



# Non-linear imperfections

### **Yannis PAPAPHILIPPOU**

Accelerator and Beam Physics group
Beams Department
CERN

**Joint University Accelerator School** 

Archamps, FRANCE
23-25 January 2013





# References



- O. Bruning, Non-linear dynamics, JUAS courses, 2006.
- O. Bruning, Non-linear imperfections, CERN Accelerator School Intermediate level, courses, 2009.
- M. Tabor, Chaos and Integrability in Nonlinear Dynamics, An Introduction, Willey, 1989.
- H. Wiedemann, Particle accelerator physics, 3<sup>rd</sup> edition, Springer 2007

# Summary



- Oscillators and resonance condition
- Field imperfections and normalized field errors
- Perturbation treatment for a sextupole
- Poincaré section
- Chaotic motion
- Octupole effect and fringe fields
- Singe-particle diffusion
  - Dynamic aperture
  - Frequency maps



### Harmonic oscillator including damping



### Damped harmonic oscillator:

$$\frac{d^2u(t)}{dt^2} + \frac{\omega_0}{Q}\frac{du(t)}{dt} + \omega_0^2u(t) = 0$$

- $\square Q = \frac{1}{2\ell}$  is the ratio between the stored and lost energy per cycle with the damping ratio
- $\square \omega_0$  is the eigen-frequency of the harmonic oscillator
- A general solution can be found by the ansatz  $u(t) = u_0 e^{\lambda t}$

leading to an auxiliary 2<sup>nd</sup> order equation

$$\lambda^2 + \frac{\omega_0}{Q}\lambda + \omega_0^2 = 0 \text{ with solutions}$$

$$\lambda_{\pm} = -\frac{\omega_0}{2Q}(-1 \pm \sqrt{1 - 4Q^2}) = -\omega_0\zeta(-1 \pm \sqrt{1 - \frac{1}{\zeta^2}})$$



### Harmonic oscillator including damping II



- Three cases can be distinguished
  - $\square$  Overdampin ( real G.  $\rightleftharpoons$  1 Q or 1/2 ): The system exponentially decays to equilibrium (slower for larger damping ratio values)
  - $\Box$  Critical damping ( $\zeta$  = 1): The system returns to equilibrium as quickly as possible without oscillating.
  - □ Underdamping (complex i.e. 1  $Q > \Phi / 2$  )
    The system oscillates with the amplitude gradually decreasing to zero, with a slightly different frequency than



$$\omega_d = \omega_0 \sqrt{1 - \zeta^2}$$

# on-linear dynamics, JUAS, January 2013

# Damped oscillator with periodic driving



Consider periodic force pumping energy into the system

$$\frac{d^2u(t)}{dt^2} + \frac{\omega_0}{Q}\frac{du(t)}{dt} + \omega_0^2u(t) = \frac{F}{m}\cos(\omega t)$$

 General solution is a combination of a transient and a steady state term

$$u(t) = u_t(t) + u_s(t)$$

The transient solution corresponds to the one of the homogeneous system (damped oscillator) and "dies" out after some time leaving only the steady state one

$$u_s(t) = U(\omega)\cos(\omega t + \phi(\omega))$$

- lacktriangledown the frequency of the driven oscillation
- $\hfill \hfill \hfill$



# Resonance effect





$$U(\omega) = \frac{U(0)}{\sqrt{(1 - (\frac{\omega}{\omega_0})^2)^2 + (\frac{\omega}{Q\omega_0})^2}}$$

- Without or with weak damping a resonance condition occurs for  $W = W_0$
- Infamous example:

### Tacoma Narrow bridge 1940

excitation by strong wind on the eigenfrequencies





### Accelerator performance parameter



### Colliders

 $L = \frac{N_b^2 k_b \gamma}{4\pi \epsilon_{\rm m} \beta^*}$ 

- □ Luminosity (i.e. rate of particle production)
  - N<sub>b</sub> bunch population
  - $k_b$  number of bunches
  - γ relativistic reduced energy
  - $\bullet$   $\epsilon_n$  normalized emittance
  - β\* "betatron" amplitude function at collision point

### High intensity accelerators

- □ Average beam power
  - *Ī* mean current intensity
  - E energy
  - $f_N$  repetition rate
  - N number of particles/pulse

# $B = \frac{N_p}{4\pi^2 \epsilon_x \epsilon_y}$

 $\bar{P} = \bar{I}E = f_N NeE$ 

### Synchrotron light sources

- □ Brightness (photon density in phase space)
  - $\blacksquare$   $N_p$  number of photons
  - $\varepsilon_{x,v}$  transverse emittances

### Performance issues due to non-linear effects

□ Reduced dynamic aperture, lifetime and availability, beam loss (radio-activation, magnet quench



### Normalized coordinates



Recall that  $u(s) = \sqrt{\epsilon \beta(s)} \cos(\psi(s) + \psi_0)$  $u'(s) = \sqrt{\frac{\epsilon}{\beta(s)}} \left( \sin(\psi(s) + \psi_0) + \alpha(s) \cos(\psi(s) + \psi_0) \right)$ 

Introduce new variables

$$\mathcal{U} = \frac{u}{\sqrt{\beta}} , \quad \mathcal{U}' = \frac{d\mathcal{U}}{d\phi} = \frac{\alpha}{\sqrt{\beta}} u + \sqrt{\beta} u' , \quad \phi = \frac{\psi}{\nu} = \frac{1}{\nu} \int \frac{ds}{\beta(s)}$$

- In matrix form  $\begin{pmatrix} \mathcal{U} \\ \mathcal{U}' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{\beta}} & 0 \\ \frac{\alpha}{1/\beta} & \sqrt{\beta} \end{pmatrix} \begin{pmatrix} u \\ u' \end{pmatrix}$
- Hill's equation becomes  $\frac{d^2\mathcal{U}}{d\phi^2} + \nu^2\mathcal{U} = 0$ System becomes harmonic oscillator with
  - System becomes harmonic oscillator with frequency

$$\begin{pmatrix} \mathcal{U} \\ \mathcal{U}' \end{pmatrix} = \sqrt{\epsilon} \begin{pmatrix} \cos(\nu\phi) \\ -\sin(\nu\phi) \end{pmatrix} \qquad \qquad \mathcal{U}^2 + \mathcal{U}'^2 = \epsilon$$

phase space in circles







# Perturbation in Hill's equations



■ Hill's equations in normalized coordinates with harmonic perturbation, using  $\mathcal{U} = \mathcal{U}_x$  or  $\mathcal{U}_y$  and  $\phi = \phi_x$  or  $\phi_y$ 

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu^2\mathcal{U} = \nu^2\beta^{3/2}F(\mathcal{U}_x(\phi_x), \mathcal{U}_y(\phi_y))$$

where the *F* is the Lorentz force from perturbing fields

- □ Linear magnet imperfections: deviation from the design dipole and quadrupole fields due to powering and alignment errors
- Time varying fields: feedback systems (damper) and wake fields due to collective effects (wall currents)
- Non-linear magnets: sextupole magnets for chromaticity correction and octupole magnets for Landau damping
- Beam-beam interactions: strongly non-linear field
- Space charge effects: very important for high intensity beams
- non-linear magnetic field imperfections: particularly difficult to control for super conducting magnets where the field quality is entirely determined by the coil winding accuracy



# Magnetic multipole expansion



From Gauss law of magnetostatics, a vector potential exist

$$\nabla \cdot \mathbf{B} = 0 \rightarrow \exists \mathbf{A} : \mathbf{B} = \nabla \times \mathbf{A}$$

Assuming a 2D field in x and y, the vector potential has only one component  $A_s$ . The Ampere's law in vacuum (inside the beam pipe)

$$\nabla \times \mathbf{B} = 0 \rightarrow \exists V : \mathbf{B} = -\nabla V$$

Using the previous equations, the relations between field components and potentials are

$$B_x = -\frac{\partial V}{\partial x} = \frac{\partial A_s}{\partial y} , \quad B_y = -\frac{\partial V}{\partial y} = -\frac{\partial A_s}{\partial x}$$

i.e. Riemann conditions of an analytic function



$$\mathcal{A}(x+iy) = A_s(x,y) + iV(x,y) = \sum_{n=1}^{\infty} \kappa_n z^n = \sum_{n=1}^{\infty} (\lambda_n + i\mu_n)(x+iy)^n$$



iron





# Multipole expansion II



From the complex potential we can derive the fields

$$B_y + iB_x = -\frac{\partial}{\partial x}(A_s(x,y) + iV(x,y)) = -\sum_{n=1}^{\infty} n(\lambda_n + i\mu_n)(x+iy)^{n-1}$$

■ Setting  $b_n = -n\lambda_n$ ,  $a_n = n\mu_n$ 

$$B_y + iB_x = \sum_{n=1}^{\infty} (b_n - ia_n)(x + iy)^{n-1}$$

Define normalized coefficients

$$b'_n = \frac{b_n}{10^{-4}B_0}r_0^{n-1}, \ a'_n = \frac{a_n}{10^{-4}B_0}r_0^{n-1}$$

on a reference radius  $r_0$ , 10<sup>-4</sup> of the main field to get

$$B_y + iB_x = 10^{-4}B_0 \sum_{n=1}^{\infty} (b'_n - ia'_n) (\frac{x + iy}{r_0})^{n-1}$$

**Note**: n' = n - 1 is the US convention



# Perturbation by single dipole



■ Hill's equations in normalized coordinates with single dipole perturbation:

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \nu_0^2 \beta^{3/2} b_1(\phi) = \overline{b_1}(\phi)$$

The dipole perturbation is periodic, so it can be expanded in a Fourier series  $\infty$ 

$$\overline{b_1}(\phi) = \sum_{m=-\infty}^{\infty} \overline{b_{1m}} e^{im\phi}$$

- Note that a periodic kick introduces infinite number of integer driving frequencies
- The resonance condition occurs when  $u_0 = m$
- i.e. **integer tunes** should be avoided (remember orbit distortion due to single dipole kick)



# Perturbation by single quadrupole



Consider single quadrupole kick in one normalized plane:

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \nu_0^2 \beta^2 b_2(\phi) \mathcal{U} = \overline{b_2}(\phi) \mathcal{U}$$

- The quadrupole perturbation is periodic, so it can be expanded in  $\overline{b_2}(\phi) = \sum \overline{b_{2m}} e^{im\phi}$ a Fourier series
- As the perturbation is small insert on the right hand side the unperturbed solution  $\mathcal{U} \approx \mathcal{U}_0 = W_1 e^{i\nu_0 \phi} + W_{-1} e^{-i\nu_0 \phi}$ and the equation of motion can be written as

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2\mathcal{U} = \sum_{q=-1}^{1} \sum_{m=-\infty}^{\infty} W_q \overline{b_{2m}} e^{i(m+q\nu_0)\phi} \text{ with } W_0 = 0$$
The resonance conditions are  $m - \nu_0 = \nu_0 \to \nu_0 = \frac{m}{2}$ 

- i.e. integer and half-integer tunes should be avoided
- The condition  $m + \nu_0 = \nu_0 \rightarrow m = 0$  corresponds to a nonvanishing average value  $\overline{b_{20}}$ , which can be absorbed in the left-hand side providing a **tune-shift**:  $\nu^2 = \nu_0^2 - b_{20}$  or  $\delta \nu \approx -\frac{b_{20}}{2\nu_0}$



### Perturbation by single multi-pole



For a generalized multi-pole perturbation, Hill's equation is:

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \nu_0^2 \beta^{\frac{n}{2}+1} b_n(\phi) \mathcal{U}^{n-1} = \overline{b_n}(\phi) \mathcal{U}^{n-1}$$

 $\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2\mathcal{U} = \nu_0^2\beta^{\frac{n}{2}+1}b_n(\phi)\mathcal{U}^{n-1} = \overline{b_n}(\phi)\mathcal{U}^{n-1}$ As before, the multipole coefficient can be expanded in Fourier series  $\overline{b_n}(\phi) = \sum \overline{b_{nm}} e^{im\phi}$ 

■ As before, we insert the unperturbed solution on the right side and  $\mathcal{U}^{n-1} \approx \mathcal{U}_0^{n-1} = \sum_{i} W_q e^{iq\nu_0 \phi}$  the equation of motion can be written as

$$\frac{d^{2}\mathcal{U}}{d\phi^{2}} + \nu_{0}^{2}\mathcal{U} = \sum_{q=-n+1}^{n-1} \sum_{m=-\infty}^{\infty} W_{q} \overline{b_{nm}} e^{i(m+q\nu_{0})\phi}$$

with  $W_{n-2} = W_{n-4} = \cdots = W_{-n+2} = 0$ 

- lacksquare The resonance conditions are  $m+q
  u_0=
  u_0$  with  $q = -n + 1, -n + 3, \dots, n - 1$
- If q=1 does not correspond to a vanishing coefficient (even multipoles), there is an (amplitude dependent, for n>2) frequency shift



# Single Sextupole Perturbation



Consider a localized sextupole perturbation in the horizontal plane

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \nu_0^2 \beta^{\frac{5}{2}} b_3(\phi) \mathcal{U}^2 = \overline{b_3}(\phi) \mathcal{U}^2$$

■ After replacing the perturbation by its Fourier transform and inserting the unperturbed solution to the right hand side

$$\frac{d^2\mathcal{U}}{d\phi^2} + \nu_0^2 \mathcal{U} = \sum_{q=-2}^{2} \sum_{m=-\infty}^{\infty} W_q \overline{b_{3m}} e^{i(m+q\nu_0)\phi} \quad \text{with} \quad W_1 = W_{-1} = 0$$

■ Resonance conditions:

3<sup>rd</sup> integer 
$$\rightarrow 3\nu_0 = m \text{ for } q = -2$$
 integer  $\rightarrow \nu_0 = m \text{ for } q = 0,2$ 

- Note that there is not a tune-spread associated. This is only true for small perturbations (first order perturbation treatment)
- No exact solution
- Need numerical tools to integrate equations of motion



# General resonance conditions



■ Equations of motion including any multi-pole error

$$\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \overline{b_{n,r}}(\phi_x) \mathcal{U}_x^{n-1} \mathcal{U}_y^{r-1}$$

Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following series:

$$\overline{b_{nr}}(\phi_x) = \sum_{m = -\infty}^{\infty} \overline{b_{nrm}} e^{im\phi_x} \quad \mathcal{U}_x^{n-1} \approx \mathcal{U}_{0x}^{n-1} = \sum_{q_x = -n+1}^{n-1} W_{q_x}^x e^{iq_x \nu_{0x} \phi_x} \quad \mathcal{U}_y^{r-1} \approx \mathcal{U}_{0y}^{r-1} = \sum_{q_y = -r+1}^{r-1} W_{q_y}^y e^{iq_y \nu_{0y} \phi_x}$$

■ The equation of motion becomes

$$\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \sum_{m, q_x, q_y} \overline{b_{nrm}} W_{q_x}^x W_{q_y}^y e^{i(m + q_x \nu_{0x} + q_y \nu_{0y})\phi_x}$$



### **Resonance conditions**

$$m + q_x \nu_{0x} + q_y \nu_{0y} = \nu_{0x}$$

or  $m + q_x' \nu_{0x} + q_y \nu_{0y} = 0$  with the resonance order  $|q_x| + |q_y| + 1$ 

There are resonance lines everywhere !!!





# Example: Linear Coupling



■ For a localized skew quadrupole we have

$$\frac{d^2 \mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2 \mathcal{U}_x = \overline{b_{1,2}}(\phi_x) \mathcal{U}_y$$

Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following equation:

$$\frac{d^2\mathcal{U}_x}{d\phi_x^2} + \nu_{0x}^2\mathcal{U}_x = \sum_{m=-\infty}^{\infty} \sum_{q_y=-1}^{q_y=1} \overline{b_{12m}} W_{q_y}^y e^{i(m+q_y\nu_{0y})\phi_x} \text{with } W_0^y = 0$$

lacksquare The coupling resonance are found for  $\,q_y=\pm 1\,$ 

### Linear sum resonance

$$m = \nu_{0x} + \nu_{0y}$$

### Linear difference resonance

$$m = \nu_{0x} - \nu_{0y}$$



# Choice of the working point



Regions with few resonances:

$$m + q_x \nu_{0x} + q_y \nu_{0y} = 0$$

- Avoid low order resonances
- < 12<sup>th</sup> order for a proton beam without damping
- electron beams with damping
- resonances: regions without low order resonances but





# Poincaré Section



- Record the particle coordinates at one location (BPM)
- Unperturbed motion lies on a circle in normalized coordinates (simple rotation)



- Resonance condition corresponds to a periodic orbit or in fixed points in phase space
- lacksquare For a sextupole  $\delta \mathcal{U}' = \overline{b_3} \mathcal{U}^2$
- The particle does not lie on a circle!





- Topology of a sextupole resonance
- Small amplitude, regular motion (circles)
- Larger amplitude deformation of phase space towards a triangular shape
- Separatrix: curve passing through unstable (hyperbolic) fixed points (and going to infinity)
- Its location (width) depends on distance to the resonance of the unperturbed tune
- Exactly on the resonance, sepratrix collapses to a single unstable fixed point (bifurcation)
- Stable fixed points should exist but they are found in much larger amplitudes







# Path to chaos



■ When perturbation becomes higher, motion around the separatrix becomes chaotic (producing tongues or splitting of the separatrix)

Unstable fixed points are indeed the source of chaos when a

perturbation is added







# Topology of an octupole resonance

- Regular motion near the center, with curves getting more deformed towards a rectangular shape
- The separatrix passes through 4 unstable fixed points, but motion seems well contained
- Four stable fixed points exist and they are surrounded by stable motion (islands of stability)



# Chaotic motion



- Poincare-Birkhoff theorem states that under perturbation of a resonance only an even number of fixed points survives (half stable and the other half unstable)
- Themselves get destroyed when perturbation gets higher, etc. (self-similar fixed points)

Resonance islands grow and resonances can overlap allowing diffusion of particles







# Slow Extraction With Sextupoles





■ Region of stable motion shrinks and particles reach the septum diffusing through the separatrix



# Sextupole effects up to 2<sup>nd</sup>



### 9 first order terms:

- 2 chromaticities  $\xi_x, \xi_y$
- 2 off-momentum resonances  $2Q_x$ ,  $2Q_y \to d\beta/d\delta \to \xi^{(2)} = \partial^2 Q/\partial \delta^2$
- 2 terms  $\rightarrow$  integer resonances  $Q_x$
- 1 term  $\rightarrow 3^{rd}$  integer resonances  $3Q_x$
- 2 terms  $\rightarrow$  coupling resonances  $Q_x \pm 2Q_y$

### 13 second order terms:

- 3 tune shifts with amplitude:  $\partial Q_x/\partial J_x$ ,  $\partial Q_x/\partial J_y = \partial Q_y/\partial J_x$ ,  $\partial Q_y/\partial J_y$
- 8 terms  $\rightarrow$  octupole like resonances:  $4Q_x$ ,  $2Q_x \pm 2Q_y$ ,  $4Q_y$ ,  $2Q_x$ ,  $2Q_y$
- 2 second order chromaticities:  $\partial^2 Q_x/\partial \delta^2$  and  $\partial^2 Q_y/\partial \delta^2$
- Enough sextupole families are needed to control all these terms



Non-linear dynamics, JUAS, January 2013

### Optimization of Dynamic aperture



- Keep chromaticity sextupole strength low
- Try an interleaved sextupole scheme (-*I* transformer) to cancel first order third resonance effect
- Choose working point far from systematic resonances
- Iterate between linear and non-linear lattice





# Magnet fringe fields





100

**z** (cm)

50

0

- Up to now we considered only transverse fields
- Magnet fringe field is the longitudinal dependence of the field at the magnet edges
- Important when magnet aspect ratios and/or emittances are big





# Quadrupole fringe field



General field expansion for a quadrupole magnet:

$$B_x = \sum_{m,n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^m x^{2n} y^{2m+1}}{(2n)! (2m+1)!} {m \choose l} b_{2n+2m+1-2l}^{[2l]}$$

$$B_y = \sum_{m,n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^m x^{2n+1} y^{2m}}{(2n+1)! (2m)!} {m \choose l} b_{2n+2m+1-2l}^{[2l]} .$$

$$B_z = \sum_{m,n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^m x^{2n+1} y^{2m+1}}{(2n+1)! (2m+1)!} {m \choose l} b_{2n+2m+1-2l}^{[2l+1]}$$

and to leading order

$$B_x = y \left[ b_1 - \frac{1}{12} (3x^2 + y^2) b_1^{[2]} \right] + O(5)$$

$$B_y = x \left[ b_1 - \frac{1}{12} (3y^2 + x^2) b_1^{[2]} \right] + O(5)$$

$$B_z = xy b_1^{[1]} + O(4)$$

The quadrupole fringe to leading order has an octupole-like effect



### Quad. Fringe octupole-like effect



First order tune spread for an octupole:

$$\begin{pmatrix} \delta \nu_x \\ \delta \nu_y \end{pmatrix} = \begin{pmatrix} a_{hh} & a_{hv} \\ a_{hv} & a_{vv} \end{pmatrix} \begin{pmatrix} 2J_x \\ 2J_y \end{pmatrix},$$

where the normalized anharmonicities are

$$a_{hh} = \frac{-1}{16\pi B\rho} \sum_{i} \pm Q_{i} \beta_{xi} \alpha_{xi},$$

$$a_{hv} = \frac{1}{16\pi B\rho} \sum_{i} \pm Q_{i} (\beta_{xi} \alpha_{yi} - \beta_{yi} \alpha_{xi}),$$

$$a_{vv} = \frac{1}{16\pi B\rho} \sum_{i} \pm Q_{i} \beta_{yi} \alpha_{yi}.$$
<sub>5.83</sub>
<sub>5.83</sub>

Tune footprint for the SNS based on hardedge (red) and realistic (blue) quadrupole fringe-field





# Frequency map analysis



Quasi-periodic approximation through **NAFF** algorithm

$$f_j'(t) = \sum_{k=1}^{N} a_{j,k} e^{i\omega_{j,k}t}$$

of a complex phase space function  $f_j(t) = q_j(t) + ip_j(t)$  defined over  $t = \tau$ ,

for each degree of freedom  $j=1,\ldots,n$  with  $\omega_{j,k}={m k}_j\cdot{m \omega}$ 

and  $a_{j,k} = A_{j,k}e^{i\phi_{j,k}}$ 

### **Advantages of NAFF**:

- a) Very accurate representation of the "signal"  $f_j(t)$  (if quasi-periodic) and thus of the amplitudes
- b) Determination of frequency vector  $\omega=2\pi\nu=2\pi(\nu_1,\nu_2,\dots,\nu_n)$  with high precision  $\frac{1}{\tau^4}$  for Hanning Filter



# Building the frequency map



- Choose coordinates  $(x_i, y_i)$  with  $p_x$  and  $p_y$ =0
- Numerically integrate the phase trajectories through the lattice for sufficient number of turns
- Compute through NAFF  $Q_x$  and  $Q_y$  after sufficient number of turns

Plot them in the tune diagram







### Frequency maps for the LHC





Frequency maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)



Calculate frequencies for two equal and successive time spans and compute frequency diffusion vector:

$$D|_{t=\tau} = \nu|_{t \in (0,\tau/2]} - \nu|_{t \in (\tau/2,\tau]}$$

- Plot the initial condition space color-coded with the norm of the diffusion vector
- Compute a diffusion quality factor by averaging all diffusion coefficients normalized with the initial conditions radius

$$D_{QF} = \left\langle \frac{|D|}{(I_{x0}^2 + I_{y0}^2)^{1/2}} \right\rangle_R$$



### Diffusion maps for the LHC



### Y. Papaphilippou, PAC1999



Diffusion maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)



## Frequency Map for the ESRF



- ■All dynamics represented in these two plots
- Regular motion represented by blue colors (close to zero amplitude particles or working point)



- -3
- Resonances appear as distorted lines in frequency space (or curves in initial condition space
- Chaotic motion is represented by red scattered particles and defines dynamic aperture of the machine



### Example for the SNS ring: Working point (6.4,6.3)



- Integrate a large number of particles
- Calculate the tune with refined Fourier analysis

 $\mathcal{F}_{ au}: \frac{\mathbb{R}^2}{(I_x, I_y)|_{p_x, p_y = 0}}, \stackrel{\longrightarrow}{\longrightarrow} \frac{\mathbb{R}^2}{(\nu_x, \nu_y)}$ 







# SNS Working point (6.23,5.24)







Non-linear dynamics, JUAS, January 2013



### Working Point Comparison



Tune Diffusion quality factor  $D_{QF} = \langle$ 

$$D_{QF} = \left\langle \frac{|\mathbf{D}|}{(I_{x0}^2 + I_{y0}^2)^{1/2}} \right\rangle_R$$

### Working point comparison (no sextupoles)







# Beam-Beam interaction



| Variable            | Symbol                          | Value                                   |
|---------------------|---------------------------------|-----------------------------------------|
| Beam energy         | E                               | 7 TeV                                   |
| Particle species    |                                 | protons                                 |
| Full crossing angle | $	heta_c$                       | $300~\mu \text{rad}$                    |
| rms beam divergence | $\sigma_x'$                     | 31.7 $\mu$ rad                          |
| rms beam size       | $\sigma_{\scriptscriptstyle X}$ | $15.9~\mu\mathrm{m}$                    |
| Normalized transv.  |                                 | ·                                       |
| rms emittance       | γε                              | $3.75~\mu\mathrm{m}$                    |
| IP beta function    | $oldsymbol{eta}^*$              | 0.5 m                                   |
| Bunch charge        | $N_b$                           | $(1 \times 10^{11} - 2 \times 10^{12})$ |
| Betatron tune       | $Q_0$                           | 0.31                                    |

■ Long range beam-beam interaction represented by a 4D kick-map

$$\Delta x = -n_{par} \frac{2r_p N_b}{\gamma} \left[ \frac{x' + \theta_c}{\theta_t^2} \left( 1 - e^{-\frac{\theta_t^2}{2\theta_{x,y}^2}} \right) - \frac{1}{\theta_c} \left( 1 - e^{-\frac{\theta_c^2}{2\theta_{x,y}^2}} \right) \right]$$

$$\Delta y = -n_{par} \frac{2r_p N_b}{\gamma} \frac{y'}{\theta_t^2} \left( 1 - e^{-\frac{\theta_t^2}{2\theta_{x,y}^2}} \right)$$

with 
$$\theta_t \equiv \left( (x' + \theta_c)^2 + {y'}^2 \right)^{1/2}$$



Non-linear dynamics, JUAS, January

### Head-on vs Long range interaction



### YP and F. Zimmermann, PRSTAB 1999, 2002





- Proved dominant effect of long range beam-beam effect
- Dynamic Aperture (around  $6\sigma$ ) located at the folding of the map (indefinite torsion)
- Dynamics dominated by the 1/r part of the force, reproduced by electrical wire, which was proposed for correcting the effect
- Experimental verification in SPS and installation to the LHC IPs



Non-linear dynamics, JUAS, January 2013

# CLIC Damping ring dynamics





### E. Levichev et al. PAC2009



Including radiation damping and excitation shows that 0.7% of the particles are lost during the damping Certain particles seem to damp away from the beam core, on resonance islands



# Experimental frequency map

- D. Robin et al. PRL 2000
- Frequency analysis of turn-by-turn data of beam oscillations produced by a fast kicker magnet and recorded on a Beam Position Monitors
- Reproduction of the non-linear model of the Advanced Light Source storage ring and working point optimization for increasing beam lifetime



14.214.2114.2214.2314.2414.25



### Experimental Methods – Tune scans



- Study the resonance behavior around different working points in SPS
- Strength of individual resonance lines can be identified from the beam loss rate, i.e. the derivative of the beam intensity at the moment of crossing the resonance
- Vertical tune is scanned from about 0.45 down to 0.05 during a period of 3s along the flat bottom
- Low intensity 4-5e10 p/b single bunches with small emittance injected
- Horizontal tune is constant during the same period
- Tunes are continuously monitored using tune monitor (tune postprocessed with NAFF) and the beam intensity is recorded with a beam current transformer







### Tune Scans – Results from the SPS



- $\square$  Resonances in low  $\gamma_t$  optics
  - Normal sextupole Qx+2Qy is the strongest
  - ☐ Skew sextupole 2Qx+Qy quite strong
  - Normal sextupole Qx-2Qy, skew sextupole at 3Qy and 2Qx+2Qy fourth order visible



### ☐ Resonances in the nominal optics

- Normal sextupole resonance Qx+2Qy is the strongest
- □ Coupling resonance (diagonal, either Qx-Qy or some higher order of this), Qx-2Qy normal sextupole
- □ Skew sextupole resonance 2Qx+Qy weak compared to Q20 case
- Stop-band width of the vertical integer is stronger (predicted by simulations)

