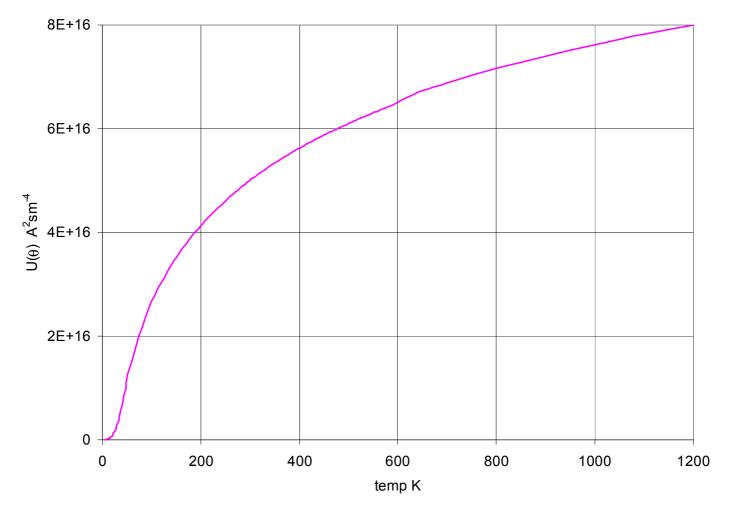
JUAS 2013: Superconducting Magnets Tutorial 2

Question (a): $U(\theta)$ function

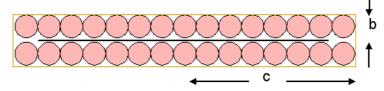

It is often useful to talk about a magnet quench decay time, defined by:

$$\int_{\theta_o}^{\theta_m} J^2 dt = J_o^2 T_d$$

- i) For the example of magnet GSI001, given in Lecture 4, $T_d = 0.167$ sec. Use the U(θ m) plot below to calculate the maximum temperature.
- ii) This was a short prototype magnet. Supposing we make a full length magnet and compute $T_d = 0.23$ sec. should we be worried?
- iii) If we install quench back heaters which reduce the decay time T_d to 0.1 sec, what will the maximum temperature rise be?

Data

Magnet current Io = 7886 Amps Unit cell area of one cable $A_u = 13.6 \text{ mm}^2$



Question (b)

For the dipole GSI001, mentioned in Lecture 4 calculate:

i) the longitudinal quench propagation velocity

ii) the ratio a between the transverse and longitudinal quench propagation velocities

Data

magnet current at start of quench unit cell area of cross section base temperature critical temperature for NbTi at 4T temperature margin at operating current specific heat / volume at transition temperature (averaged over unit cell) Lorentz number effective longitudinal thermal conductivity	$I_{o} = 7886 \text{ Amp}$ $A_{u} = 13.6 \text{ mm}^{2}$ $\theta_{o} = 4.2\text{K}$ $\theta_{c} = 7.8\text{K}$ $\Delta \theta = 0.6\text{K}$ $\gamma C_{u} = 5.32 \times 10^{3} \text{Jm}^{-3} \text{K}^{-1}$ $L_{o} = 2.45 \times 10^{-8} \text{ W? K}^{-2}$ $k_{lu} = 237 \text{ Wm}^{-1} \text{K}^{-1}$
effective longitudinal thermal conductivity	$k_{lu} = 237 Wm^{-1}K^{-1}$
effective thermal conductivity in transverse direction	$k_{te} = 0.048 Wm^{-1}K^{-1}$

How to proceed

- use formulae from Lecture 4
- from the temperature margin calculate the current sharing temperature
- from current sharing temperature and critical temperature calculate the transition temperature
- calculate the overall current density