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Scope

- Beam transport in long, ~periodic machines (linacs,
storage rings...) — general beam dynamics, beta
functions etc — not here

- Beam transport in a short line

- Beta functions not relevant (they suppose a quasi-harmonic
motion) or unuseful

- Geometrical optics is needed (ex: spectrometers)

- Programme

General matricial optics for accelerators
Description/matrix for standard focusing elements
Beam description (emittance) and transport

Basic properties (achromatic systems, spectrometers)
Exercises



| orentz force

- General case dmv . L
Y _g(E+vAB)
dt
- Non relativistic case only E_ q(E LV A g)‘
- Remark: If no acceleration, you can m=¥ Mo
often do as for non-relativistic case
with (see later) B="/c
1
- Electric field: focusing, bending and Y = i-p2

energy change (“ acceleration”)

- Magnetic field: focusing and bending
only



. SR
Magnetic rigidity

2 —
- T=neV is the kinetic energy m,C* = eV,
. E =ym,c’ =3V, =T +m,c’* =neV +eV
- n is the charge number and V the 7m°V \7;3 0= 1 T TV
acceleration voltage —, =] V+ 0
0
2
- We consider the energy atrestV, |= g= V2 + 20w
and compute the Lorentz factors nv +Vq

- We get the radius of curvature in a
magnetic field B

mv_ympe  JnVi+2nW, (TH+2TV,
g ne nc nc

Bp




General frame — Gauss conditions

o Coordinates relative to a

reference particle 4 Vertical axis (y)
e P P y

ds p ds p
Gauss conditions —Xx,x,y,y’
small

First order calculations X

Linéarities Reference trajectory ()

Non linearities = high order

terms Horizontal axis (x)

Please:
Phase space (x,x,y,y’, AL, Ap + AE
Ap/p0) p E
: : Ap 1 AE

Set of canonical conjugate L —
coordinates p 2 E

We will work mainly with transverse coordinates



Equation of motion (illustration: one plane, non relativistic motion)

- Ti . dxds , . X
Time—space transform = X0 oy X
ds dt Y
dx" dx’ds , ldv. 1, ldv , 1.
= =W'=———X+—-X"=—-——X'+=X
dt ds dt vZdt v v dt v
dv_ dvds _y dv
dt ds dt ds
. ) dv , 1. y ;
- « acceleration » VX' =——X +—X ) X ,
ds Vv —_ X = — X
. 2 V2
X =V X"+w'x’

We suppose v~V



With a magnetic force (illustration, again)

- More generally: X" zz—l’x’: X" :i_ﬂ'x'
ViV Vi p
X
- The « force term » =, is 0 P’
linearized v X"+ —X' =F(X) = x"+—x =a+bx+cx
p P

- The equation of motion is
always the same

- Damping term related to ' 1A
acceleration X"+ P X'+k(s)X = =+ AP
- The force term

P P, P
> Calculation rather easy Z / o Mo
» Relativistic equation / / /

Keywords: damping, focussing, dispersion




: x”+Ex'+k(s)x:i@
General 2D solution 0 oD

0 0

/

" p ' .
" +BX Hk(§)x=0 B x(s) =xq C(s) + o S(5)
x'(s) =x9-C'(s)+x'g-S'(s)
With C(0)=1, C'(0)=0, S(0)=0. S'(0)=1

x(s) ‘ C(s) S(s)

X(s) = [x,(s) =1ces S,(S)]-Xo

X(S) = Mg " Xo

x”+£x'+k(s)x _14ap _—

p 100 po x(s)=x0'C(S)+x,0'S(S)+%'D(S)
0




General conclusion

- We suppose the equation of motion to be linearized with a good enough
approximation

- So, the general (first order) solution in 6D phase space is
X(S) = Ms<—0 ' XO
M is the transfer (transport matrix) for abscissa 0 to abscissa s
- Transport to higher orders is much more complicated
- Composition: M3_1 = M3, M, _4
- We will often work in lower dimensions (2 or 4)
- Particular case: horizontal motion with magnetic dispersion

A
x(s)=x5"C(s)+x"y-S(s) +p—p- D(s)
0
- D is the dispersion function

- Beam transport is a LEGO play: assembly on transfer matrixes
- Calculation of elementary matrixes (lenses, drift space, bending magnet, edge focusing)
- General properties of systems versus the properties of matrixes (point to point imaging...)

- It can be shown from hamiltonian mechanics that this is equivalent to geometrical
optics (non only an analogy)



Magnetic force versus electric force

o M quvB
M = 2
n __ QqE
X E = muv?
M _ B
XE T E v
. ForB=1T and E=1MV/m ¥ = 10-6 - v

XE
- Limitfor v = 10® - B = 0.0033 - ~10 keV protons

- Electrostatic focusing is used for low energy beams (~100 keV
protons —order of magnitude, please do the appropriate design-)

E E E . .
X'p = 1 > = = — 2 no charge separation (ex: solenoids at
mv qV |74

source exit)




GENERAL OPTICAL
PROPERTIES OF MATRIXES

Goal:

Express a transport (optical property) in terms of matrix
properties (coefficients)

Choose and tune the optical elements to get these matrix
properties (coefficients)

Provide you the useful formulas



Basic elements

Convention Drift space
. tDis_tarr]\tces are positive from left cx(L) =xy+L-x'y
ori
g . X’(L) — xro

- Focusing lengths are positive
(with the appropriate sign for
focussing/defocussing

Fundamental property (2D case) /
det(M,_o) = 22 = A X,

S

M=l

v




Thin lenses

Focusing thin lens Defocusing thin lens
:» Superposition (linear) of two *Xg = X
elementary beams , , Xp
_ *Xs=Xe
© Xg = X, f
I Xe
X s =Xe ™ F 1 O
-M=|1 1
f

oM: _l
7 1

//
b4
Xe1

Vv
Vv

1/f




Point to point imaging

B M4 0
Msce =M,y My,

M., is the magnification

M11'Mzz=&=A

Ps

\I ’



Focal points

Object

F, Fi
: _ [M11 M12]_ 1 Fy
r= M21 M22 [0 1 © T = é I];:[] [%11 24412]
21 22

= (M Fg+My)=0 - (Myy " Fo+ My1) =0
M22 F — _@
- Fp = ——— — o M3,



A useful formula: drift/matrix/drift

P d

> 1

P i v P

{ T11 = My + qMy,

T, = pqMy1 + pMyy + qMy, + My,
Ty1 = My,
Ty = pMy, + My,



Principal planes

- Position of the 2 planes H, and H, with
- Point to point imaging from H; to H,,
- Magnification equal to 1
— any incoming beam exits with the same position (X;=X.)




Position
) { T11 =M1+ hoMp =1
Ti2 =hy-hyMyy +hy Mg +hy My + My =0
. 1—M11
hz My
_ A-My,
h1 My

Warning: h, is positive upstream, h, is positive downstream
Foci vs principal planes

- We consider the T matrix instead of the M matrix




Use

- This description is useful when
using non sharp edge elements like
electrostatic lenses and to construct
easily trajectories.

- It tells you “where” and “how” the \
system is. Ex: h,;=-h, <> thin lens y H,
- Atracking code provides the f—o =A
transfer matrix M between given fi
planes (far enough in a low field e ——
region).

- The values of F, and F, depend on = I\ 7
the choice of the plane: not
constant not a real lens Y
characteristic . y

- The position of H, and H;, the
values of f, and f, are constant

- The focal lengths given by codes
are f, and f;




Symetric system

T
- Backward motion is obtained

I motion i / N x
by changing x'—-x /\x/\ X

_[1 07_,-1

]_[0 —1]_] M,
J Xpy=M,"]-Xs=M;"]-M,- X, M, : M,

My=] -Mi""]

Warning: structure is symetric,
trajectory may be

T=]-M{'-] M,

T 1 [My1Mapp + Mip My, 2M3; My ]
det(M) 2M11 M3q M11 M35 + My, Mg




Two last properties

- General expression of the transfer matrix

M 1 [F fi-fo—Fi-Fo

T -1 Fo

- Point to point imaging for any system: an objet is at a
distance p from an optical system. Where is the image?
Tip = pqMyq + pMy1 + My + M1 =0
> P-F)-(q-F)=fifo

Classical thin lens = + = = -
P q f



FOCUSING ELEMENTS

Electrostatic lenses
Electrostatic quadrupole
Magnetic quadrupole
Solenoid



Electrostatic lenses

- Can be flat, round E v
(cylindrical)... CA

- Can be accelerating or =)\
decelerating S

- Always focusing v

Plates

Electric field lines

Focus

0 volts +V volts 0 volts



Equation of motion (non relativistic)

- Example on a cylindrical lens

- Poisson 0V 1 0 ov
A,(s) = potential on axis V=gt o (T ' W) =0
- Paraxial equation of motion e
V(r,s) = Z A, (s) T
n=0

- Same equation for another
lens A
V(r,s) = Ao(s)— Oy +Z( D" G

- In practise:
- No formula for transfer matrix A A,
- Tables with principal planes and ZAo 44, =0

associated focal lengths

- Computer codes. Be careful
with the numbers (meaning of V=0 MUST be for v=0

the focal lengths, again)



Electrostatic quadrupole

.s AV
- mx 2 2
. = - — V , e pp— —
F my] 2a% |2 (67) =57 (& =)
v_ __3 K2 . g=2
*X = ~ 2Bp) = — X (case of x- RZ
focusing)

. ll= g — 2.
Y T v K=y

. x=x0-cos(KL)+x’0-%-

sin(KL)
©y =Yy ch(KL) + g - =+ sh(KL)

- cos(KL) sin(KL) /K 0 0

K2 = g M = —Ksin(KL)  cos(KL) 0 O
v (Bp) 0 0 ch(KL) sh(KL)/K
0 0 Ksh(KL) ch(KL) |




Courtesy Bernard Launé

- Inside the vacuum chamber
- No power losses
- Insulators must be protected (collimators)



Magnetic quadrupoles

e TE y

100
160 —
fwﬁﬂf‘l 140
' 120
100 —
i —
V VECTOR FIELDS|
4 —
0~

. 2l

X
SOLEIL quadrupoles

Courtesy Bernard Launé




Magnetic quadrupole

Scalar potential: ¢ = gxy

’ - X
- Field: B = grade = [gy
g = BU/R0
- Velocity: longitudinal
- F=qBAB
n_ _qv9x _ _ 9
T T T T ()
- x"=—K?x
- y"'=K?x X
- cos(KL) sin(KL) /K 0 0
K2 — g M = —Ksin(KL)  cos(KL) 0 0
(Bp) - 0 0 ch(KL) sh(KL)/K
0 0 Ksh(KL) ch(KL) |




Optical properties of quadrupoles

- Principal planes (ex foc plane):
1-Myy _ 1-cos(KL)  K*L* L

My1  —Ksin(KL) 2K2L 2
- A quadrupole is equivalent (up to the validity of the
approximation before) to a thin lens surrounded by two

drift spaces of half-length

- The focal length of the lens is given by:
1 pp . 20V:L AV
f AL ie v(Bp)RZ  TRZ

L BoL .
Bp) = oty (MAGNetic)

- A quadrupole is not stigmatic: |[M,¢| # [M34|

'h1=h2=

(electrostatic, then non relativistic)




Doublet and triplet of identical quads

 Doublet: FOD (focusing, drift, defocusing)
_|1-=L/f L
S -L/fP 1+ L/f
hi =—=f and hy,=f
- A doublet is always convergent but never equivalent to a thin
lens

- Symmetric triplet: FODOF

1—2L%/f? 2L(1 + ]EC) _

—2L(1 —%)/f2 1—2L%/f?

M

M =

—L

h]_ — hz — 1-L/f

~ — Lif £ > L (thin lens)



FODO structure

- A quadrupole focusing in one direction is defocusing In
the other one

- The only way to have a stable system is to have an

alternate gradient structure with identical quadrupoles :
the FODO cell

- Exercise: show a FODO cell is always converging

_—

fodol.xls


fodo1.xls

Solenoid — Glaser lenses

A 4

a

a)

\

RS
NN

N

//,ﬂ/////ﬂﬂ/m

~equivalent to a thin lens




Transfer matrix

2
B
Tll+[ S ]'T:O

» Equation of radial motion 2(Bp)

- Radial focusing+rotation.

B
K=2%
- The transfer matrix is the product (Bp)
of a rotation Ry; and a focusin _
matrix N Kb 9 C = cos(KL)and S = sin(KL)
Coupl - C* SC/K SC S?/K’
- Coupling H/V _ 2
PIng M =|"KSC C —KS? SC
-SC -S?/K C* SC/K
: Ks* - _ 2
c S/K 00 ' O
_|-ks ¢ 0 0 o
N=1"0 o c  S/K M=N-Rg
0 O —-KS C




MAGNETS

Sector magnet
Field index

Edge focusing
Achromatic systems



Dipole magnet: beam bending and focusing

- Here: focusing in the deviation plane
- Field index : horizontal component out {

of the middle plane — vertical focusing
. Tfhfe choice of the index allows any kind
of focusing
- No index: focusing in the deviation n= Bo aBy . Bo 8BX
plane, drift space in the other one - R ox - R 8y




x”+1_nx:1& 1-n>0andn >0

R* © Rp,
/ ,K—I,B—KLB—KL
LIV R? R?

+ — =
% R’ 4 = c0s(0y), Sy = sin(0,), C), = cos( ) Sy = sm( ),
0 (1 o Cx)
Cx  Sx/Kx 0 0 RK?
-K.S, C, 0 0 0 S,
RK,
0 0 Cy  Sy/K 0 0
0 0 -K,S, C, 0 0
, ’ 0,—S,
Sx/RKx _(1 o Cx)/Kx 0 0 R2K3
0 0 0 0 0 1




, 1-n 1 Ap 1-n<0andn>0

R Rpo = Z,K—\/j,g—KLQ_KL
N \ R

- = ch(0), Sx = sh(6), Cy = cos(0y,), S, = sin(6),
[ 0 (1 Cx)
C. S./K, 0 0  RK?

K.S, C, 0 0 0 Sx
RK,

0 0 Cy,  S/K, 0 0

0 0 -K,S, C, 0 0
gx_Sx

Sx/RKx (1_Cx)/K9? 0 0 1 3
R2K

0 0 0 0 0 1"




X”+1_nX=1& 1-n<0andn <0

R’ R p, _— ~
.o 0 sz ’?,Kyz ’E,szKxL, QyzKyL
y:

y +
R’ Cy = ch(6y), Sy = sh(8y), C, = ch(0y), S, = sh(8,),
. (1 T Cx)_
Cy  Sx/Kx 0 0 RK?
K.Sy  Cy 0 0 0 S,
RK,
0 0 Cy Sy/K, 0 O
0 O K,S, C, 0 0
S./RK, (1—C,)/K2 0 0 Ox ~ S«
X X X X R2K3
0 0 0 0 ) |




Edge focusing

A

Less devia

CENTRAL
TRAJECTORY

More = Second order
deviated .

Less horizontal focussing => vertical focussing

o
"
o

Edge focusing provides more focusing 1 1
in one plane and the opposite (less H ~ —tanf
focusing) in the other plane f



remark

%4 angle sur chaque face: ~méme focalisation x/y

= If the edge angle is defocusing in the {_")e ”
deviation plane and equal to % rotation - “"‘B[T} 4@5[;}2_3 0 0
angle, the global focusing is ~identical cod 3o
in each plane 0 0 EE 06

= If the edge angle is defocusing in the {22 (2 )o) .
deviation plane and equal to %2 rotation | ° ’ = (3o

angle, there no longer focusing in the
deviation plane (drift) : use of

re Ctang u |a|’ mag nets Angle Y2 on chaque face : espace deglissement dans le plan de
déviation
1 rosin(8) 7]
0 1
0 0 1- tan[i) 8 ro ©
2

;=BG w(3)o

ra



Dispersion, achromats

x"+£x’+k(s)x=£&
- Let the system to be P P Py
dispersive
- D = Dispersion function || x(s)=C(s)x, + S(s)x, + D(S)%
- Separation versus 1 | o AD
momentum \x (s)=C'(s)x, +S'(s)x,+ D (s)p—0

- Spot size Is increased

- Make D=D’"=0
o, = \/05 + Dzofp,po — Achromatic system

JM De Conto - novembre 2009



Achromats

- Dispersive system // \ [

- One example /\

And for counterwise rotation?




Example
d|p ,O(l COS 9) 4
D, =siné /\
D, = p(l-cos®d)+Lsind
== _
D, =siné
D — D v
D.
=) D,.=D, ——*=-D; - One lens is needed
- In fact: one triplet

D, _ p(d-cosf)+Lsind| . Achromat+foc

2D, 2sin @

— f =




The achromatic chicane

B

%
T

=



examples

The lens is converging for median-plane motion and diverging for vertical,

. 4.2 DEFLECTING MAGNETS
1

Parallel
beam

F=32.40

Parallel beam
aQ=o0o

High |[momentum

x
~

FiG. 12. Achromatic magnet system after K. L. Brown (Penner, 1961).

¢ Triple focus
b=2.74

. 10. Nondispersive stigmatic right-angle magnet.

V.+H
object

4ONd 'V dTVIVH

L_ R __\—-H. image .

Fic. 13. Achromatic magnet system after H. A. Enge (1961).

Courtesy Bernard Launé
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Spectrometer (magnetic separation only)

Résolution

Object o P D

\ ] A—p } 206X,
\/ dp/p
Ax=R4gdp/p

Slit




Spectrometer design

. Point to point imaging —system
size

- Waist to Waist imaging

- Beam size: R¢ = |[M44| - Rg

- Analysis if DA?P = 2Rg

2 D
Ap  2|Miq| - Rg

- Resolution is directly depending
on the magnetic area covered
by the beam, not by optics

- Optics has operational aspects
(ex: achievable slit size) and
low effect on resolution

S\

Object

Y,



SPEG spectrometer (GANIL)




BEAM TRANSPORT

Beam description: emittance, RMS emittance
Emittance transport, Liouville theorem
Courant-Snyder invariant — Twiss matrix
Emittance matching

Emittance measurements(examples)
Collimators



Global description of a beam (2D case)

- Ex: trajectories of individual
particles in a drift space

- Need of a global description

- Need to describe convergence,
divergence, beam enveloppe

- Need to describe extrema beam
enveloppe (“waist”)

- RMS description of the beam




Beam matrix

- Beam matrix
- Covariance matrix in phase space |x :{X}_) X =[x x]
- Here (x, xX’) only) X

- RMS beam extension in phase
space (nD variance)

2 ' 2 '
XX:|:X XX:|—)<XX>=|:<X > < XX >:|Ez

X" <xXxX'> <x?>

- Linear transport easy

- Transformation is a tensorial Y =MX =YY = MXXM
transform =<YY >=M < XX > M

—Not a matrix but a tensor

—Matrix: tranformation

T ; ty (here: RMS _ 1
%e)?tr;sncz)r property (here =3, = I\/IZOI\/I




Emittance (Twiss) parameters

s From the beam matrix < X'> <XX'> Be  —ac,.
- L XX'> < x"” >} - {— as,.  JVE.. }
- Defines the ellipses including
n% of the beam in an RMS 2
(intuitive) sense. Pr—a =1
- The e_IIipse corresponc_jing to
erums IS the concentration . = Jdet(T) = /< X" >< X" > —(< xx'>)
ellipse AV
— P =
gRMS
- Warning; RMS emittance < xXX' >
definition changes upon “=
authors, by a factor 2, 2 or )
4...

Not to be confused with Lorentz factors



Ellipses

A - RMS ellipses

X’max

+ Include more or less (ex : 95%)
particles.

- 4 parameters (a.,f3,y,€)— in fact 3.

- Ex: if the beam is gaussian in two
dimensions, the number of particles
in the ellipse is
No - [1 — exp(—¢&/2&puys)]

o, =2¢rys IS the emittance standard
deviation

+ o, includes 63%
+ 2 o, includes 86%

C\\ | /\ /A/> >- 3 5, includes 95%
N \ / e

o>0 (convergent)  a=0 (waist) a<0 (divergent)

-




Emittance transport
. Explicit formula ~ [#] | M& —2MuM,, ML [
o :X -MM,, M M, +MM,, -M,,M,, | a
I M2, —2M,My, M2, L7 1o
- Beam RMS enveloppe V< X2 >= /B &g
x(s+ds)=x(s)+x'(s)ds > My, = [1 ds]
© QL VErsus B B(s+ds)=pB(s)—2a-ds

- Enveloppe extremum if
o=0 (waist)



Courant/Snyder invariant — Emittance matching

- Consider a periodic system made of identical cells (no
acceleration). Let M be the matrix of each cell. M has 2
eigenvalues A and 1/A (determinantis 1)

- Suppose the motion to be stable, then A"and 1/ A" must
be bounded for any value of n (integer)

- Theonlywayis |A| =1 =|1/1] > 1 = et*
- Tr(M) = /1+%= 2 cos(u)

- The motion is stable if and only if 0 < %Tr(M) <1



Courant/Snyder invariant — Emittance matching

- Suppose the motion to be stable

- The following formulas are straighforward, with the transfer matrix
TWISS parameters

y _{cos/ﬁa*siny B sin u }

¥ sinu COS 1—a Sin i
1 O - * * -
M =cos u- +sin u- a* ﬂ* =cosu-l+snu-J
01 Yy  —a

Emittance matching: if the injected emittance Twiss
parameters are equal to the system Twiss parameters, the
oscillations of the beam enveloppe are minimized, and the
beam occupies less space in phase space.



Beam matching

X
A




Liouville Theorem (2D)

» Let X; and X, be to vectors in phase space

Y1=M'X1andY2=M'X2

det]V1 Y,] = det(M) -det[X; Xz]=&-¢:ler:[X1 X5]

S

- The area in phase space varies accordingly to momentum
- —the area is constant if there is no acceleration
* Brorentz * Yiorentz - € IS constant (normalized emittance)

- Warning: if the motion is not linear, the “apparent” RMS emittance
varies, even the surface in phase space is constant



A few words about emittance measurements

= The RMS enveloppe varies with
focusing

_ 2
= Itis related to the initial emittance <X >= Og = ﬁogRMS
parameters 5
= Aknown lens (system) is used with O = (A,B +Ba + C7/)‘9RMS

differents tunings

= N profile (RMS) measurements are
made

= N equation with 4 unknown are
obtained

= Warning: numerically unstable with
solenoids (even if a theoretical
solution exists)




Moving slit (real phase picture)

Hardwara Analysis
v ahle niovahle .

. . L
rmverse UL opeaingdgy  SERdpnd ﬂj‘%
profilz ‘heanl’ . )

T age :
Rt d.‘?ﬁ:ﬂ..ﬂﬁ'}//!?
beam “elif | v X '}f..ll !‘

—_— - P $ -
- L Ve

. thsanez d — ll-//.-" b
. . e

Elliptic shape might be far
from reality at low energy

Courtesy Bernard Laune



he reality (SILHI source, Saclay)

4Y [nmradl]

120

protons
"

-40

=

-4 -20 0 20 ag 68 Y [nnl

Saclay source SILHI Courtesy Bernard Launé



Collimators on some examples

» Collimator: l’;] (A=aperture,
A € R) (

- M: transfer matrix from
collimator to target

- Case 1:M,, = 0. A horizontal
line is transformed to an
horizontal one. No effect on
beam size N

- Case 2:M,, = 0. A vertical line
is transformed to an vertical
one. Effectis maximum. In
this case Rigqrger = |My41] - A




