. Fig. 1.2 shows three pattern
with different rotation frequencies between 200 Hz and 10 kHz.
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Fig. 1.2Generation of spherical waves with a rotating magnetic dipole. The field is observed in an’@@@ lah.
The rotating frequency varies between 0 Hz and 10 kHz.

At higher frequencies, one can directly see the generation of spherical waves traveling from the
center to the outside. The information of the field strength produced by the dipole takes some time
to reach the observation point far away from the origirririguthis time the dipole position and the
spatial field distribution in its vicinity has changed. Again te&ardation of the time dependent

field leads to electromagnetic radiation.
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1.4 Relativistic charged particle traveling through a bending magnet

The last example is the radiation emitted by a charged particle moving with a velocity close to the
velocity of light. Because of the relativistic contraction of length the field around such particles has
not a spherical distribution as in the rest case bubimgracted in the direction of motion. The
electrical field is like a disk and its axis is identical with the particle trajectory as shown in fig. 1.3.
In a bending magnet the particle trajectory follows a cycle. Consequently, the field pattern is rotated
around the axis perpendicular to the plane of motion. Outside the cycle this rotation would require a
field velocity larger than the velocity of light, which is according to elementary laws of relativity
impossible. Therefore, the field is delayed (or "ré¢a") and finally it tears off the particle. Each
particle produces a very short field pulse emitted into the forward direction. The corresponding
frequency spectrum is very broad and covers the range between the visible lightasysd X

V> e "retarded”

; / field

> ¢ g —O-6->»
synchrotron
light
clectron
trajectory

Fig. 1.3Relatvistic particle (electron) traveling through a field of a bending magnet.

It is easy to understand that this type of radiation is not be generated by slow moving nonrelativistic
particles. In this case the field is almost spherical and the delay is negligible. This radiation occurs
only at extremely relativistic velocities whicire achievable with reasonable effort only with
electrons. At the end of the forties this type of radiation has been observed the first time at the 70
MeV electron synchrotron built by General Electric. Therefore, this radiation is called today
"synchrotron radiation".

In the following, this lecture will present the basics of electromagnetic radiation and in particular
the physics of synchrotron radiation. There is a strong influence on the dynamic of the particle
motion in circular electron machines adiegion damping, beam emittance and so on. Modern light
sources produce synchrotron radiation by use of an extremely strong focused electron beam. This
requires a very special magnet lattice.
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2 Electromagnetic Waves

2.1 The wave equation
Oscillations are perttic changes of a physical quantity witine

S(t) = S expiwt (2.1)
It is the solution of the differential equation
&) +w?S(t) =0 (2.2)

A wave describes a periodic change withe andspace

A Awi)

x = const. { = const.
W pffommm ° W* o :

0, S

T

Y

Fig. 2.1Time and spatial dependence ofpariodic physical quantity

The differential equations are

HWO) 2 =
Wit) +wAW(t) =0 (2.3) T +k“W(x) =0 (2.4)
2
W= * (frequency) k= l_p (wave number)

T
or more general for all 3 dimensions

DW(T)+KAW(F) =0 (2.5)

K=(k.k, k)

x1 Ny 1 Nz

At the timet; the wave has at the poixitthe valuew . At the timet, the wave point has moved to
the pointx,

W' (x,t) =W, expi (th - kxl) =W, expi (Wt2 - kx2)
Y wt - kx =wt, - kX, (2.6)
Y W(tl- t2) :k(xi- x2)

The wave velocity (phase velocity) becomes

2.7)

~|=

From (2.3) we get
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. 1
Wix,t) +WwW(x,t)=0 Y  W(xt)=- W\ﬁ(x,t) (2.8)
Inserting this result into (2.4) we get
. W(x,t) Kk
HWOD gy =0 ¥ “T(Z)- Wi =0 (2.9)
With the phase velocity (2.7) we find the one dimensional wave equation
W(x,t) 1
e x =0 (2.10)
The general tree dimensional waaguation has then the form
C 1 4C
DW(rt) - W t) =0 (2.11)
Vv
2 42 2 2 A o ~
with the Laplace operatorD = ae“—2 + “—2 + “—28 =D?. The operato® = aeE£ £8 is the so
CUX™ My ez~ CX Wy pz+

callednabla operator

2.2 Maxwell's equations

The electromagnetiadiation is based on the Maxwell's equations. In MKSA units these equations
have the form

.C
PE=— (Coulombs law) (212)
c %
pdB=0 (213
C_ B
p3E=-2= (214)
Mt C
c C HE
b3 B=m,j +me, E (Amperes law) (215

One can easily show that time dependent electric or magnetic fields generates an electromagnetic
wave. In the vacuum there is no current and therefored. From (2.14) and (2.15) we get

C
Pp3E=- ‘_

C Mt (2.16)
ps3 B:m)eog E2E

and
ps =
p3(p3 Bc)zrrbeoE)3 ¢
Inserting the first equation into the second one we get
D3 (D3 B) =-me, (2.18)
Using the vector relatio® 3 (B3 éfj = E)(E)Ghj - ng and equation (2.13) we finally find

(2.17)

pB- me, =0 (2.19)

This is a wave equation of the form(@11). The phase velocity is

c= = 299792510 % (2.20)

Mo
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2.3 Wave equation of the vector and scalar potential

-
With the Maxwell equationDB =0 and the vector reIatiorD(E)3 5’) =0 we can derive the
magnetic field from a vector pential A as

B=D3 A. (2.21)
We insert this definition into the Maxwell equation (2. 14) and get
C
p3E=- —t =- 9 o
H (2.22)
v pode.HA “AO =0
¢ ut -

C A\
E+ % =- P (2.23)
The electric field becomes O
C & 5
E=-50f+ 2%, (2.24)
¢ M-
With Coulomb's law (2.12) we find
C & AD
pE=- e f+ 5= (2.25)
¢ M+ €
or
sz+ﬂaoa:-r— 2.26
o= (2.26)

We take now the formula oAmpere's law (2.15) and insert the relations for the magnetic and
electric field (2.21) and (2.24) and get

g3(b; f=nf me

o). D A (2.27)
E)AC rn)e0 0 DC(>DO§—'"BJ
The relation becomes
C
=-m) (2.28)

Equations (2.26) and (2.27) create a coupled system for the pot%@df. We define now the
following gauge transformation

A - A=A+DL
(2.29)

P fi=f- B

ut
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The free choice of_(r’t) provides a set of potentials satisfying tlmrentz condition

C uf
bPA+ ==
< it (2.30)
With the gauge transformation we get
C 1 o ~
p(A+D 1)+ t5 - LG
O S
C 1 1 Wil (2.31)
oA+l ippl)- b2 =0
&) "' © c’ ut

=0 (Lorentz ondition)

If the function L (rt) is a solution of the wave equation

1t

PL - e =0 (2.34)
the Lorentz condition is fulfilled. In (2.26) we replaB&A by - i#/c2 and get
1 pf r
p- - =-—
aToR (2.35)
With ¢® =1/mye, the expression (2.28) becomes
C 1A 3 .C 1 C
p'A- LKA o+ LEE. o (2.36)
CHe) ) §H
=0 (Lorentz cadition)
The result is then
C 1A C
D?A- ?‘:Ez =-mj (2.37)

The two expressions (2.35) and (2.37) are the decoupled equations for the pOi&l%ﬁ@ﬁhd
f(r t). Theseinhomogeneous wave equationare the basis of all kind of electromagnetic
radiation.

2.4 The solution of the inhomogeneous wave equations

We have now to find the solution of the inhomogeneous wave equations (2.35) and (2.37). We start
assuming a point charge in the origin of the coordinate system of the form

dg=r () d(riav (2.38)

Outside the origin, i.elﬁ, 0 the charge density vanishes. The wave equations of the potential
becomes

1 Wof
pf - ?F =0 (239)
The potential has now a spherical symmetry as
f(rt) = (MY =f(r,1) (2.40)

10
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SYNCHROTRON RADIATION
We have now to evaluate the expressifi(r) for a point charge. A straight forward calculation

yields
| |\
) AU A& ropf pf 2uf Wof
P*(r)=DDf(r)=DE —0=®—0—+— =40 2.41
(r) (r) Gl @ e T e (2.41)

On the other hand we find the relation
(2.42)

55 ha
—\rf)=—a +r—0=2—+r
wZ( ) we T g’
Combining these two expressions we get the wave equation in the form
1pf 185 1 %9 B
P - ?F—F(?—wz - ?—Zg(rf)—o (243)

with the general solution
(2.44)

1 1
f(r,t) = f.(r- ct) e f,(r +ct)
The second term on the right hand side represents a reflected wave, which doesn't exist in this case.

Therefore, the solution is reduced to
1
f(r,t)= - f(r- ct) (2.45)

In order to evaluate the functiofi(r - ct) one has to calculate the potentigr,t) in the origin of

the coordinate system. The problem is that
(2.46)

. f(r-ct
r- oY f(r,t):—( . ).
A better way is to compare the first and secdadvatives of the potential. For- 0 we get
pf f(-zct) - pf 1pf(-ct) (2.47)
K r- MooroHt
The ratio of the second spatial derivative to the second time derivative is even much larger
°f 1 Wof
% > >C—2% for r- 0 (2.48)
andwe can simplify the wave equation (2.35) to
(r- 0) (2.49)

"
P (r,t)=- —
(rt)=- 2

0
This is the well knowrPoisson equatioffior a static point charge. Far- 0 the potentialf (r,t)
approaches the Coulomb potential. Therefore, aveverite
1 r(Ot
_1 1@y DV (2.50)

f(r,t):%f(r-ct) 1, 0h- %f(-ct):4p§ ;

Because of the limited velocity of the electromagnetic fields, at a pomoutside the origin the

time dependent potential is delayed by

r . r
Dt =— Y t- t-— (2.51)
c c

11
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At this point we have th&etarded" potentid

1 fg‘@’t'fzg
df(r,t):4p§ ——dv (2.52)
A
z
P
7T
7
X y

Fig. 2.2Position of the charge element and the observer

In general the charge is not in the origin but at any poinin a VolumedV. For this case the
potential gets the form

&G . Ir-r1g
g - 9

df(r,t):4pl§

oy

It is retarded by the timé&t = e Since under real conditions one do not has a point charge the

e Tqv 2.53
e 253

potential must be integrated over a finite volume containing the charge distribution. The result is
then

Y
7

r- g
!t_io
c 9

c ﬂ -dVv (2.54)

o
0083880

_.,
=
-0
i
N—r
I
IN
T |
<D
<000 0

The vector potential,&/(rkft) can according to (2.35) and (2.37) easily evaluated by replacing the

r - . ,
expressione— by myj . In this way we find
0

uo%g!
(@]

20

e

o
5|3

~ : V
8 d (2.55)

< 0ODO OO

12
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These solutions of the two wave equations are cali&uard-Wiechert potentialsAn effect on the
electromagnetic field at the poim\fand the time is caused by and j at the pointr\* and the

earlier timet'=t - /- r/c.

2.5 Liénard-Wiechert potentials of a moving charge

The calculation of the electromagnetic radiation emitted by a moving charged particle needs a
careful integration over the clgg, even in the case of point charges. We now replace the distance

between the charge and the observer by o
R=r"-r (2.56)

p(xy'z)
radiation
at time ¢

P

observer
do

) article
g at time ¢’ Er

ajectory
N

Fig. 2.3Radiation from a moving charge
Radiation observed at the polttomes from all charges within a spherical shell with the céhter
the radius{ﬁ[and the thicknesklﬁ. If ds is the surface element of the shell the volume element is

dV =ds dr (2.57)
The retarded time for radiation from the outer surface of the shell is
ti=t- E 2.58
=t (2.58)
and from the inner surface
dr
tij=tj- %T (2.59)

The electromagnetic field & at the timet is generated by the charge within the volume etgme
dV. The charge in this volume element is with=|dr{

dg =r dsdr (2.60)

For charges moving with the velocil\}' one has to add all charge that penetrate the inner shell
surface during the timeélt = dr/c, i.e.

dg, =r vndtds (2.61)

with the vectorri normal to the outer surface defined by

o

C_ % (2.62)

13
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The total effective charge element is then

dq:dql+dq2:rds(dr+\%:dt):r dsgaeirﬂg:rcl:%g:r(ﬁn dr ds (2.63)

rdrds =r dV = i'%s (2.64)
1+n

Insertion into equation (2.54) gives

With thisrelation we can write

C 10 d 1 1
frty=—02 Yg=_= 4 (2.65)
4p g0 RiL+nN 4p g RIL+nb)
The current density an be written as
i=rv (2.66)
and the vector potential (2.5b¢comes with (2.64)
N C ~
Cc 0 C b
A(r,t) :ﬂo :ﬂﬂ (2.67)
dpd RL+n 4o R{1+n

It is important to notice that the parameter in the expression on the right hand side must be taken at
the retarded time'. The equations (2.65) and (2.67) are thénardWiechertpotentials for a
moving point charge.

2.6 The electric field of a moving charged particle
Using the formula (2.23) we can derive the electric field at the pdiytinserting the potentials as

C & pd_ g 1 cmg U
E=-aDif +—0=- Dj G
¢ ' M+ dpg 'Rl+nd) 4P utR(mH;) (2.68)

In order to simplify the calculains we define

a= R{L+1b) (2.69)

\/

and set
cma_c'ma_ mgq _ q 1 (2.70)
4p 4pc  4dpne,c 4dpec

The electrical field is then

C e a oﬂ
So. 9 g, 1,110 2.71)
4p g a cutga—u

Notice that all expressions concerning the moving charge must be evaluated at the retartied time
To indicate the calculation at the retarded time we will add a ' to the symbol f:eett.). With

1 1 Mo podt

Di5=-¥9ia and o ot (2.72)

we get

14
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| 9
c e1 1dti u ab oo
E=-—J &~ Dia- ——'i_%ga (2.73)
4p g ga c dt ut.Q ke

w
This formula needs the knowledge éfja, dtj/dt and p(b/a)/uti. The detailed calculation
provides the following results

The variation of the distandgl[: Ris

dR _ cg dR g
dR= VYot dt| (2.74) and E =V (2.75)
The retarded time is
R
ti=t- — 2.76
i=t- (2.76)
and we find
dt; 1dRdtj . VN dt ngti dti_ 1 ._R
—=1-——=1-——=1- nb— —=~e§:— :
dt c dtj dt c dt dt dt 1+n a (2.77)
The nabla operator for the retarded time is defined as
Dlau NIHHIJIIHHHHHS
CUX [XjMti My HyiMtj iz  pzj M~ (2.78)
=E)+E)iti£
Mo
With this relations we find witbPR=-n
E)iR:E)R+E)itiE E)iR:-r(1:+E)itjE (2.79)
ML M|
The gradient of the retarded time becomes
a 1 86 1 13 RG
Bt =B SR SERe . — +Ditit 0
¢ c ~ (o c cG Mt~ I’kf Iil
1 C D't'zmz— :
:E( rC1:+r(1:\§:Diti):%- rclzbE)iti " cli+n ca ey

C
n

Y It 1+I’Cl:§)

With this result we can finally writ® R in the form

~_ C. 1R
D]R:-n+a(\% biR= ngeaT( (a 10 (2.81)

For further calculations we ne@li(§t5. Since the velocity of the particle does not depend
A\

on the position oP we haveBb = 0. With DR = - 1 we can calculate
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O:) CC)+E)|t|ﬂ

C ub Di(ﬁ)ﬁ)c:: cC . C
E)Ig))+RDb+% — Pt C R&CGIR Cibd (2.82)
I-Itl— - b+—%_+ R_8
o C C cag Vil i 2}
C aC “bQR
b+%
G utl utl ca
For the time derivative & we get
C
rC‘:bC) H iRg C Cw
“t' i Ce o c oC %zcbn+cb2+R—_ (2.83)
—\9:r(1:+uRb+Rub—vn+v +Rub I :
With (2.81) and (2.82) we f|nd the first requwed expressmn
R &Cuh 6
E)ia:E)iR+Di(|g§)=rcl:E b+—q) R “bg
a cac
b
bija Cb+b +——0 (2.84)
-
The time derivative of the ratlb/ abecomes with (2.83)
“ AT S C C S~
wip b b Lib bASE G, Qg
Higar api a® Wi api a% c HEi=
C ACb 6
-1 ). S DA
afi a a a’ ¢ Vi
58 1 5eCq b GO
£ 8:—£'710(§%+R£+0b20 (2.85)
phg T aMij as Mti y

Now we insert the relations (2.77), (2.84) and (2.85) into the equation (2 73). The result is

Eczigif - b+— %]c[?+b2+EEw_ EFEE_E (g(a IJb+CbZ&Ju

4p g ga’ CIJII_{] Cafauti a’ g
& C
_ q > p.bo Ra]J.b 3
_4p §a3 - +|%C§)+Rb += Rg |8 __+R§(C3+ bg 8+Rb (2.86)
4651 S a5t
4p§a [ an- ab+|g(cgj+sz+R§(C(a+Rbs += eRgutng RaEJerégE—:éz%

With the definition ofa we can manipulate the expression in the first RHB.[IS ]1in the following

way
B =-Rl+ r%b\é(n E;)+ F\f(éﬁ% Rb? + Rb(1ib)+ Rb®
- - Ri- Rb+ Rb? + Rb? (2.87)
C
= I%bz - 1 + ng(b2 - 1):- (1- bz)(R+bR)
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C
The second brack¢8 ], becomes witrt%— pb/pti

B],= RQeRbB R - R %‘) é?eRt%i
= (R+ Rgﬁﬁbe (R + R(RO)E (2.88)
6 . 56
Using the vector relation
Sasd - S45a) =& (52 § 2.89)
we get
[3], = Ro (F?+ Rffjs ﬁi (2.90)

Now we replace the two brackets in equation (2.86) by the expressions (2.87) and (2.90) and get the
electric field in the final form

R+t(>:R)+ C—;I% g(lg+ t():R)3 g‘@ﬂ (2.91)

We can write this equation ia slightly different way, namely

‘"— 1-b 3(%{+ER) ER grcﬁ?HbR) g;;

?@+n

n+b +—(ﬁcl?(1+n gn+b

The first term drops down Witm/ R® and vanishes at longer distances. The second term, however,
reduces only inversely proportional to the distaRcé determines the raation far away from the
source charge. For further discussions of the synchrotron radiation, we are only interested in the
long distance field. Therefore, we can we can neglect the first term in (2.19) and get

(2.92)

C CCC\ 6o
-9 1e o
S e gR+bR): i (2.93)

Since R points into the direction opposite to the direction of the radiation, one can directly derive
from (2.93) that the electric field is polarized orthogonal to direction of radiation.

2.7 The magnetic field of a moving charged particle

With the relations (2.21) and (2.67) we can calculate the magnetic field of a moving charged
particle and we find

C C ¢ 30 cmgal . C 1
B=pj2 A= ps 505 maal & Di7b-

G
ia)3 b 2.94
ap ca- 4p Ga (Bia)* bo (2.94)
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(%
With b = (bx,by,bz) we use the "retarded" curl operation

a e g e 8
T . VU T (O LS (2.95)
gjx Hxllltl Hy Hyi Mt pz IJZIMtIO
b, b, 2
The evaluation of this operation provides
&4 Cue A 5
coeh + LG, g MiKg, ¢
c agly Myi Mt Cpz uz|ut| 6
i 1B 6
bjs b:ﬁu +ﬁ£8bx- %E+h£8b )
bz i = S T
al  Hi 1§ apjy M uo o
=L E06h - @+ b,
i i Gy i e (2.96)

aub KHe apipb ptiMbho
=Y Ky Vi i Kz g c
_ath ubo altiph wuubq_93b+(9ti3§)

Cux  pz 9 Mt X
T he a0l e

C X My -+ cMXj ML HYj MG+

Since V is independent of the positid? of the observer we hav® 3 k\)J: 0. The gradient of the
retarded time has been derivecguation (2.80). The result is

C 1/C
bj3 b:—(R3 b (2.97)
ca
The second expression needed in (2.94) is
C C 14cC C R
Dia:-r(]:- b+bR with b:zggemcg+b2+3% (2.98)

With this relation we get

Bias =+ - s b b= [0 8] (52 f] 0[] =[5 B0 8] 299

=0

Now we insert the relations (2.97) and (2.99) into the #ejdation (2.94) and find

o R 2R R

C
C
cmgqa b r § F\:%Cg+bz+5t%b3n8
ca’ ¢ c ¢ 0

4p a’

(2.100)

As for the electric field we are also for the magnetic field only interested in the contributions at far
away places. Therefore, we reduce the formula (2.100) in a way that it only contains termes
proportional tol/ R. The result of this approximation for long distance fields is then

18
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:Crquél \3”‘ %&Cébsqo
4p aecR(1+r%) cR(1+r%)o

There is an important relationship between the electric and magnetic field emitted by a moving
charged particle. To finthis relationship we modify the formula (2 86) in the following way

SYNCHROTRON RADIATION

(2.101)

C 1 C Rb
I b+bF(ei g “ (2.102)
4ap 9[ a’
The vector multiplication oft this equation with the unit vea\tbgives
C R
[E3 r(ﬂ: q F C b% b (e
4p gra \
E a C 0
q I'lze S, R L Rb L
o .l ge@ ﬁ b3 +bL5 ﬁo - £ C] b r(ﬂ; (2.103)

2

“4p gt a’ ca’ |

. F [b?wﬂ R .g3rc‘]+53§elcg+t%+5%g3 nﬁ
a ¢ C = ,fl

Comparison with the equatid@.100) for the magnetic field leads directly to the following simple
relation between the magnetic and electric field

——[E3 (1 (2.104)

One can directly see that the magnetic field is perpendicular to the electric field and the polarisation
of both fields is perpendicular to the direction of radiation. We can now sta@®yméing vectoof

the radiation in the form

g:i[ECS azci[lzcs (E> ) (2.105)

We apply again the vector relatlcm3 b3 c(:') ac(:j é(é“B) and get

| 7
E3(E3r%) E(En - WE?Z=- TE? (2.106)
The Poynting vector finally becomes
C 1 Cc
S=-—E’n (2.107)
cm,

This is the power density of the radiationrgilel to 0 observed at the poir®® per unit cross
section. For some calculations it is also helpful to evaluate the Poynting vector at the retarded time

t'. With the relation (2.77) we find
r(1: (2.108)

or
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(2.109)

3 Synchrotron Radiation

3.1 Radiation power and energy loss

Now we choose a coordinate syst&fmwhich moves with the particle of the charge= e. In this
reference frame the particle velocity vanishes and theyelascillates about a fixed point. We get

A

V=0- b=0- a=R (3.1)

It is important to notice thdﬁ* , 0! The expression (2.93) is then modified to

C C [C
S (R3 = ff :ii(rcf3 G £ (3.2)
: 4p gcRY * :

4p g cR®

The radiated power per unit solid angle at the dist&fcem the generating charge is

P_cC,_ 1 ¢ C,[C, E
aw~ "ok ﬁ(4pe§) c? % [ ]8 03
¢ ac[c k& '
(4p) ceo% [ ]8
With the vector relatlora3 b3 c(:') ac(:‘) ((:'(a((l‘)‘) and IV’ 1 we find
i, [C, Rlg" _ 5 2 ¢ g
63?(1:3 [r%b]@ =§hc(r(i:§)b(r(1:r%§ =r(1;(n ) -2&%% +b 54

e

Since r(w%t ﬂrﬂ#‘cosQ:‘#‘cosQ where Q is the angle between the direction of the particle

acceleration and the direction of observation the relation (3.4) becomes

3C,. oC 5 2 2 2 2 . 5
%13gn3k%$ =t% g co€Q = g(-co§Q):5@ sin Q (3.5)
The power per unit solid angle is then
dP _ e’ b,
——= b sin’Q 35
dw  (4p)°ce (59)

The spatial power distribution corresponds to the power distributiorHefta’ dipole It is shown
in fig. 3.1. The total power radiated by the charged particle can be achieved by integrating (3.5)
over all solid angle. With

dW=sinQ; dQ;j df (3.6)

we can write
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ez 22pp
P=—-—D0 [ypin°QdQdf (3.7)

(4p)2060 00

wheref is the azimuth angle with respect to the direction of the acceleration. The result of the
integrals is simply 4/3 and the total power becomes

vl

A
RO
§&~\ i

05
Fig. 3.1Power distribution of an oscillating chargearticle in the reference frank* (v = 0)

e2 &2

6pe,C

P=

(3.8)

This result was first found bizamor. One can directly see that radiation only occurs while the
charged particle is accelerated. With thedification

gV _mr B (3.9)
C ¢ mc
we get
C2
e Adpo
P=_ %
6pe,m*c’ gecig (3.10)

This is the radiation of a nemlativistic particle. To get an expression for extreme relativistic
particles we have to replace the timeytthe Lorentznvariant timedt = dt/gand the momentum

p by the 4momentunP,,

dt - dtzldt with g= E2= =
g mec®  /1- b? (3.11)
[():- P, (4- momentum)
or
abg | aRg_adg 14deg @12
cdt~ cdt - CdtT c°CdtT '
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With this modification we get the radiated power in the relativistic invafgant

a
> 4 (3.13)
G

The radiation power depends mainly on the angle between the direction of particle Matiuh
the direction of the acceleratiaiv/dt . There aréwo different cases:

A\

. . av  C
1. linear acceleration: a ||V
YA
2.  circular acceleration: a A \(/:
3.1.1 Linear acceleration
The particle energy is
E*= (n])cz)2 + p°c®. (3.14)
After differentiating we get
dE dp
E—=c’p—- 3.15
a Pt (3.15)
Using E = gmyc® and p=gmyv we have
dE dp
—— =V— 3.16
dt dt ( )
Insertion into the radiation formula (3.13) gives
S o T L o
op gmc?) &t~ Ger ot~
e 5 e (3.17)
= S (1- b2)&ER8
e fme " e
With 1- b*=1/g* we can write
2 adp o 2 2dpg”
p-_ 6¢ _gdpg_ ec adeg (3.18)
6p gmc?) cadt=  ep gmc?) Cat™

For linearacceleration holds
dp/dt = (cdp)/(cdt) = dE/dx
and we get

2 o E~2
- cc _adeg (3.19)
6p dnﬂbcz) (}dXT

Today in most of the modern electron linacs one can achieve

R

and gets the radiation power
22
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Ps = 4A0"" Watt (!)
which is completely negligible. In a linac synchrotron radiation has not to be taken into account
independent of the particle energy. Therefore, at extremely high energies linear collider are the
favorite machine type rather than circular accelerators.
3.1.2 Circular acceleration

Completely different is the situation when the acceleration is perpendicular to the direction of
particle motion. In this case the particle energy stays constant. Erquation (3.13) reduces to

20 (3.20)

On a circular trajectory with the radiusa change of the orbit angda causes a momentum
variation

dp= pda (3.22)
With v = candE = pcfollows
dp _ _pv_E
gt pw = R T (3.22)

We insert this result in (3.20) and get wiglr E/mc?

_ e€c FE*
Ps - 2\4 r 2

6p @(moc )
Comparison of the radiation from an electron and a proton with the same energy gives

mc® = 0511MeV
m,c® =93819MeV

(3.23)

P &mc*d }
e =Gt 6 =11300° ()
F;,p ¢cme’ =

This radiation is therefore observed in most of the cases from electrons. Only at extremely high
energies oE > 1 TeV also for protons the synchrotron radiation starts playing a certain role.

In a circular accelerator the energy loss per turn is

~ 2pr
DE = fp.dt=PRt, =R - (3.24)

The timet, is the duration a particle needs to travel through the bending magnets. In straight
sections no radiation is emitted.

We insert (3.23) into (3.24) and get

2 4
DE :mf— (3.25)

For electrons one can reduce this formula to a very simple expression
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E‘(GeV’
DE[keV] = 88.5% (3.26)
100. EN
10. = Ed
r/ "
1 ’?!

3 =
= 04 L

001 =

0.001 et

f/,,
01 015 02 03 05 07 1 15
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Fig. 3.2Energy loss per revolution in the storage ring DELTA at the University of Dortmund as a function of the
particle energy

The synchrotron radiation was investigated the first timeiégardat the end of the last century. It
was observed almost 50 yeartetaat the 70 GeMsynchrotron of General Electric in the USA.

At high electron energies the bending radius of the magnets has to increase with higher power of the
energy because of the relation

E4

DE * e (3.27)
Table 3.1Parameter of a few circular electron accelerators

L [m] E [GeV] r [m] B [T] DE [keV] I
BESSY | 62.4 0.80 1.78 1.500 20.3|
DELTA 115 1.50 3.34 1.500 134.1
DORIS 288 5.00 12.2 1.370 4530
ESRF 844 6.00 23.4 0.855 4.9020°
PETRA 2304 23.50 195.0 0.400 1.38320°
LEP 2740° 70.00 3000 0.078 7.0830°

3.2 Spatial distribution of the radiation from a relativistic particle

The power per unit solid angle was given in (3.5) as

dP

dw (4p)°ce,

.

sinQ
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for the radiation of a charged particle in the reference fr&he The angular distribution
corresponds to that of the Hertz' dipole as shown in fig. 3.1. For relativistic particles the radiation
pattern is significantly different. The radiation is focused forward into a narrow cone with the
opening angle of approxirtely 1/g.

The radiation power per unit solid angle is according to (3.3)

dP _ cC
— =-nSiR 3.28
=S (3.28)
With the relation (2.109) for the Poynting vector at the radiated time we get
ap 1 C
= EE(1+ r?ﬁ R? (3.29)
dW cm,

Inserting the electrical field (2.93) and with the charge of an electroa we find

(F(2:+tc):R)3 t%ﬂ}z(u nCt()j R?

P_1e g
dw cm.,(4p @)2 c’a®

3.30
1 e R [C.[/C 2 ( )
= >—>1N°3 (n+b Db
cm, (4p @) c’a
A
z
72) B __\E)bserver
»
X
/ \ / Ky
particle \ /
trajectory \\\ //
Fig. 3.3The coordinate system of the moving charged patrticle
The vectorR pointing from the obsrver to the moving patrticle is (see fig. 3.3)
asinQcosf 0
C & Q .0
R=- RgsinQsinf g (3.31)
& cosp 2
and the correlated unit vector
a- sinQcosf §
C & . .0
N=g sinQsinf g (3.32)
88 - cosQ 9
Thelorentz forceof an electron traveling along a trajectory in a magnet is
& vB,0
C c C & ‘0 ‘%
F=-ev3B=-ex 0 g=gm, (3.33)
o 2

with
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400 avt 0 400
C aeo g 20 & 0
V = g8, =p and =aB,0 (3.34)
a?,o &2 Fo?
A straight forward calculation yields
gm ¥ =evB, =echB, (3.35)
On the other hand the bending radius of a trajectory in a magnet can be evaluated according to
1 e eB . Y
YL T = 9TV (3.36)
rp gmyVv er
The transverse acceleration bétparticle can now be written in the form
2182
W = Crb (3.37)
With (3.34) and (3.37) we get
c 400 aoo
C Vv & 6 &0
&v/c? &2
and
&t /cd dcb?)/r0
" an/ ) ?a(‘ )/ )
b=g0 0= 0 O (3.39)
Eo 9 83 o @
b

C
Using again the vector relatica® b 3 é) =b

5 58 -8B
y n+@(ga-bl+ggj

a- sinQcosf 0,
& Q

0a
= ae sinQsinf oae sinQ cosf —o

b cosQ

ea

0 o sin’ Qcos f
_c

|ae sin® Qsinf cosf

ig- (b - cosQ)stco

The square of this expression is
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c(:(é'g) the double product in (3.30) becomes

cb?)/r8
0 (1 bcosQ)
0 0

b2 <] (3.40)
x
G
b oU
c:osQ(,jT
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(3.41)

b cosQ) + (1- b cosQ)z}

1-

(

*Qcos' f +sin* Qsin’f cos f +b?sin?Qcos f -

Qcos f

- 2sin?

2b cosQsin* Qcos f +

{sin

b cosQ)z}

Qcogf +(1-

2

+c0¢ Qsin®Qcos f - 2sin®Qcos f + 2bcosQsin

and

sin?Qcos f +

_1)

+ so'snz)f )-(1) + (b2

5

Qcosf + (1- bcosQ)z}

Z. 1)sin

i sin*Qcos f Qg(}
|
4
{02 - Jsin?
From the definition (2.69) we derive with (3.32) and (3.38)

2t £
r 2

%

r

c
c

{3} =

(3.43)

R(l- bcosQ)

R(1+ r(fE).)

We insert (3.42) and (3.43) into (3.30) and the radiated power per unit solid angle becomes

a=

(3.44)
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0.9.

Fig. 3.4Radiation pattern for different particle velocities betwben0 andb

With the dimensionless particle energy

(3.45)

J1+Db?
we vary the angl€ between the direction of particle motion and the direction of photon emission

according to

(3.46)

(u= dimensiotess numbg

u
g
andcalculate the photon intensity using equation (3.44). The result is shown in fig. 3.5.

Q:
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2

Fig. 3.5Photon intensity of the synchrotron radiation as a function of the gnigi¢erms of1/g

It is directly to see that the radiation is migiconcentrated within a cone of an opening angle of
°1/g. In equation (3.44) we sét= p/2 and the fraction on the right hand side reduces to

1
wQ)=7—""73 (3.47)
(1- bcosQ)3
With the conditionsg >1 and Q <1 we find the approximations
[ 1 1 Q?
e - —0 - o =
b=_/1 7 1 297 and cosQ°1 2
and we get from (3.47)
L 2 ~ 3 3 ~-3
e & 10a Q°09 & Q® 1 Qg _aQ* 190
wW(Q)° él- ad- —50a- —on =4g-1+—+_->- ) ® e +530 (3.48)
(QF 8- 55708 2% “§ 12 "oy gl T &2 Mgl
The peak intensity is = 0, i.e.
alo
w(0) = 0 (3.49)
29"+

We chose now an angle @f =1/g and find the relation
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~-3

al . 10
—~— 50
wg) C2g°  2¢°%  a1§ 1 (3.50)
wo) ~ a1g’ G20 8 |

2072

One can see that most of the radiation is emitted within the cor@, efl/g. Therefore, the
opening angle of the synchrotron radiation is given by this amount.

3.3 Time structure and radiation spectrum

In the following we will only present a phenomenological approach to the calculation of the photon
spectrum of the synchrotron radiation. A detailed evaluation of the spectral functions can be derived
in "J.D. JacksonClassical Electroginamics Sect. 14" or in "H. WiedemanPRarticle Accelerator
Physics I] chapter 7.4".

As shown above the synchrotron radiation is focused sharply within a cone of an opening angle
Q=1/g. Therefore, an observer locking onto the partickgetitory while the electron passes a

bending magnet (fig. 3.6) can see the radiation the first time when the electron has reached the point
A.

observer

electron
trajectory R

t

Fig. 3.6Generation of a short flash of synchrotron light by an electron passing a bending magnet

The photons emitted at poiAtfly along a straight line directly to the observer with the velocity of
light. The electron, however, takes the circular trajectory and its velocity is slightly less than the
velocity of light. During this time the radiatiarone strokes across the observer until the @ist
reached. This is the last position from which radiation can be observed. The duration of the light
flash is simply the difference of the time used by the electron and by the photon moving from the
pointA to point B

2r Q 2rsinQ
Dt=t -t = - 3.51
e 4= o (3.51)
or
2r aQ Q? 6
Dt=—ae - —
c 8%_ Q+ 3 9
. . (3.52)
2ra 1 1 1 8

'
c¢g-12g g 6g°:
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With

1 1 1 14 16 1 1
_1 S PRI S . (3.53)
- 1/2g 91-1/29 g¢ 29°F g 2¢°
we get
2r a1 1 1 10 4r (3.54)

c &g 29 g 69— 3y’

In order to calculate the pulse length we assume a bending radies38 m and a beam energy of
E=1.5 GeV, i.eg= 2935. With this parameters the pulse length becomes

Dt =5800 *sec (3.55)
This extremely short pulse causes a broad frequency spectrum wigpitieg frequency
_2p _ 3pcg’
w - g (3.56)
More often thecritical frequeny
Wy, _ 3cg’
=—F = 3.57

is used. The exact calculation of the radiation spectrum has been carried out the first time by
SchwingerHe found
¥ P, _&wod

de/e - W_C> Ssgevgg (3.58)

With the radiation power given in (3.23)
p-__cc FE
" ep gme?)
thetotal power radiated by electrons is

e’cg”
= ggrz N ;egr I, (3.59)
0

0

with the beam current

| = Nec (3.60)
> 2pr '
The spectral function in (3.58) has the form
9\/§
S(x) = =5 X PKss(x) dx (3.61)

where K, ;(x) is the modified Bessel fution andx = w/w, .

Because of energy conservation the spectral function satisfies the condition
fS(x)dx =1 (3.62)
0

Integrating until the upper limk =1, i.e.w = w,, gives
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1

~ 1

P, (x) dx = > (3.63)

0
This result shows that the critical frequeneydivides the spectrum into two parts of identical
radiation power. An example of a spectrum radiated from a bending magnet is shown in fig. 3.7.

critical frtlequency

0.1

0.01

0.001 ==

0.0001

0.001 0.0 0.1 1 /W 10,

Fig. 3.7Spectrum of the synchrotron radiation emitted bgtetes with a kinetic energy &= 1.5 GeV and a bending
radius ofr =3.3 m

The radiation from a bending magnet is emitted within a horizontal fan as shown in fig. 3.8.

radiation fan
electron beam \

=

—

/

bending magnet

Fig. 3.8 Synchrotron radiation
electron beam from a bending magnet

The broad spectrunemits in the visible regime
almost white light as to be seen in fig. 3.9. Above the
critical frequency the spectral intensity drops down
rapidly.

Fig. 3.9The visible light emitted by relativistic electrons
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