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Summary 

Oscillators and resonance condition 

 Field imperfections and normalized field errors 

 Perturbation treatment for a sextupole 

 Poincaré section 

 Chaotic motion 

Octupole effect and fringe fields 

 Singe-particle diffusion 

 Dynamic aperture 

 Frequency maps 
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Harmonic oscillator including damping 

 Damped harmonic oscillator: 

 

 

            is the ratio between the stored and lost energy 

per cycle with the damping ratio  

       is the eigen-frequency of the harmonic oscillator 

  A general solution can be found by the ansatz  

 

     leading to an auxiliary  2nd order equation                          

    with solutions  
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Harmonic oscillator including damping II 

 Three cases can be distinguished  

 Overdamping (    real, i.e.             or          ): The 

system exponentially decays to equilibrium (slower for 

larger damping ratio values)  

 Critical damping (ζ = 1): The system returns to equilibrium 

as quickly as possible without oscillating.  

 Underdamping (   complex, i.e.         or     ): 

The system oscillates with the amplitude gradually 

decreasing to zero, with a slightly different frequency than 

the harmonic one:  
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Damped oscillator with periodic driving 

 Consider periodic force pumping energy into the system 

 

 

 General solution is a combination of a transient and a 

steady state term 

 

 The transient solution corresponds to the one of the 

homogeneous system (damped oscillator) and “dies” out 

after some time leaving only the steady state one   

 

        the frequency of the driven oscillation 

 Amplitude      can become large for certain 

frequencies 
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Resonance effect 

excitation by strong wind on the 

eigenfrequencies 

Tacoma Narrow bridge 1940 

0ww =

U(w) 

w 
w 

a(w) 

w0 
w0 

p/2 

Q>1/2 

Q<1/2 

Q>1/2 

Q<1/2 

 Without or with weak damping a 

resonance condition occurs for 

 Infamous example: 



N
o

n
-l

in
e
a

r 
d

y
n

a
m

ic
s
, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
1

3
 

8 

 Colliders 

  Luminosity (i.e. rate of particle production) 
 Νb bunch population 

 kb number of bunches 

 γ relativistic reduced energy 

 εn normalized emittance 

 β* “betatron” amplitude function at collision point 

 High intensity accelerators 

  Average beam power 
   mean current intensity 

 Ε energy 

 fN repetition rate 

 Ν number of particles/pulse 

 Synchrotron light sources 

  Brightness (photon density in phase space) 
 Νp number of photons  

 εx,,y transverse emittances 

Accelerator performance parameters 

 Performance issues due to non-linear effects 
 Reduced dynamic aperture, lifetime and availability, beam loss (radio-activation, magnet 

quench 
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Normalized coordinates 

 Recall that  

 

 Introduce new variables 

 

 

 In matrix form 

 

 Hill’s equation becomes  

 System becomes harmonic oscillator with frequency  
         
       or 

 

 Floquet transformation transforms          
phase space in circles 
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Perturbation in Hill’s equations 

 Hill’s equations in normalized coordinates  with harmonic 

perturbation, using   and  

 

 

 where the F is the Lorentz force from perturbing fields 

 Linear magnet imperfections: deviation from the design dipole 

and quadrupole fields due to powering and alignment errors 

 Time varying fields: feedback systems (damper) and wake fields 

due to collective effects (wall currents) 

 Non-linear magnets: sextupole magnets for chromaticity correction 

and octupole magnets for Landau damping 

 Beam-beam interactions: strongly non-linear field 

 Space charge effects: very important for high intensity beams  

 non-linear magnetic field imperfections: particularly difficult to 

control for super conducting magnets where the field quality is 

entirely determined by the coil winding accuracy 
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Magnetic multipole expansion 
 From Gauss law of magnetostatics, a vector potential exist  

 

 Assuming a 2D field in x and y, the vector potential has only one 
component As. The Ampere’s law in vacuum (inside the beam pipe)  

 

 

 Using the previous equations, the relations between field components 
and potentials are 

i.e. Riemann conditions of an analytic function 

 

There exist a complex potential of z = x+iy with a 

power series expansion convergent in a circle with 

radius |z| = rc (distance from iron yoke) 

x 

y 

iron 

rc 
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Multipole expansion II 
 From the complex potential we can derive the fields 

 

 

 Setting     

 

 

 

 Define normalized coefficients     
       

 

on a reference radius r0, 10-4 of the main field to get 

 

 

 

 Note:   is the US convention 
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Perturbation by single dipole 

 Hill’s equations in normalized coordinates with single 

dipole perturbation: 

 

 

 The dipole perturbation is periodic, so it can be expanded in a 

Fourier series 

 

 

 Note that a periodic kick introduces infinite number of integer 

driving frequencies 

The resonance condition occurs when  

i.e. integer tunes should be avoided (remember orbit distortion due 

to single dipole kick) 
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Perturbation by single quadrupole 
 Consider single quadrupole kick in one normalized plane: 

 

 The quadrupole perturbation is periodic, so it can be expanded in 

a Fourier series 
 

 As the perturbation is small insert on the right hand side the 

unperturbed solution  

and the equation of motion can be written as 

            with 

 The resonance conditions are 

i.e. integer and half-integer tunes should be avoided 

 The condition     corresponds to a non-

vanishing average value       , which can be absorbed in the left-hand 

side providing a tune-shift:    or  
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Perturbation by single multi-pole 
 For a generalized multi-pole perturbation, Hill’s equation is: 

 

 As before, the multipole coefficient can be expanded in Fourier 

series 
 

 As before, we insert the unperturbed solution on the right side and 

                                          the equation of motion can be written as 

               

with 

 The resonance conditions are      with 

 

 If q=1 does not correspond to a vanishing coefficient (even multi-

poles), there is an (amplitude dependent, for n>2) frequency shift 
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Single Sextupole Perturbation 
 Consider a localized sextupole perturbation in the horizontal plane 

 

 After replacing the perturbation by its Fourier transform and 

inserting the unperturbed solution to the right hand side 

      with  

 

 Resonance conditions: 

 

 Note that there is not a tune-spread associated. This is only true 

for small perturbations (first order perturbation treatment) 

 No exact solution  

 Need numerical tools to integrate equations of motion 

3rd integer 

 integer 
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 Equations of motion including any multi-pole error 

 

 Expanding perturbation coefficient in Fourier series and inserting 

the solution of the unperturbed system gives the following series: 

 

 The equation of motion becomes 

 

       

     Resonance conditions  

 

          or 

 

          with the resonance order  

General resonance conditions 

There are resonance lines everywhere !!! 
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 For a localized skew quadrupole we have 

 

 

  

Expanding perturbation coefficient in Fourier series and inserting 

the solution of the unperturbed system gives the following equation: 

            
               with  
 

 The coupling resonance are found for  

Example: Linear Coupling 

Linear sum resonance Linear difference resonance 
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 Regions with few 

resonances: 

 

 Avoid low order resonances 

 < 12th order for a proton 

beam without damping 

 < 3rd  5th order for 

electron beams with damping 

 Close to coupling 

resonances: regions without 

low order resonances but 

relatively small! 

Choice of the working point 

Qy 

Qx 

7th 11th 4th & 8th 
9th 
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 Record the particle coordinates at one 

location (BPM) 

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation) 

 

 

 

 

 

 

 

 Resonance condition  corresponds to a 

periodic orbit or in fixed points in phase 

space  

 For a sextupole 

 

 The particle does not lie on a circle! 

Poincaré Section 

U 

U '
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U 

U '

3 

2 

1 

Rfp 

Q < r/3 

Topology of a sextupole resonance 

 Small amplitude, regular motion 

(circles) 

 Larger amplitude deformation of 

phase space towards a triangular shape 

 Separatrix: curve passing through 

unstable (hyperbolic) fixed points (and 

going to infinity) 

 Its location (width) depends on 

distance to the resonance of the 

unperturbed tune 

 Exactly on the resonance, sepratrix 

collapses to a single unstable fixed 

point (bifurcation) 

 Stable fixed points should exist but 

they are found in much larger 

amplitudes 
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Path to chaos 
 When perturbation becomes higher, motion around the separatrix 

becomes chaotic (producing tongues or splitting of the separatrix) 

 Unstable fixed points are indeed the source of chaos when a 

perturbation is added 
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Topology of an octupole resonance 

 Regular motion near the center, 

with curves getting more deformed 

towards a rectangular shape  

 The separatrix passes through 4 

unstable fixed points, but motion 

seems well contained 

 Four stable fixed points exist and 

they are surrounded by stable motion 

(islands of stability) 
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Chaotic motion 
 Poincare-Birkhoff theorem states that under 

perturbation of a resonance only an even 

number of fixed points survives (half stable 

and the other half unstable) 

 Themselves get destroyed when 

perturbation gets higher, etc. (self-similar 

fixed points) 

 Resonance islands grow and resonances can 

overlap allowing diffusion of particles 



N
o

n
-l

in
e
a

r 
d

y
n

a
m

ic
s
, 
J
U

A
S

, 
J
a

n
u

a
ry

 2
0
1

3
 

25 

Slow Extraction With Sextupoles 

Septum magnet: 

x 

0/wx

 Adjust tunes closer to the resonance condition during 

extraction 

 Region of stable motion shrinks and particles reach the 

septum diffusing through the separatrix 

F 
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Sextupole effects up to 2nd  

 Enough sextupole families are needed to control all these terms 
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Optimization of Dynamic aperture 
 Keep chromaticity sextupole strength low 

 Try an interleaved sextupole scheme (-I transformer) to cancel first order third 

resonance effect 

 Choose working point far from systematic resonances 

 Iterate between linear and non-linear lattice 
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Magnet fringe fields 
• Up to now we considered only 

transverse fields 

• Magnet fringe field is the 

longitudinal dependence of the 

field at the magnet edges 

• Important when magnet aspect 

ratios  and/or emittances are big 
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Quadrupole fringe field 
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Quad. Fringe octupole-like effect 

 Tune footprint for the SNS based on hard-

edge (red) and realistic (blue) quadrupole 

fringe-field 
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Frequency map analysis 
Quasi-periodic approximation through NAFF 

algorithm 

of a complex phase space function  

for each degree of freedom with 

defined over  

Advantages of NAFF: 

with high precision 

b) Determination of frequency vector  

a) Very accurate representation of the “signal”              (if quasi-periodic) 

and thus of the amplitudes 

for Hanning Filter 

and 
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Building the frequency map 
 Choose coordinates (xi, yi) with px and py=0 

 Numerically integrate the phase trajectories through the lattice for 

sufficient number of turns 

 Compute through NAFF Qx and Qy after sufficient number of turns 

 Plot them in the tune diagram 
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Frequency maps for the LHC 

  Frequency maps for the target error table (left) and an increased 

random skew octupole error in the super-conducting dipoles (right) 

Y. Papaphilippou, PAC1999 
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Diffusion Maps 
J. Laskar, PhysicaD, 1993 

 Calculate frequencies for two equal and successive time 

spans and compute frequency diffusion vector: 

 

 

 

 Plot the initial condition space color-coded with the norm of 

the diffusion vector 

 Compute a diffusion quality factor by averaging all diffusion 

coefficients normalized with the initial conditions radius 
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Diffusion maps for the LHC 

Y. Papaphilippou, PAC1999 

 Diffusion maps for the target error table (left) and an increased random 

skew octupole error in the super-conducting dipoles (right) 
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Frequency Map for the ESRF 

All dynamics represented in 

these two plots 

 Regular motion represented 

by blue colors (close to zero 

amplitude particles or working 

point) 

 Resonances appear as 

distorted lines in frequency 

space (or curves in initial 

condition space 

 Chaotic motion is represented 

by red scattered particles and 

defines dynamic aperture of the 

machine 
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Example for the SNS ring: Working point (6.4,6.3) 

 Integrate a large number of particles 

 Calculate the tune with refined Fourier 

analysis 

 Plot points to tune space 
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SNS Working point (6.23,5.24) 
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Working Point Comparison 

Tune Diffusion quality factor 
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 Long range beam-beam interaction 

represented by a 4D kick-map  

 

 

 

 

 

 

 

 

with 

Beam-Beam interaction 
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Head-on vs Long range interaction 
YP and F. Zimmermann, PRSTAB 1999, 2002 

 Proved dominant effect of long range beam-beam effect 

 Dynamic Aperture (around 6σ) located at the folding of the map 
(indefinite torsion) 

 Dynamics dominated by the 1/r part of the force, reproduced by 
electrical wire, which was proposed for correcting the effect 

 Experimental verification in SPS and installation to the LHC IPs 

Head-on Long range 
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CLIC Damping ring dynamics 
0.12 ms 0.6 ms 1.2 ms 

1.8 ms 2.4 ms 3 ms 

3.6 ms 4.2 ms 4.8 ms 

E. Levichev et al. PAC2009 

 Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping 

 Certain particles seem to damp away 
from the beam core, on resonance 
islands 
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 Frequency analysis of turn-by-turn 
data of beam oscillations produced 
by a fast kicker magnet and 
recorded on a Beam Position 
Monitors 

 Reproduction of the non-linear 
model of the Advanced Light 
Source storage ring and working 
point optimization for increasing 
beam lifetime 

Experimental frequency maps 
D. Robin et al. PRL 2000 
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Experimental Methods – Tune scans 
 Study the resonance behavior around different working points in SPS 

 Strength of individual resonance lines can be identified from the beam 
loss rate, i.e. the derivative of the beam intensity at the moment of 
crossing the resonance 

 Vertical tune is scanned from about 0.45 down to 0.05 during a period of 
3s along the flat bottom 

 Low intensity 4-5e10 p/b single bunches with small emittance injected  

 Horizontal tune is constant during the same period 

 Tunes are continuously monitored using tune monitor (tune post-
processed with NAFF) and the beam intensity is recorded with a beam 
current transformer 
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Tune Scans – Results from the SPS 

 Resonances in low γt optics 

 Normal sextupole Qx+2Qy is 

the strongest 

 Skew sextupole 2Qx+Qy 

quite strong  

 Normal sextupole Qx-2Qy, 

skew sextupole at 3Qy and 

2Qx+2Qy fourth order 

visible 

 Resonances in the nominal optics 

 Normal sextupole resonance Qx+2Qy is the 

strongest 

 Coupling resonance (diagonal, either Qx-Qy 

or some higher order of this), Qx-2Qy normal 

sextupole  

 Skew sextupole resonance 2Qx+Qy weak 

compared to Q20 case 

 Stop-band width of the vertical integer is 

stronger (predicted by simulations) 


