Non-linear imperfections

Yannis PAPAPHILIPPOU
 Accelerator and Beam Physics group Beams Department CERN

Joint University Accelerator School
Archamps, FRANCE
23-25 January 2013

- O. Bruning, Non-linear dynamics, JUAS courses, 2006.
■ O. Bruning, Non-linear imperfections, CERN Accelerator School Intermediate level, courses, 2009.

■M. Tabor, Chaos and Integrability in Nonlinear Dynamics, An Introduction, Willey, 1989.
$■$ H. Wiedemann, Particle accelerator physics, $3^{\text {rd }}$ edition, Springer 2007

Summary

■ Oscillators and resonance condition
■ Field imperfections and normalized field errors
■ Perturbation treatment for a sextupole

- Poincaré section
- Chaotic motion
- Octupole effect and fringe fields
- Singe-particle diffusion
\square Dynamic aperture
\square Frequency maps

■ Damped harmonic oscillator:

$$
\frac{d^{2} u(t)}{d t^{2}}+\frac{\omega_{0}}{Q} \frac{d u(t)}{d t}+\omega_{0}^{2} u(t)=0
$$

$\square Q=\frac{1}{2 \zeta}$ is the ratio between the stored and lost energy per cycle wifh the damping ratio
$\square \omega_{0}$ is the eigen-frequency of the harmonic oscillator

- A general solution can be found by the ansatz

$$
u(t)=u_{0} e^{\lambda t}
$$

leading to an auxiliary $2^{\text {nd }}$ order equation
$\lambda^{2}+\frac{\omega_{0}}{Q} \lambda+\omega_{0}^{2}=0$ with solutions

$$
\lambda_{ \pm}=-\frac{\omega_{0}}{2 Q}\left(-1 \pm \sqrt{1-4 Q^{2}}\right)=-\omega_{0} \zeta\left(-1 \pm \sqrt{1-\frac{1}{\zeta^{2}}}\right)
$$

T Three cases can be distinguished

\square Overdampind (real,i.e. $1 \quad Q$ or $1 / 2 \quad$): The system exponentially decays to equilibrium (slower for larger damping ratio values)
\square Critical damping ($\zeta=1$): The system returns to equilibrium as quickly as possible without oscillating.
\square Underdamping (complex̧̧i.6. $1 \quad Q>$ Фy2
The system oscillates with the amplitude gradually decreasing to zero, with a slightly different frequency than

$$
\omega_{d}=\omega_{0} \sqrt{1-\zeta^{2}}
$$

■ Consider periodic force pumping energy into the system

$$
\frac{d^{2} u(t)}{d t^{2}}+\frac{\omega_{0}}{Q} \frac{d u(t)}{d t}+\omega_{0}^{2} u(t)=\frac{F}{m} \cos (\omega t)
$$

\square General solution is a combination of a transient and a steady state term

$$
u(t)=u_{t}(t)+u_{s}(t)
$$

■ The transient solution corresponds to the one of the homogeneous system (damped oscillator) and "dies" out after some time leaving only the steady state one

$$
u_{s}(t)=U(\omega) \cos (\omega t+\phi(\omega))
$$

- ω the frequency of the driven oscillation
\square Amplitude $U(\omega)$ can become large for certain frequencies

$$
U(0)
$$

$$
U(\omega)=\frac{}{\sqrt{\left(1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right)^{2}+\left(\frac{\omega}{Q \omega_{0}}\right)^{2}}}
$$

- Without or with weak damping a resonance condition occurs for $=0$
- Infamous example:

Tacoma Narrow bridge 1940

excitation by strong wind on the eigenfrequencies

- Colliders
\square Luminosity (i.e. rate of particle production)
$L=\frac{N_{b}^{2} k_{b} \gamma}{4 \pi \epsilon_{n} \beta^{*}}$
$\bar{P}=\bar{I} E=f_{N} N e E$
- High intensity accelerators
\square Average beam power
- / mean current intensity
- E energy
- f_{N} repetition rate
- N number of particles/pulse
- Synchrotron light sources
\square Brightness (photon density in phase space)
- N_{p} number of photons
- $\varepsilon_{X,, y}$ transverse emittances
- Performance issues due to non-linear effects
\square Reduced dynamic aperture, lifetime and availability, beam loss (radio-activation, magnet quench

■ Recall that $u(s)=\sqrt{\epsilon \beta(s)} \cos \left(\psi(s)+\psi_{0}\right)$

$$
u^{\prime}(s)=-\sqrt{\frac{\epsilon}{\beta(s)}}\left(\sin \left(\psi(s)+\psi_{0}\right)+\alpha(s) \cos \left(\psi(s)+\psi_{0}\right)\right)
$$

- Introduce new variables

$$
\mathcal{U}=\frac{u}{\sqrt{\beta}}, \quad \mathcal{U}^{\prime}=\frac{d \mathcal{U}}{d \phi}=\frac{\alpha}{\sqrt{\beta}} u+\sqrt{\beta} u^{\prime}, \quad \phi=\frac{\psi}{\nu}=\frac{1}{\nu} \int \frac{d s}{\beta(s)}
$$

- In matrix form $\binom{\mathcal{U}}{\mathcal{U}^{\prime}}=\left(\begin{array}{cc}\frac{1}{\sqrt{\beta}} & 0 \\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}\end{array}\right)\binom{u}{u^{\prime}}$

■ Hill's equation becomes $\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu^{2} \mathcal{U}=0$

- System becomes harmonic oscillator with frequency

$$
\binom{\mathcal{U}}{\mathcal{U}^{\prime}}=\sqrt{\epsilon}\binom{\cos (\nu \phi)}{-\sin (\nu \phi)}
$$

\mathcal{U}^{2}

orms
Floquet transformation transforms phase space in circles

- Hill's equations in normalized coordinates with harmonic perturbation, using $\mathcal{U}=\mathcal{U}_{x}$ or \mathcal{U}_{y} and $\phi=\phi_{x}$ or ϕ_{y}

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu^{2} \mathcal{U}=\nu^{2} \beta^{3 / 2} F\left(\mathcal{U}_{x}\left(\phi_{x}\right), \mathcal{U}_{y}\left(\phi_{y}\right)\right)
$$

where the F is the Lorentz force from perturbing fields
\square Linear magnet imperfections: deviation from the design dipole and quadrupole fields due to powering and alignment errors
\square Time varying fields: feedback systems (damper) and wake fields due to collective effects (wall currents)
\square Non-linear magnets: sextupole magnets for chromaticity correction and octupole magnets for Landau damping
\square Beam-beam interactions: strongly non-linear field
\square Space charge effects: very important for high intensity beams
\square non-linear magnetic field imperfections: particularly difficult to control for super conducting magnets where the field quality is entirely determined by the coil winding accuracy

Magnetic

■ From Gauss law of magnetostatics, a vector potential exist

$$
\nabla \cdot \mathbf{B}=0 \quad \rightarrow \quad \exists \mathbf{A}: \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

■ Assuming a 2D field in x and y, the vector potential has only one component A_{s}. The Ampere's law in vacuum (inside the beam pipe)

$$
\nabla \times \mathbf{B}=0 \quad \rightarrow \quad \exists V: \quad \mathbf{B}=-\nabla V
$$

■ Using the previous equations, the relations between field components and potentials are

$$
B_{x}=-\frac{\partial V}{\partial x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial V}{\partial y}=-\frac{\partial A_{s}}{\partial x_{v}}
$$

i.e. Riemann conditions of an analytic function

There exist a complex potential of $z=x+i y$ with a power series expansion convergent in a circle with radius $|z|=r_{c}$ (distance from iron yoke)

$$
\mathcal{A}(x+i y)=A_{s}(x, y)+i V(x, y)=\sum_{n=1}^{\infty} \kappa_{n} z^{n}=\sum_{n=1}^{\infty}\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n}
$$

$B_{y}+i B_{x}=-\frac{\partial}{\partial x}\left(A_{s}(x, y)+i V(x, y)\right)=-\sum_{n=1}^{\infty} n\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n-1}$
■ Setting $b_{n}=-n \lambda_{n}, \quad a_{n}=n \mu_{n}$

$$
B_{y}+i B_{x}=\sum_{n=1}\left(b_{n}-i a_{n}\right)(x+i y)^{n-1}
$$

■ Define normalized coefficients

$$
b_{n}^{\prime}=\frac{b_{n}}{10^{-4} B_{0}} r_{0}^{n-1}, a_{n}^{\prime}=\frac{a_{n}}{10^{-4} B_{0}} r_{0}^{n-1}
$$

on a reference radius $r_{0}, 10^{-4}$ of the main field to get

$$
B_{y}+i B_{x}=10^{-4} B_{0} \sum_{n=1}^{\infty}\left(b_{n}^{\prime}-i a_{n}^{\prime}\right)\left(\frac{x+i y}{r_{0}}\right)^{n-1}
$$

Note: $n^{\prime}=n-1$ is the US convention

■ Hill's equations in normalized coordinates with single dipole perturbation:

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\nu_{0}^{2} \beta^{3 / 2} b_{1}(\phi)=\overline{b_{1}}(\phi)
$$

- The dipole perturbation is periodic, so it can be expanded in a Fourier series

$$
\overline{b_{1}}(\phi)=\sum_{m=-\infty}^{\infty} \overline{b_{1 m}} e^{i m \phi}
$$

■ Consider single quadrupole kick in one normalized plane:

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\nu_{0}^{2} \beta^{2} b_{2}(\phi) \mathcal{U}=\overline{b_{2}}(\phi) \mathcal{U}
$$

\square The quadrupole perturbation is periodic, so it can be expanded in a Fourier series

$$
\overline{b_{2}}(\phi)=\sum_{m=-\infty}^{\infty} \overline{b_{2 m}} e^{i m \phi}
$$

- As the perturbation is small insert on the right hand side the unperturbed solution $\mathcal{U} \approx \mathcal{U}_{0}=W_{1} e^{i \nu_{0} \phi}+W_{-1} e^{-i \nu_{0} \phi}$ and the equation of motion can be written as

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\sum_{q=-1}^{1} \sum_{m=-\infty}^{\infty} W_{q} \overline{b_{2 m}} e^{i\left(m+q \nu_{0}\right) \phi} \text { with } W_{0}=0
$$

$$
\text { The resonance conditions are } m-\nu_{0}=\nu_{0} \rightarrow \nu_{0}=\frac{m}{2}
$$

i.e. integer and half-integer tunes should be avoided
\square The condition $m+\nu_{0}=\nu_{0} \rightarrow m=0$ corresponds to a nonvanishing average value $\overline{b_{20}}$, which can be absorbed in the left-hand side providing a tune-shift: $\nu^{2}=\nu_{0}^{2}-b_{20} \quad$ or $\quad \delta \nu \approx-\frac{b_{20}}{2 \nu_{0}}$

■ For a generalized multi-pole perturbation, Hill's equation is:

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\nu_{0}^{2} \beta^{\frac{n}{2}+1} b_{n}(\phi) \mathcal{U}^{n-1}=\overline{b_{n}}(\phi) \mathcal{U}^{n-1}
$$

\square As before, the multipole coefficient can be expanded in Fourier series

$$
\overline{b_{n}}(\phi)=\sum_{m=-\infty}^{\infty} \overline{\overline{b n}_{m}} e^{i m \phi}
$$

- As before, we insert the unperturbed solution on the right side and $\mathcal{U}^{n-1} \approx \mathcal{U}_{0}^{n-1}=\sum_{q=-n+1}^{n-1} W_{q}{ }^{i q^{q} \phi}$ the equation of motion can be written as

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\sum_{q=-n+1}^{n-1} \sum_{m=-\infty}^{\infty} W_{q} \overline{b_{n m}} e^{i\left(m+q \nu_{0}\right) \phi}
$$

with $W_{n-2}=W_{n-4}=\cdots=W_{-n+2}=0$
\square The resonance conditions are $m+q \nu_{0}=\nu_{0}$ with $q=-n+1,-n+3, \ldots, n-1$

- If $q=1$ does not correspond to a vanishing coefficient (even multipoles), there is an (amplitude dependent, for $\mathrm{n}>2$) frequency shift
\square Consider a localized sextupole perturbation in the horizontal plane

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\nu_{0}^{2} \beta^{\frac{5}{2}} b_{3}(\phi) \mathcal{U}^{2}=\overline{b_{3}}(\phi) \mathcal{U}^{2}
$$

- After replacing the perturbation by its Fourier transform and inserting the unperturbed solution to the right hand side

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\sum_{q=-2}^{2} \sum_{m=-\infty}^{\infty} W_{q} \overline{b_{3 m}} e^{i\left(m+q \nu_{0}\right) \phi} \quad \text { with } \quad W_{1}=W_{-1}=0
$$

■ Resonance conditions:

$$
3^{\text {rd }} \text { integer } \rightarrow 3 \nu_{0}=m \text { for } q=-2
$$

$$
\text { integer } \rightarrow \nu_{0}=m \text { for } q=0,2
$$

■ Note that there is not a tune-spread associated. This is only true for small perturbations (first order perturbation treatment)
\square No exact solution
■ Need numerical tools to integrate equations of motion

General resonance conditions
Equations of motion including any multi-pole error

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\overline{b_{n, r}}\left(\phi_{x}\right) \mathcal{U}_{x}^{n-1} \mathcal{U}_{y}^{r-1}
$$

Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following series:

$$
\overline{b_{n r}}\left(\phi_{x}\right)=\sum_{m=-\infty}^{\infty} \overline{b_{n r m}} e^{i m \phi_{x}} \mathcal{U}_{x}^{n-1} \approx \mathcal{U}_{0 x}^{n-1}=\sum_{q_{x}=-n+1}^{n-1} W_{q_{x}}^{x} e^{i i_{x} \nu_{0 x} \phi_{x}} \mathcal{U}_{y}^{r-1} \approx \mathcal{U}_{0 y}^{r-1}=\sum_{q_{y}=-r+1}^{r-1} W_{q_{y}}^{y} e^{i q_{y} \nu_{0 y} \phi_{x}}
$$

- The equation of motion becomes

Resonance conditions

$$
\begin{aligned}
& m+q_{x} \nu_{0 x}+q_{y} \nu_{0 y}=\nu_{0 x} \\
& m+q_{x}^{\prime} \nu_{0 x}+q_{y} \nu_{0 y}=0
\end{aligned}
$$

or
with the resonance order $\left|q_{x}\right|+\left|q_{y}\right|+1$
There are resonance lines everywhere !!!

■ For a localized skew quadrupole we have

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\overline{b_{1,2}}\left(\phi_{x}\right) \mathcal{U}_{y}
$$

■Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following equation:
$\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\sum_{m=-\infty}^{\infty} \sum_{q_{y}=-1}^{q_{y}=1} \overline{b_{12 m}} W_{q_{y}}^{y} e^{i\left(m+q_{y} \nu_{0 y}\right) \phi_{x}}$ with $W_{0}^{y}=0$
■ The coupling resonance are found for $q_{y}= \pm 1$

Linear sum resonance

$m=\nu_{0 x}+\nu_{0 y}$

Linear difference resonance

$$
m=\nu_{0 x}-\nu_{0 y}
$$

■ Regions with few resonances:
$m+q_{x} \nu_{0 x}+q_{y} \nu_{0 y}=0$

- Avoid low order resonances
$\square<12^{\text {th }}$ order for a proton beam without damping $\stackrel{\sim}{N} \square<3^{\text {rd }} \Leftrightarrow 5^{\text {th }}$ order for electron beams with damping ■ Close to coupling resonances: regions without low order resonances but relatively small!
\square Record the particle coordinates at one location (BPM)
- Unperturbed motion lies on a circle in normalized coordinates (simple rotation)

■ Resonance condition corresponds to a periodic orbit or in fixed points in phase space
■ For a sextupole $\delta \mathcal{U}^{\prime}=\overline{b_{3}} \mathcal{U}^{2}$

■ The particle does not lie on a circle!

Poincaré Section:

■ Small amplitude, regular motion (circles)

- Larger amplitude deformation of phase space towards a triangular shape
- Separatrix: curve passing through unstable (hyperbolic) fixed points (and going to infinity)
- Its location (width) depends on distance to the resonance of the unperturbed tune
- Exactly on the resonance, sepratrix collapses to a single unstable fixed point (bifurcation)
■ Stable fixed points should exist but they are found in much larger
 amplitudes

Path to chaos

\square When perturbation becomes higher, motion around the separatrix becomes chaotic (producing tongues or splitting of the separatrix)

- Unstable fixed points are indeed the source of chaos when a perturbation is added

- Regular motion near the center, with curves getting more deformed towards a rectangular shape
■ The separatrix passes through 4 unstable fixed points, but motion seems well contained

■ Poincare-Birkhoff theorem states that under perturbation of a resonance only an even number of fixed points survives (half stable and the other half unstable)
\square Themselves get destroyed when perturbation gets higher, etc. (self-similar fixed points)

■ Resonance islands grow and resonances can overlap allowing diffusion of particles

Irem Slow Extraction With Sextupoles

Sextupole effects up to $2^{\text {nd }}$

9 first order terms:

- 2 chromaticities ξ_{x}, ξ_{y}
- 2 off-momentum resonances $2 Q_{x}, 2 Q_{y} \rightarrow d \beta / d \delta \rightarrow \xi^{(2)}=\partial^{2} Q / \partial \delta^{2}$
- 2 terms \rightarrow integer resonances Q_{x}
- 1 term $\rightarrow 3^{\text {rd }}$ integer resonances $3 Q_{x}$
- 2 terms \rightarrow coupling resonances $Q_{x} \pm 2 Q_{y}$

13 second order terms:

- 3 tune shifts with amplitude: $\partial Q_{x} / \partial J_{x}, \quad \partial Q_{x} / \partial J_{y}=\partial Q_{y} / \partial J_{x}, \quad \partial Q_{y} / \partial J_{y}$
- 8 terms \rightarrow octupole like resonances: $4 Q_{x}, 2 Q_{x} \pm 2 Q_{y}, 4 Q_{y}, 2 Q_{x}, 2 Q_{y}$
- 2 second order chromaticities: $\partial^{2} Q_{x} / \partial \delta^{2}$ and $\partial^{2} Q_{y} / \partial \delta^{2}$

■ Enough sextupole families are needed to control all these terms

■ Keep chromaticity sextupole strength low

- Try an interleaved sextupole scheme (-I transformer) to cancel first order third resonance effect
- Choose working point far from systematic resonances
- Iterate between linear and non-linear lattice

- Up to now we considered only transverse fields

General field expansion for a quadrupole magnet:

$$
\begin{aligned}
& B_{x}=\sum_{m, n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^{m} x^{2 n} y^{2 m+1}}{(2 n)!(2 m+1)!}\binom{m}{l} b_{2 n+2 m+1-2 l}^{[2 l]} \\
& B_{y}=\sum_{m, n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^{m} x^{2 n+1} y^{2 m}}{(2 n+1)!(2 m)!}\binom{m}{l} b_{2 n+2 m+1-2 l}^{[2 l]} \\
& B_{z}=\sum_{m, n=0}^{\infty} \sum_{l=0}^{m} \frac{(-1)^{m} x^{2 n+1} y^{2 m+1}}{(2 n+1)!(2 m+1)!}\binom{m}{l} b_{2 n+2 m+1-2 l}^{[2 l+1]}
\end{aligned}
$$

and to leading order

$$
\begin{aligned}
B_{x} & =y\left[b_{1}-\frac{1}{12}\left(3 x^{2}+y^{2}\right) b_{1}^{[2]}\right]+O(5) \\
B_{y} & =x\left[b_{1}-\frac{1}{12}\left(3 y^{2}+x^{2}\right) b_{1}^{[2]}\right]+O(5) \\
B_{z} & =x y b_{1}^{[1]}+O(4)
\end{aligned}
$$

The quadrupole fringe to leading order has an octupole-like effect

Quad. Fringe octupole-like effect

First order tune spread for an octupole:

$$
\binom{\delta \nu_{x}}{\delta \nu_{y}}=\left(\begin{array}{ll}
a_{h h} & a_{h v} \\
a_{h v} & a_{v v}
\end{array}\right)\binom{2 J_{x}}{2 J_{y}},
$$

where the normalized anharmonicities are

$$
\begin{aligned}
a_{h h} & =\frac{-1}{16 \pi B \rho} \sum_{i} \pm Q_{i} \beta_{x i} \alpha_{x i} \\
a_{h v} & =\frac{1}{16 \pi B \rho} \sum_{i} \pm Q_{i}\left(\beta_{x i} \alpha_{y i}-\beta_{y i} \alpha_{x i}\right) \\
a_{v v} & =\frac{1}{16 \pi B \rho} \sum_{i} \pm Q_{i} \beta_{y i} \alpha_{y i} .
\end{aligned}
$$

Tune footprint for the SNS based on hardedge (red) and realistic (blue) quadrupole fringe-field

Quasi-periodic approximation through NAFF algorithm

$$
f_{j}^{\prime}(t)=\sum_{k=1}^{N} a_{j, k} e^{i \omega_{j, k} t}
$$

of a complex phase space function $f_{j}(t)=q_{j}(t)+i p_{j}(t)$
defined over $t=\tau$,
for each degree of freedom $j=1, \ldots, n$ with $\omega_{j, k}=\boldsymbol{k}_{j} \cdot \boldsymbol{\omega}$
and $a_{j, k}=A_{j, k} e^{i \phi_{j, k}}$

$\stackrel{\cong}{\circ}$ Advantages of NAFF:

a) Very accurate representation of the "signal" $f_{j}(t)$ (if quasi-periodic) and thus of the amplitudes
b) Determination of frequency vector $\boldsymbol{\omega}=2 \pi \nu=2 \pi\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right)$ with high precision $\frac{1}{\tau^{4}} \quad$ for Hanning Filter

Building the frequency map

- Choose coordinates $\left(x_{i}, y_{i}\right)$ with p_{x} and $p_{y}=0$

■ Numerically integrate the phase trajectories through the lattice for sufficient number of turns

- Compute through NAFF Q_{x} and Q_{y} after sufficient number of turns
- Plot them in the tune diagram

Frequency maps for the
Y. Papaphilippou, PAC1999

Frequency maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

- Calculate frequencies for two equal and successive time spans and compute frequency diffusion vector:

$$
\left.\boldsymbol{D}\right|_{t=\tau}=\left.\boldsymbol{\nu}\right|_{t \in(0, \tau / 2]}-\left.\boldsymbol{\nu}\right|_{t \in(\tau / 2, \tau]}
$$

- Plot the initial condition space color-coded with the norm of the diffusion vector
- Compute a diffusion quality factor by averaging all diffusion coefficients normalized with the initial conditions radius

$$
D_{Q F}=\left\langle\frac{|\boldsymbol{D}|}{\left(I_{x 0}^{2}+I_{y 0}^{2}\right)^{1 / 2}}\right\rangle_{R}
$$

Diffusion maps for the LHC

Y. Papaphilippou, PAC1999

Diffusion maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

- Resonances appear as distorted lines in frequency space (or curves in initial condition space
■ Chaotic motion is represented by red scattered particles and defines dynamic aperture of the machine
All dynamics represented in these two plots
- Regular motion represented by blue colors (close to zero amplitude particles or working point)

Example for the SNS ring: Working point (6.4.6.3)

- Integrate a large number of particles
- Calculate the tune with refined Fourier analysis

| $\mathcal{F}_{\tau}:$$\mathbb{R}^{2}$ \longrightarrow
 $\left.\left(I_{x}, I_{y}\right)\right\|_{p_{x}, p_{y}=0}$, $\longrightarrow$$\mathbb{R}^{2}$
 $\left(\nu_{x}, \nu_{y}\right)$ |
| :---: | :---: | :---: |

- Plot points to tune space SNS Working Point $\left(Q_{x}, Q_{y}\right)=(6.4,6.3)$
Non-linear dynamics, JUAS, January 2013

SNS Working point $(6.23,5.24)$
$\delta \mathrm{p} / \mathrm{p}=0 @ 480 \pi \mathrm{~mm}$ mrad

$\delta \mathbf{p} / \mathbf{p}=\mathbf{0}$

Working Point Comparison

Tune Diffusion quality factor $D_{Q F}=\left\langle\frac{|\boldsymbol{D}|}{\left(I_{x 0}^{2}+I_{y 0}^{2}\right)^{1 / 2}}\right\rangle_{R}$
Working point comparison (no sextupoles)

Variable	Symbol	Value
Beam energy	E	7 TeV
Particle species	\ldots	protons
Full crossing angle	θ_{c}	$300 \mu \mathrm{rad}$
rms beam divergence	σ_{x}^{\prime}	$31.7 \mu \mathrm{rad}$
rms beam size	σ_{x}	$15.9 \mu \mathrm{~m}$
Normalized transv.		
\quad rms emittance	$\gamma \varepsilon$	$3.75 \mu \mathrm{~m}$
IP beta function	β^{*}	0.5 m
Bunch charge	N_{b}	$\left(1 \times 10^{11}-2 \times 10^{12}\right)$
Betatron tune	Q_{0}	0.31

- Long range beam-beam interaction represented by a 4D kick-map

$$
\Delta x=-n_{p a r} \frac{2 r_{p} N_{b}}{\gamma}\left[\frac{x^{\prime}+\theta_{c}}{\theta_{t}^{2}}\left(1-e^{-\frac{\theta_{t}^{2}}{2 \theta_{x, y}^{2}}}\right)\right.
$$

$$
\begin{array}{r}
\left.-\frac{1}{\theta_{c}}\left(1-e^{-\frac{\theta_{c}^{2}}{2 \theta_{x_{2}^{2}, y}}}\right)\right] \\
\Delta y=-n_{\text {par }} \frac{2 r_{p} N_{b}}{\gamma} \frac{y^{\prime}}{\theta_{t}^{2}}\left(1-e^{-\frac{\theta_{t}^{2}}{2 \theta_{x}^{2}, y}}\right) \\
\text { with } \quad \theta_{t} \equiv\left(\left(x^{\prime}+\theta_{c}\right)^{2}+y^{\prime 2}\right)^{1 / 2}
\end{array}
$$

- Proved dominant effect of long range beam-beam effect
- Dynamic Aperture (around 6σ) located at the folding of the map (indefinite torsion)
- Dynamics dominated by the $1 / r$ part of the force, reproduced by electrical wire, which was proposed for correcting the effect
- Experimental verification in SPS and installation to the LHC IPs
E. Levichev et al. PAC2009
$\mathrm{O}_{x}=70.1277 \mathrm{O}_{\mathrm{z}}=3 \mathrm{~B} .41 \mathrm{B2}$

- Including radiation damping and excitation shows that 0.7% of the particles are lost during the damping Certain particles seem to damp away from the beam core, on resonance islands

D. Robin et al. PRL 2000

Experimental Methods - Tune scans

\square Study the resonance behavior around different working points in SPS
\square Strength of individual resonance lines can be identified from the beam loss rate, i.e. the derivative of the beam intensity at the moment of crossing the resonance
\square Vertical tune is scanned from about 0.45 down to 0.05 during a period of 3s along the flat bottom
\square Low intensity $4-5 e 10 \mathrm{p} / \mathrm{b}$ single bunches with small emittance injected
\square Horizontal tune is constant during the same period
\square Tunes are continuously monitored using tune monitor (tune postprocessed with NAFF) and the beam intensity is recorded with a beam current transformer

\square Resonances in low γ_{t} optics Resonances in the nominal optics
\square Normal sextupole Qx+2Qy is the strongest
\square Skew sextupole 2Qx+Qy quite strong
\square Normal sextupole Qx-2Qy, skew sextupole at 3Qy and $2 \mathrm{Qx}+2 \mathrm{Qy}$ fourth order visible

\square Normal sextupole resonance $\mathrm{Qx}+2 \mathrm{Qy}$ is the strongest
\square Coupling resonance (diagonal, either Qx-Qy or some higher order of this), Qx-2Qy normal sextupole
\square Skew sextupole resonance 2Qx+Qy weak compared to Q20 case
\square Stop-band width of the vertical integer is stronger (predicted by simulations)

