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Outline 
n  Introduction: definitions and reminder 

n Steering error and closed orbit distortion 

n Focusing error and beta beating correction 

n Linear coupling and correction 

n Chromaticity 
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      : Total Energy 
      : Kinetic energy 
      : Momentum  
** note that p is used instead of cp 

          : reduced velocity 
 : reduced energy 

      : reduced momentum 

Lorentz equation 

Equation reminder 
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Reference trajectory 
n  Cartesian coordinates not useful to describe motion in a circular 

accelerator (not true for linacs) 

n  A system following an ideal path along the accelerator is used 
(Frenet reference system) 

 
 where we used the curvature vector definition and             . 

n  By using       , the ideal path 
of the reference trajectory is defined by 

n  The curvature vector is 
n  From Lorentz equation Ideal path 

Particle trajectory 

ρ 

x 

y 

s 

x 
y 
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Beam guidance 
n  Consider uniform magnetic field      in a direction 

perpendicular to particle motion. From the reference trajectory 
equation, after developing the cross product and considering that 
the transverse velocities          , the radius of curvature 
is 

 
n  We define the magnetic rigidity  

n  In more practical units 

n  For ions with charge multiplicity n and atomic number A, the 
energy per nucleon is 
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Dipoles 
n  Consider ring for particles 

with energy E with N dipoles 
of length L (or effective length 
l, i.e. measured on beam path) 

n  Bending angle 
 
n  Bending radius  

n  Integrated dipole strength 

SNS ring dipole 

n  Note:  
n  By choosing a dipole field, the dipole 

length is imposed and vice versa 
n  The higher the field, shorter or smaller 

number of dipoles can be used 
n  Ring circumference (cost) is 

influenced by the field choice 

B 

θ  ρ 

l 

L 
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Beam focusing 
n  Consider a particle in the design orbit. 

n  In the horizontal plane, it performs harmonic oscillations 

               with frequency 

n  The horizontal acceleration is described by  

n  There is a week focusing effect in the horizontal plane. 

n  In the vertical plane, the only force present is gravitation. 
Particles are displaced vertically following the usual law  

x 

y 

s 

ρ 

design orbit 

n  Setting ag = 10 m/s2, the 
particle is displaced by 
18mm (LHC dipole 
aperture) in 60ms (a few 
hundreds of turns in LHC) 

      

          Need of focusing! 
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Quadrupoles 

v 

F 

B 

F 

B v 

n  Quadrupoles are focusing in one plane 
and defocusing in the other 

n  The field is 

n  The resulting force             
with the normalised gradient defined as 

n  In more practical units,  

n  Need to alternate focusing and 
defocusing in order to control the beam, 
i.e. alternating gradient focusing    
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Equations of motion – Linear fields  
n  Consider s-dependent fields from dipoles and normal quadrupoles 

n  The total momentum can be written    

n  With magnetic rigidity                and normalized gradient 
         
   the equations of motion are 

n  Inhomogeneous equations with s-dependent coefficients 

n  The term        corresponds to the dipole week focusing and   
   

           respresents off-momentum particles  
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Hill’s equations 
n  Solutions are combination of the homogeneous and 

inhomogeneous equations’ solutions 

n  Consider particles with the design momentum.                          
The equations of motion become  

 with 

n   Hill’s equations of linear transverse particle motion 

n  Linear equations with s-dependent coefficients (harmonic oscillator 
with time dependent frequency) 

n  In a ring (or in transport line with symmetries), coefficients  are 
periodic 

n  Not straightforward to derive analytical solutions for whole 
accelerator 

George Hill 
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Betatron motion 
n  The on-momentum linear betatron motion of a particle in both 

planes, is described by 

with    the twiss functions 

the betatron phase 

n  By differentiation, we have that the angle is 

    and the beta function  is defined by the envelope equation 
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General transfer matrix 
n  From the position and angle equations, 

n  Expand the trigonometric formulas and set   to get 
the transfer matrix from location 0 to s 

 with 
 
 
 
 
and     the phase advance 
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Periodic transfer matrix 

n  Consider a periodic cell of length C 
n  The optics functions are                         

 and the phase advance 

n  The transfer matrix is  

n  The cell matrix can be also written as 
 

  
 with         and the Twiss matrix 
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Tune and working point 
n  In a ring, the tune is defined from the 1-turn phase 

advance 

 i.e. number betatron oscillations per turn 
n  Taking the average of the betatron tune around the ring we 

have in smooth approximation 

n  Extremely useful formula for deriving scaling laws 
n  The position of the tunes in a diagram of horizontal versus 

vertical  tune is called a working point 
n  The tunes are imposed by the choice of the quadrupole 

strengths 
n  One should try to avoid resonance conditions 
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Effect of dipole on off-momentum particles 

n  Up to now all particles had the same momentum p0 

n  What happens for off-momentum particles, i.e. particles with 
momentum p0+Δp? 

n  Consider a dipole with field B and                             
bending radius ρ 

n  Recall that the magnetic rigidity  is             
and for off-momentum particles 

n  Considering the effective length of the dipole  unchanged 

n  Off-momentum particles get different deflection (different orbit) 

θ 

p0+Δp 

p0 

ρ 
ρ+Δρ 
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n  Consider the equations of motion for off-momentum particles 

n  The solution is a sum of the homogeneous (on-momentum) and 
the inhomogeneous (off-momentum) equation solutions 

n  In that way, the equations of motion are split in two parts 

n  The dispersion function can be defined as 
n  The dispersion equation is 

Dispersion equation 
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Closed orbit 
n  Design orbit defined by main dipole field 
n  On-momentum particles oscillate around design orbit 
n  Off-momentum particles are not oscillating around design orbit, but around 
“chromatic” closed orbit  

n  Distance from the design orbit depends linearly to momentum spread and 
dispersion  

Design orbit 
Design orbit 

On-momentum 
particle trajectory 

Off-momentum 
particle trajectory 

Chromatic closed orbit 
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Beam orbit stability 
n  Beam orbit stability very critical  

q  Injection and extraction efficiency of synchrotrons 
q  Stability of collision point in colliders 
q  Stability of the synchrotron light spot in the beam lines of light sources 

n  Consequences of orbit distortion 
q  Miss-steering of beams, modification of the dispersion function, resonance 

excitation, aperture limitations, lifetime reduction, coupling of beam motion, 
modulation of lattice functions, poor injection and extraction efficiency 

n  Causes  
q  Long term (Years - months) 

n  Ground settling, season changes 
q  Medium (Days –Hours) 

n  Sun and moon, day-night variations (thermal), rivers, rain, wind, refills and 
start-up, sensor motion, drift of electronics, local machinery, filling patterns 

q  Short (Minutes - Seconds) 
n  Ground vibrations, power supplies, injectors, experimental magnets, air 

conditioning, refrigerators/compressors, water cooling 
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Closed orbit distortion 
n  Magnetic imperfections distorting the orbit 

q Dipole field errors (or energy errors) 
q Dipole rolls 
q Quadrupole misalignments 

n  Consider the displacement of a particle δx from the ideal orbit . 
The vertical field in the quadrupole is 

     

n  Remark: Dispersion creates a closed orbit 
distortion for off-momentum particles with 

n  Effect of orbit errors in any multi-pole magnet 

n  Feed-down 2(n+1)-pole    2n-pole      2(n-1)-pole   dipole 

quadrupole   dipole 
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Effect of single dipole kick 
§  Consider a single dipole kick      at s=s0 
§  The coordinates before and after the kick are  

 with the 1-turn transfer matrix 

 
§  The final coordinates are     and 

§  For any location around the ring it can be shown that   

Maximum distortion amplitude 
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Transport of orbit distortion due to dipole kick 
•  Consider a transport matrix between positions 1 and 2 

•  The transport of transverse coordinates is written as 

•  Consider a single dipole kick at position 1    
•  Then, the first equation may be rewritten     

•  Replacing the coefficient from the general betatron matrix 
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Integer and half integer resonance 
§  Dipole perturbations add-up in 

consecutive turns for  
§  Integer tune excites orbit 

oscillations (resonance) 

§  Dipole kicks get cancelled in 
consecutive turns for  

§  Half-integer tune cancels orbit 
oscillations 

Q = n Q = n/2

Turn 1 

Turn 2 

Turn 1 

Turn 2 
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Global orbit distortion 
n  Orbit distortion due to many errors 

n  By approximating the errors as delta functions in n locations, the 
distortion at i observation points (Beam Position Monitors) is 

 with the kick produced by the jth error 

n  Integrated dipole field error  

n  Dipole roll 

n  Quadrupole displacement 

Courant and Snyder, 1957 

φj 
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Example: Orbit distortion for the SNS ring 

n  In the SNS accumulator ring, the beta function is 6m in the dipoles and 30m in the 
quadrupoles. 

n  Consider dipole error of 1mrad 
n  The tune is 6.2 
n  The maximum orbit distortion in the dipoles is 

n  For quadrupole displacement giving the same 1mrad kick (and betas of 30m) the 
maximum orbit distortion is 25mm, to be compared to magnet radius of 105mm 

Horizontal rms CO 
Vertical rms CO 

βx 

βy 

ηx 
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Example: Orbit distortion in ESRF storage ring 

n  In the ESRF storage ring, 
the beta function is  1.5m in 
the dipoles and 30m in the 
quadrupoles. 

n  Consider dipole error of 
1mrad 

n  The horizontal tune is 36.44 
n  Maximum orbit distortion in 

dipoles 

n  For quadrupole 
displacement with 1mm, the 
distortion is 

n  Magnet alignment is critical  

Vertical orbit correction with 
16BPMs and steerers 
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Statistical estimation of orbit errors 
n  Consider random distribution of errors in N magnets 
n  The expectation (rms) value is given by 

n  Example: 
q  In the SNS ring, there are 32 dipoles and 54 quadrupoles  
q The rms value of the orbit distortion in the dipoles 

q  In the quadrupoles, for equivalent kick 

urms(s) =

p
�(s)

2
p
2| sin(⇡Q)|

(
X

i

p
�i✓i)rms =

p
N�(s)�rms

2
p
2| sin(⇡Q)|

✓rms
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Correcting the orbit distortion 
n  Place horizontal and vertical dipole correctors close to focusing 

and defocusing quads, respectively 

 
n  Simulate (random distribution of errors) or measure orbit in BPMs 
n  Minimize orbit distortion 
q Globally 

n  Harmonic , minimizing components of 
the orbit frequency response after a 
Fourier analysis 

n  Most efficient corrector (MICADO), 
finding the most efficient corrector for 
minimizing the rms orbit  

n  Least square minimization using the 
orbit response matrix of the correctors 

q Locally 
n  Sliding Bumps 
n  Singular Value 

Decomposition (SVD) 
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Orbit bumps 

n  2-bump: Only good for phase advance equal π between correctors 
n  Sensitive to lattice and BPM errors 
n  Large number of correctors 

n  3-bump: works for any lattice 
n  Need large number of correctors 
n  No control of angles (need 4 bumps) 
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4-bump 

n  4-bump: works for 
any lattice 

n  Cancels position and 
angle outside of the 
bump 

n  Can be used for 
aperture scanning 

xb

xb

xb

xb

xb

xb

xb

xb
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Singular Value Decomposition example 

M. Boege, CAS 2003

N monitors / N correctors 

N monitors / M correctors 
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Orbit feedback 
n  Closed orbit stabilization performed using slow and fast orbit 
feedback system.  
n  Slow feedback operates every few seconds and uses complete set of 
BPMs for both planes 
n  Efficient in correcting distortion due to current decay in magnets or 
other slow processes 
n  Fast orbit correction system operates in a wide frequency range 
(up to 10kHz for the ESRF) correcting distortions induced by 
quadrupole and girder vibrations.  
n  Local feedback systems used to damp oscillations in areas where 
beam stabilization is critical (interaction points, insertion devices) 

 β @ BPM [m]     rms orbit [µm] rms orbit with feedback [µm] 
Horizontal 36 5-12 1.2-2.2 

Vertical 5.6 1.5-2.5 0.8-1.2 
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n Trends on Orbit Feedback 

•  restriction of tolerances w.r.t. to beam size and divergence  
•  higher frequencies ranges 
•  integration of XBPMs 
•  feedback on beamlines components 

FOFB BW Horizontal Vertical 

ALS 40 Hz < 2 µm in H (30 µm)*  < 1 µm in V (2.3 µm)*  

APS 60 Hz < 3.2 µm in H (6 µm)**  < 1.8 µm in V (0.8 µm)**  

Diamond 100 Hz < 0.9 µm in H (12 µm)  < 0.1 µm in V (0.6 µm)  

ESRF 100 Hz < 1.5 µm in H (40 µm)  ∼ 0.7 µm in V (0.8 µm)  

ELETTRA 100 Hz < 1.1 µm in H (24 µm) < 0.7 µm in V (1.5 µm) 

SLS 100 Hz < 0.5 µm in H (9.7 µm)  < 0.25 µm in V (0.3 µm) 

SPEAR3 60Hz ∼ 1 µm in H (30 µm)   ∼ 1 µm in V (0.8 µm) 

Summary of integrated rms beam motion (1-100 Hz) with FOFB 
and comparison with 10% beam stability target 

* up to 500 Hz 

** up to 200 Hz 

Feedback performance 

R. Bartolini, LER2010
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n  Optics functions perturbation can induce aperture 
restrictions 

n  Tune perturbation can lead to dynamic aperture loss 
n  Broken super-periodicity -> excitation of all resonances 
n  Causes 

q Errors in quadrupole strengths (random and systematic) 
q  Injection elements 
q Higher-order multi-pole magnets and errors 

n  Observables 
q Tune-shift 
q Beta-beating 
q Excitation of integer and half integer resonances 

Gradient error and optics distortion 
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n  Consider the transfer matrix for 1-turn 

n  Consider a gradient error in a quad. In thin element approximation 
the quad matrix with and without error are 

 
 
n  The new 1-turn matrix is 

 which yields 

Gradient error 
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n  Consider a new matrix after 1 turn with a new tune  

n  The traces of the two matrices describing the 1-turn should be 
equal 
 which gives 

n  Developing the left hand side  

 and finally  
n  For a quadrupole of finite length, we have 

Gradient error and tune-shift 
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n  Consider the unperturbed transfer matrix for one turn 
      
      
        with 

n  Introduce a gradient perturbation between the two matrices 
 
 

n  Recall that     and write the perturbed term as 

where we used sin(2πδQ) ≈ 2πδQ and cos(2πδQ) ≈ 1 

Gradient error and beta distortion 

B =

✓
b11 b12
b21 b22

◆
A =

✓
a11 a12
a21 a22

◆

M0 =

✓
m11 m12

m21 m22

◆
= B ·A
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n  On the other hand  

 and  

n  Equating the two terms  

n  Integrating through the quad 

Gradient error and beta distortion 
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n  Consider 18 focusing quads in the SNS ring with 0.01T/m gradient 
error. In this location β=12m. The length of the quads is 0.5m 

n  The tune-shift is  
n  For a random distribution of errors the beta beating is  

n  Optics functions beating > 20% by putting random errors (1% of 
the gradient) in high dispersion quads of the SNS ring 

n  Justifies the choice of corrector strength (trim windings) 

Example: Gradient error in the SNS storage ring 
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n  Consider 128 
focusing arc quads 
in the ESRF storage 
ring with 0.001T/m 
gradient error. In 
this location 
β=30m. The length 
of the quads is 
around 1m 

n  The tune-shift is  

Example: Gradient error in the ESRF storage ring 
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n  Windings on the core of the quadrupoles or individual 
correction magnets (trim windings or quadrupoles) 

n  Compute tune-shift and optics function beta distortion  
n  Move working point close to integer and half integer 

resonance 
n  Minimize beta wave or quadrupole resonance width with 

trim windings 
n  Individual powering of trim windings can provide 

flexibility and beam based alignment of BPM 
n  Modern methods of response matrix analysis (LOCO) 

can  fit optics model to real machine and correct optics 
distortion 

Gradient error correction 
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J. Safranek et al. 

Modified version of LOCO with constraints on 
gradient variations (see ICFA Newsl, Dec’07) 

β - beating reduced to 0.4%  rms 
Quadrupole variation reduced to 2% 

Results compatible with mag. meas. and calibrations  
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LOCO allowed remarkable progress with the correct implementation of the 
linear optics 
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variation 

Linear Optics from Closed Orbit  
R. Bartolini, LER2010
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 to get a total 4x4 matrix 

4x4 Matrices 
n  Combine the matrices for each plane 

Uncoupled motion 
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n  Betatron motion is coupled in the presence of skew quadrupoles 
n  The field is    and Hill’s equations are coupled  
n  Motion still linear with two new eigen-mode tunes, which are 

always split. In the case of a thin skew quad: 

n  Coupling coefficients 

n  As motion is coupled, vertical dispersion and optics function 
distortion appears 

n  Causes: 
q Random rolls in quadrupoles 
q Skew quadrupole errors 
q Vertical off-sets in sextupoles 

Linear coupling 
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n  Introduce skew quadrupole correctors 
n Correct globally/locally coupling coefficient (or 

resonance driving term)  
n Correct optics distortion (especially vertical 

dispersion) 
n Move working point close to coupling resonances 

and repeat 
n Correction especially important for flat beams 
n Note that (vertical) orbit correction may be critical 

for reducing coupling 

Linear coupling correction 
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After correct ion 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000-0.000 0.000 -0.000 0.000 0.000 0.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example: Coupling correction for the SNS ring 
n  Local decoupling by super period using 16 skew quadrupole 

correctors  
n  Results of Qx=6.23 Qy=6.20 after a 2mrad quad roll  
n  Additional 8 correctors used to compensate vertical dispersion 
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Example: Coupling correction for the ESRF ring 
n  Local decoupling using 16 skew quadrupole correctors and coupled 

response matrix reconstruction 
n  Achieved correction of below 0.25% reaching vertical emittance of 

below 4pm 

R. Nagaoka, EPAC 2000



Li
ne

ar
 im

pe
rfe

ct
io

ns
 a

nd
 c

or
re

ct
io

n,
 J

U
A

S
, J

an
ua

ry
 2

01
3 

48 

Vertical emittance record @ PSI 

n  Vertical emittance reduced to a minimum value of 0.9±0.4pm  
n  Achieved by carefull re-alignment campaign and different methods 

of coupling suppression using 36 skew quadrupoles (combination of 
response matrix based correction and random walk optimisation)  

n  Performance of emittance monitor had to be further stretched to get 
beam profile data at a size of around 3-4µm 

M. Aiba, M. Boge, 
N. Milas, A. Streun 
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n  Linear equations of motion depend on the energy 
(term proportional to dispersion) 

n  Chromaticity is defined as: 
n  Recall that the gradient is 
n  This leads to dependence of tunes and optics 

function on energy  
n  For a linear lattice the tune shift is: 

n  So the natural chromaticity is: 

n  Sometimes the chromaticity is quoted as 
 

Chromaticity 
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n  In the SNS ring, the natural chromaticity is –7. 
n  Consider that momentum spread         % 
n  The tune-shift for off-momentum particles is 

n  In order to correct chromaticity introduce particles 
which can focus off-momentum particle 

Example: Chromaticity in the SNS ring 

Sextupoles 
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n  The sextupole field component in the x-plane is: 
n  In an area with non-zero dispersion 
n  Than the field is 

n  Sextupoles introduce an equivalent focusing correction  

n  The sextupole induced chromaticity is 

n  The total chromaticity is the sum of the natural and 
sextupole induced chromaticity 

Chromaticity from sextupoles 

quadrupole           dipole 
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n  Introduce sextupoles in high-dispersion areas  
n  Tune them to achieve desired chromaticity 
n  Two families are able to control horizontal and vertical 

chromaticity  
n  Sextupoles introduce non-linear fields (chaotic motion) 
n  Sextupoles introduce tune-shift with amplitude 
n  Example: 

q The SNS ring has natural chromaticity of –7 
q Placing two sextupoles of length 0.3m in locations where 
β=12m, and the dispersion D=4m 

q For getting 0 chromaticity, their strength should be  
      or a gradient of 17.3 T/m2  

Chromaticity correction 
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n  Two families of sextupoles not enough for correcting off-momentum optics 
functions’ distortion and second order chromaticity 

n  Solutions: 
q  Place sextupoles accordingly to eliminate second order effects (difficult) 
q  Use more families (4 in the case of of the SNS ring) 

n  Large optics function distortion for momentum spreads of ±0.7%,when using 
only two families of sextupoles 

n  Absolute correction of optics beating with four families 

Two vs. four families for chromaticity correction 
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Eddy current sextupole component 

Sextupole component due to Eddy currents in an elliptic vacuum chamber 
of a pulsing dipole!

!
!
with !

Taking into account!
!
!
!
with !
!
!
we get!
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ESRF booster example 

Booster Chromaticity without correction
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Example: ESRF booster chromaticity 
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Problems 
1)  A proton ring with kinetic energy of 1GeV and a circumference of 248m has 18, 1m-long 

focusing quads with gradient of 5T/m. In one of the quads, the horizontal and vertical beta 
function is of 12m and 2m respectively. The rms beta function in both planes on the 
focusing quads is 8m. With a horizontal tune of 6.23 and a vertical of 6.2, compute the 
expected horizontal and vertical orbit distortions on the single focusing quad given by 
horizontal and by vertical misalignments of 1mm in all the quads. What happens to the 
horizontal and vertical orbit distortions if the horizontal tune drops to 6.1 and 6.01?  

 
2)  Three correctors are placed at locations with phase advance of π/4 between them and beta 

functions of 12, 2 and 12m. How are the corrector kicks related to each other in order to 
achieve a closed 3-bump. 

 
3)  Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and defocusing quads 

of 19.4 T/m, with a horizontal and vertical beta of 108m and 18m in the focusing quads 
which are 18m and 108m for the defocusing ones. Find the tune change for systematic 
gradient errors of 1% in the focusing and 0.5% in the defocusing quads. What is the 
chromaticity of the machine? 

 
4)  Derive an expression for the resulting magnetic field when a normal sextupole with field B = 

S/2 x2 is displaced by δx from its center position. At what type of fields correspond the 
resulting components? Do the same for an octupole with field B = O/3 x3. What is the 
leading order multi-pole field error when displacing a general 2n-pole magnet?  


