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1 Exercise: local radius, rigidity

We wish to design an electron ring with a radius of R=200 m. Let us assume
that only 50% of the circumference is occupied by bending magnets:

• What will be the local radius of bend ρ in these magnets if they all have
the same strength?

2πρ = 50% · 2πR −→ ρ = 100 m

• If the momentum of the electrons is 12 GeV/c, calculate the rigidity Bρ
and the field in the dipoles.

Using the rigidity definition:

Bρ = 3.3356 · p[GeV/c] = 40.03 T·m

and therefore B = 0.4 T.

2 Exercise: particle momentum, geometry of a

storage ring and thin lenses

The LHC storage ring at CERN will collide proton beams with a maximum
momentum of p = 7 TeV/c per beam. The main parameters of this machine
are:

Circumference C0 = 26658.9 m
Particle momentum p = 7 TeV/c

Main dipoles B = 8.392 T lB = 14.2 m
Main quadrupoles G = 235 T/m lq = 5.5 m

• Calculate the magnetic rigidity of the design beam, the bending radius of
the main dipole magnets in the arc and determine the number of dipoles
that is needed in the machine.

The beam rigidity is obtained in the usual way by the golden rule:
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Bρ = p
e = 1

0.299792 · p[GeV/c] = 3.3356 · p[GeV/c] = 3.3356 · 7000 Tm= 23349
T·m

and knowing the magnetic dipole field we get

ρ = 3.3356·7000Tm
8.392T = 2782 m

The bending angle for one LHC dipole magnet:

θ = lB
ρ = 14.2m

2782m = 5.104 mrad

and as we want to have a closed storage ring we require an overall bending
angle of 2π:

N = 2π
θ = 1231 Magnets

• Calculate the k-strength of the quadrupole magnets and compare its focal
length to the length of the magnet. Can this magnet be treated as a thin
lens?

We can use the beam rigidity (or the particle momentum) to calculate the
normalized quadrupole strength:

k = G
Bρ = G

p/e = 0.299792 · G
p[GeV/c] = 0.299792 · 235T/m

7000GeV/c = 0.01 m−2

an the focal length:

f = 1
k·lq

= 18.2 m > lq

The focal length of this magnet is still quite bigger than the magnetic length
lq. So it is valid to treat that quadrupole in thin lens approximation.

• What does the matrix for the quadrupoles look like?

The matrix of a focusing quadrupole is given by

MQF =

(

cos(
√

|k|lq) 1√
|k|

sin(
√

|k|lq)
−
√

|k| sin(
√

|k|lq) cos(
√

|k|lq)

)

=

(

0.8525 5.22
−0.0522 0.8525

)

In thin lens approximation we replace the matrix above by the expression

MQF =

(

1 0
− 1

|f | 1

)

with the focal length f = 1
|klq|

= 18.2 m

The thin lens description has to be completed by the matrix of a drift space
of half the quadrupole length in front and after the thin lens quadrupole. The
appropriate description is therefore
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So we write

Mthinlens =

(

1
lq
2

0 1

)

·
(

1 0
1
f 1

)

·
(

1
lq
2

0 1

)

Multiplying out we get

Mthinlens =

(

1 +
lq
2 klq

lq
2 (2 + klq

lq
2 )

klq 1 + klq

)

With the parameters in the example we get finally

Mthinlens =

(

0.848 5.084
−0.055 0.848

)

which is still quite close to the result of the exact calculation above.

3 Exercise: FODO lattice

A quadrupole doublet consists of two lenses of focal length f1 and f2 separated
by a drift length L. Assume that the lenses are thin and show that the transport
matrix of this system is

M =

(

1− L/f1 L
−1/f∗ 1− L/f2

)

where 1
f∗

= 1
f1

+ 1
f2

− L
f1f2

We obtain this matrix from a simple matrix multiplication:

M =

(

1 0
− 1

f2
1

)(

1 L
0 1

)(

1 0
− 1

f1
1

)

A FODO cell can be considered as the simplest block of the magnetic struc-
ture of modern accelerators and storage rings. It consists of a magnet structure
of focusing (F) and defocusing (D) quadrupole lenses in alternating order (see
schematic below). Its transfer matrix can be calculated using the matrix of the
quadrupole doublet (above) with f1 = +2f and f2 = −2f followed (and multi-
plied) by another quadrupole doublet matrix with f1 = −2f and f2 = +2f .
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Show that the transfer matrix of a FODO system in thin lens approximation is
as follows:

MFODO =

(

1− L2

2f2 2L+ L2

f

− L
2f2 (1− L

2f ) 1− L2

2f2

)

Taking into account the previous result:

MFODO =

(

1 + L
2f L

− L
4f2 1− L

2f

)(

1− L
2f L

− L
4f2 1 + L

2f

)

=

(

1− L2

2f2 2L+ L2

f

− L
2f2 (1− L

2f ) 1− L2

2f2

)

4 Exercise: Hill equation

Solve the Hill´s equation:
y′′ + k(s)y = 0

by substituting:

y = A
√

β(s) cos[φ(s) + φ0] with φ′ = 1
β(s) , and where A and φ0 are constants,

demonstrating that a necessary condition is:

1
2ββ

′′ − 1
4β

′2 + k(s)β2 = 1

The first and second derivative of y:

y′ = A√
β(s)

(β
′

2 cos[φ(s) + φ0]− sin[φ(s) + φ0])

y′′ = A√
β(s)

((β
′2

4 + β′′

2 − 1
β ) cos[φ(s) + φ0]− (β

′

2 + β′

2β ) sin[φ(s) + φ0])

Substituting in the Hill´s equation

A√
β(s)

((β
′2

4 + β′′

2 + βk(s)− 1
β ) cos[φ(s) + φ0]− (β

′

2 + β′

2β ) sin[φ(s) + φ0]) = 0
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Since the phase φ(s) has a different value at every point around the orbit
and the amplitude A 6= 0, the previous equation can only be satisfied if

ββ′2

4 + ββ′′

2 + β2k(s)− 1 = 0
ββ′ + β′ = 0

and therefore

1
2ββ

′′ − 1
4β

′2 + k(s)β2 = 1
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