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Scope

• Beam transport in long, ~periodic machines (linacs, 
storage rings…)  general beam dynamics, beta 
functions etc  not here

• Beam transport in a short line
• Beta functions not relevant (they suppose a quasi-harmonic 

motion) or unuseful

• Geometrical optics is needed (ex: spectrometers)

• Programme
• General matricial optics for accelerators

• Description/matrix for standard focusing elements

• Beam description (emittance) and transport

• Basic properties (achromatic systems, spectrometers)

• Exercises
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Lorentz force

• General case

• Non relativistic case only

• Remark: If no acceleration, you can 
often do as for non-relativistic case 
with (see later)

• Electric field: focusing, bending and 
energy change (“ acceleration” )

• Magnetic field: focusing and bending 
only

 BvEq
dt

vdm 


 BvEqF
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Magnetic rigidity

• T=neV is the kinetic energy

• n is the charge number and V the 

acceleration voltage

• We consider the energy at rest V0

and compute the Lorentz factors

• We get the radius of curvature in a 

magnetic field B
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General frame – Gauss conditions
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• Coordinates relative to a 
reference particle

• Gauss conditions x,x’,y,y’ 
small

• First order calculations

• Linéarities

• Non linearities = high order
terms

• Phase space (x,x’,y,y’,L, 
p/p0)

• Set of canonical conjugate
coordinates
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We will work mainly with transverse coordinates



Equation of motion (illustration: one plane, non relativistic motion)
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• Timespace transform

• « acceleration »
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We suppose vs~v



With a magnetic force (illustration, again)
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• More generally:

• The « force term »         is
linearized

• The equation of motion is
always the same
• Damping term related to 

acceleration

• The force term

 Calculation rather easy

Relativistic equation
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General 2D solution 
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General conclusion

•
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Magnetic force versus electric force

•
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GENERAL OPTICAL 

PROPERTIES OF MATRIXES

Goal: 

• Express a transport (optical property) in terms of matrix 
properties (coefficients)

• Choose and tune the optical elements to get these matrix 
properties (coefficients)

• Provide you the useful formulas
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Basic elements

Convention

• Distances are positive from left 

to right

• Focusing lengths are positive 

(with the appropriate sign for 

focussing/defocussing

Drift space

•
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Thin lenses

Focusing thin lens

•

Defocusing thin lens

•
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Point to point imaging

•
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Focal points
Object

•

Image

•
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A useful formula: drift/matrix/drift

•
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Principal planes
• Position of the 2 planes H1 and H2 with

• Point to point imaging from H1 to H2

• Magnification equal to 1

 any incoming beam exits with the same position (xs=xe)
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•
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Use

• This description is useful when 
using non sharp edge elements like 
electrostatic lenses and to construct 
easily  trajectories.

• It tells you “where” and “how” the 
system is. Ex: h1=-h2  thin lens

• A tracking code provides the 
transfer matrix M between given 
planes (far enough in a low field 
region).

• The values of Fo and Fi depend on 
the choice of the plane: not 
constant not a real lens 
characteristic

• The position of Ho and Hi, the 
values of fo and fi are constant

• The focal lengths given by codes 
are fo and fi
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Symetric system

•

•
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M1 M1

M2

Warning: structure is symetric, 

trajectory may be
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Two last properties

•
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FOCUSING ELEMENTS
Electrostatic lenses

Electrostatic quadrupole

Magnetic quadrupole

Solenoid
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Electrostatic lenses

• Can be flat, round 

(cylindrical)…

• Can be accelerating or 

decelerating

• Always focusing
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Equation of motion (non relativistic)

• Example on a cylindrical lens

• Poisson

• A0(s) = potential on axis

• Paraxial equation of motion

• Same equation for another 
lens

• In practise: 

• No formula for transfer matrix

• Tables with principal planes and 
associated focal lengths

• Computer codes. Be careful 
with the numbers (meaning of 
the focal lengths, again)
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V=0 MUST be for v=0



Electrostatic quadrupole

•
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• Inside the vacuum chamber

• No power losses

• Insulators must be protected (collimators)
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Courtesy Bernard Launé



Magnetic quadrupoles
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SOLEIL quadrupoles
Courtesy Bernard Launé



Magnetic quadrupole

•
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Optical properties of quadrupoles

•
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Doublet and triplet of identical quads

•
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FODO structure

• A quadrupole focusing in one direction is defocusing in 

the other one

• The only way to have a stable system is to have an 

alternate gradient structure with identical quadrupoles : 

the FODO cell

• Exercise: show a FODO cell is always converging
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Solenoid – Glaser lenses
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~equivalent to a thin lens



Transfer matrix

•
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MAGNETS
Sector magnet

Field index

Edge focusing

Achromatic systems
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Dipole magnet: beam bending and focusing

• Here: focusing in the deviation plane

• Field index : horizontal component out 
of the middle plane  vertical focusing

• The choice of the index allows any kind 
of focusing

• No index: focusing in the deviation 
plane, drift space in the other one
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Edge focusing
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More 

deviated

Less deviated

Less horizontal focussing => vertical focussing

Second order

Edge focusing provides more focusing 

in one plane and the opposite (less 

focusing) in the other plane



remark
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 If the edge angle is defocusing in the 
deviation plane and equal to ¼ rotation 
angle, the global focusing is ~identical
in each plane

 If the edge angle is defocusing in the 
deviation plane and equal to ½  rotation 
angle, there no longer focusing in the 
deviation plane (drift) : use of 
rectangular magnets
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Dispersion, achromats

• Let the system to be

dispersive

• D = Dispersion function

• Separation versus 

momentum

• Spot size is increased

• Make D=D’=0

 Achromatic system
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Achromats
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• Dispersive system

• One example

And for counterwise rotation?



Example 
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• One lens is needed

• In fact: one triplet 

• Achromat+foc
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The achromatic chicane
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examples
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Courtesy Bernard Launé



Spectrometer (magnetic separation only)
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Spectrometer design

•
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SPEG spectrometer (GANIL)
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BEAM TRANSPORT
Beam description: emittance, RMS emittance

Emittance transport, Liouville theorem

Courant-Snyder invariant – Twiss matrix

Emittance matching

Emittance measurements(examples)

Collimators
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Global description of a beam (2D case)

• Ex: trajectories of individual 

particles in a drift space

• Need of a global description

• Need to describe convergence, 

divergence, beam enveloppe

• Need to describe extrema beam 

enveloppe (“waist”)

• RMS description of the beam
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Beam matrix

• Beam matrix

• Covariance matrix in phase space

• Here (x, x’) only)

• RMS beam extension in phase 
space (nD variance)

• Linear transport easy

• Transformation is a tensorial
transform

Not a matrix but a tensor

Matrix: tranformation

Tensor: property (here: RMS 
extent)
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Emittance (Twiss) parameters

•
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Not to be confused with Lorentz factors



Ellipses

•
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Emittance transport

• Explicit formula

• Beam RMS enveloppe

•  versus

• Enveloppe extremum if 

=0 (waist )
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Courant/Snyder invariant – Emittance matching

•
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Courant/Snyder invariant – Emittance matching

• Suppose the motion to be stable

• The following formulas are straighforward, with the transfer matrix 

TWISS parameters
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Emittance matching: if the injected emittance Twiss

parameters are equal to the system Twiss parameters, the 

oscillations of the beam enveloppe are minimized, and the 

beam occupies less space in phase space.



Beam matching
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Liouville Theorem (2D)

•
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A few words about emittance measurements

 The RMS enveloppe varies with
focusing

 It is related to the initial emittance
parameters

 A known lens (system) is used with
differents tunings

 N profile (RMS) measurements are 
made

 N equation with 4 unknown are 
obtained

 Warning: numerically unstable with 
solenoids (even if a theoretical 
solution exists)
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Moving slit (real phase picture)
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Courtesy Bernard Launé

Elliptic shape might be far 

from reality at low energy



The reality (SILHI source, Saclay)
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Saclay source SILHI Courtesy Bernard Launé



Collimators on some examples

•
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