

CORPUSCULAR OPTICS

Jean-Marie De Conto Université Joseph Fourier – Grenoble Laboratoire de Physique Subatomique et de Cosmologie

deconto@lpsc.in2p3.fr

herrier Nersona de Periopie Naciónies er de Perioque des Particules

Scope

- Beam transport in long, ~periodic machines (linacs, storage rings...) → general beam dynamics, beta functions etc → not here
- Beam transport in a short line
 - Beta functions not relevant (they suppose a quasi-harmonic motion) or unuseful
 - Geometrical optics is needed (ex: spectrometers)
- Programme
 - General matricial optics for accelerators
 - Description/matrix for standard focusing elements
 - Beam description (emittance) and transport
 - Basic properties (achromatic systems, spectrometers)
 - Exercises

Lorentz force

General case

Non relativistic case only

- Remark: If no acceleration, you can often do as for non-relativistic case with (see later)
- Electric field: focusing, bending and energy change (" acceleration")
- Magnetic field: focusing and bending only

$$\frac{dm\vec{v}}{dt} = q\left(\vec{E} + \vec{v} \wedge \vec{B}\right)$$

$$\vec{F} = q \left(\vec{E} + \vec{v} \wedge \vec{B} \right)$$

$$m = \gamma \cdot m_0$$

$$\beta = \frac{\nu}{c}$$
$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Magnetic rigidity

- T=neV is the kinetic energy
- n is the charge number and V the acceleration voltage
- We consider the energy at rest V₀ and compute the Lorentz factors
- We get the radius of curvature in a magnetic field B

$$B\rho = \frac{mv}{q} = \frac{\gamma m_0 \beta c}{ne} = \frac{\sqrt{n^2 V^2 + 2nVV_0}}{nc} = \frac{\sqrt{T^2 + 2TV_0}}{nc}$$

$$m_0c^2 = eV_0$$

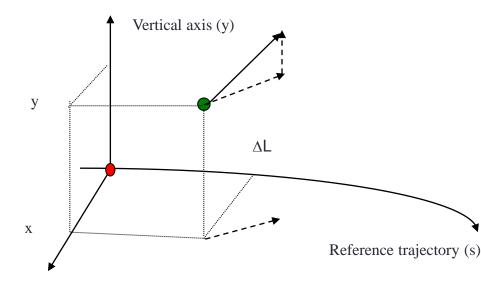
$$E = \gamma m_0 c^2 = \gamma e V_0 = T + m_0 c^2 = n e V + e V_0$$
$$\Rightarrow \gamma = \frac{n V + V_0}{V_0}$$
$$\Rightarrow \beta = \frac{\sqrt{n^2 V^2 + 2n V V_0}}{n V + V_0}$$

General frame – Gauss conditions

 Coordinates relative to a reference particle

$$x' = \frac{dx}{ds} = \frac{p_x}{p_s} \qquad y' = \frac{dy}{ds} = \frac{p_y}{p_s}$$

- Gauss conditions →x,x',y,y' small
 - First order calculations
 - Linéarities
 - Non linearities = high order terms
- Phase space (x,x',y,y', ∆L, ∆p/p0)
- Set of canonical <u>conjugate</u> coordinates



Horizontal axis (x)

Please: $\frac{\Delta p}{p} \neq \frac{\Delta E}{E}$ $\frac{\Delta p}{p} \neq \frac{1}{2} \cdot \frac{\Delta E}{E}$

Equation of motion (illustration: one plane, non relativistic motion)

Time→space transform

$$\dot{x} = \frac{dx}{ds}\frac{ds}{dt} = vx' \Longrightarrow x' = \frac{\dot{x}}{v}$$

$$\frac{dx'}{dt} = \frac{dx'}{ds}\frac{ds}{dt} = vx'' = -\frac{1}{v^2}\frac{dv}{dt}\dot{x} + \frac{1}{v}x'' = -\frac{1}{v}\frac{dv}{dt}x' + \frac{1}{v}\ddot{x}$$
$$\frac{dv}{dt} = \frac{dv}{ds}\frac{ds}{dt} = v\frac{dv}{ds}$$

« acceleration »

$$vx'' = -\frac{dv}{ds}x' + \frac{1}{v}\ddot{x}$$
$$\implies x'' = \frac{\ddot{x}}{v^2} - \frac{v'}{v}x'$$
$$\ddot{x} = v^2x'' + vv'x'$$

We suppose $v_s \sim v$

With a magnetic force (illustration, again)

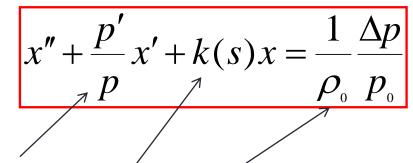
More generally:

$$x'' = \frac{\ddot{x}}{v^2} - \frac{v'}{v}x' \Longrightarrow x'' = \frac{\ddot{x}}{v^2} - \frac{p'}{p}x'$$

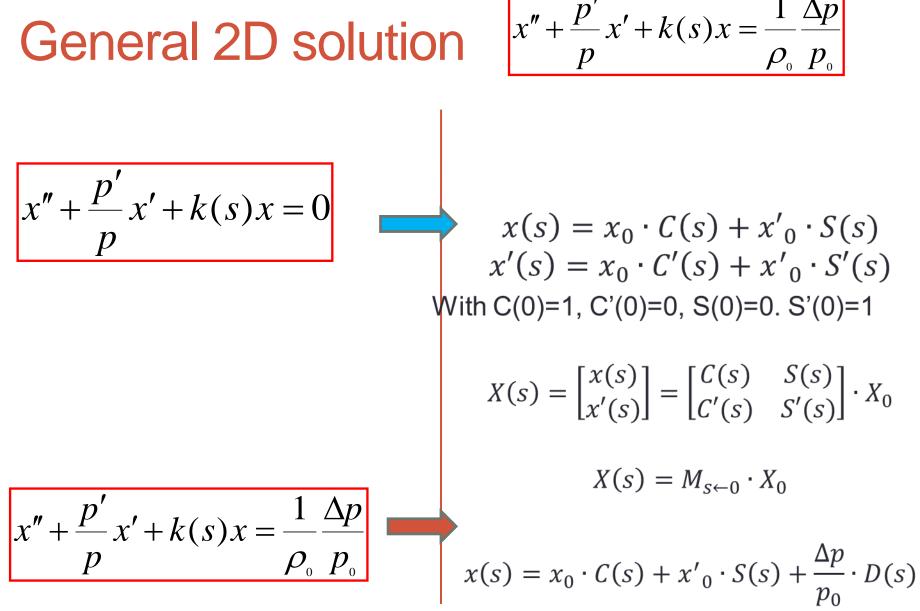
• The « force term » $\frac{\dot{x}}{v^2}$ is linearized

$$x'' + \frac{p'}{p}x' = F(x) \Longrightarrow x'' + \frac{p'}{p}x' \approx a + bx + cx'$$

- The equation of motion is always the same
 - Damping term related to acceleration
 - The force term
 - \rightarrow Calculation rather easy
 - Relativistic equation



Keywords: damping, focussing, dispersion



General conclusion

- We suppose the equation of motion to be linearized with a good enough approximation
- So, the general (first order) solution in 6D phase space is

$$X(s) = M_{s \leftarrow 0} \cdot X_0$$

M is the transfer (transport matrix) for abscissa 0 to abscissa s

- Transport to higher orders is much more complicated
- Composition: $M_{3\leftarrow 1} = M_{3\leftarrow 2} \cdot M_{2\leftarrow 1}$
- We will often work in lower dimensions (2 or 4)
- Particular case: horizontal motion with magnetic dispersion

$$x(s) = x_0 \cdot C(s) + x'_0 \cdot S(s) + \frac{\Delta p}{p_0} \cdot D(s)$$

- D is the dispersion function
- Beam transport is a LEGO play: assembly on transfer matrixes
 - Calculation of elementary matrixes (lenses, drift space, bending magnet, edge focusing)
 - General properties of systems versus the properties of matrixes (point to point imaging...)
- It can be shown from hamiltonian mechanics that this is equivalent to geometrical optics (non only an analogy)

Magnetic force versus electric force

$$x''_{M} = \frac{qvB}{mv^{2}}$$

$$x''_{E} = \frac{qE}{mv^{2}}$$

$$\frac{x_{M}}{x_{E}} = \frac{B}{E} \cdot v$$

- For B=1T and E=1MV/m $\frac{x_M}{x_E} = 10^{-6} \cdot v$
- Limit for $v = 10^6 \rightarrow \beta = 0.0033 \rightarrow \sim 10 \ keV \ protons$
- Electrostatic focusing is used for low energy beams (~100 keV protons –order of magnitude, please do the appropriate design-)

• $x''_E = \frac{qE}{mv^2} = \frac{qE}{qV} = \frac{E}{V}$: no charge separation (ex: solenoids at source exit)

GENERAL OPTICAL PROPERTIES OF MATRIXES

Goal:

- Express a transport (optical property) in terms of matrix properties (coefficients)
- Choose and tune the optical elements to get these matrix properties (coefficients)
- Provide you the useful formulas

Basic elements

Convention

- Distances are positive from left to right
- Focusing lengths are positive (with the appropriate sign for focussing/defocussing

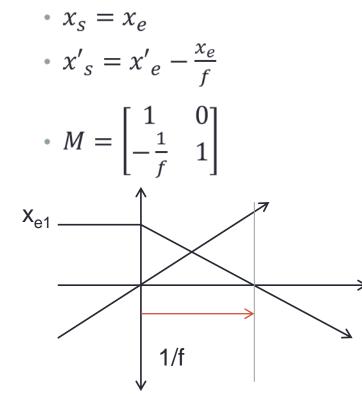
Fundamental property (2D case) $det(M_{s\leftarrow 0}) = \frac{p_0}{p_s} = \Delta$

Drift space $\cdot x(L) = x_0 + L \cdot x'_0$ • $x'(L) = x'_0$ $\cdot M = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$ X_0 0

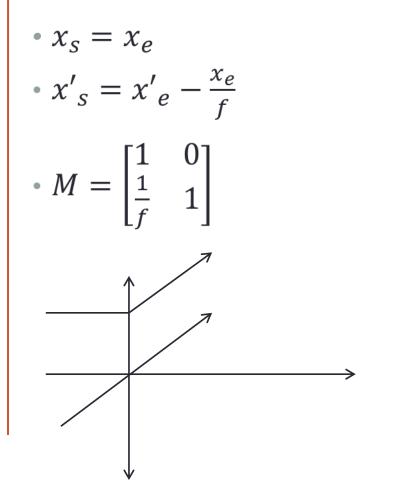
Thin lenses

Focusing thin lens

 Superposition (linear) of two elementary beams



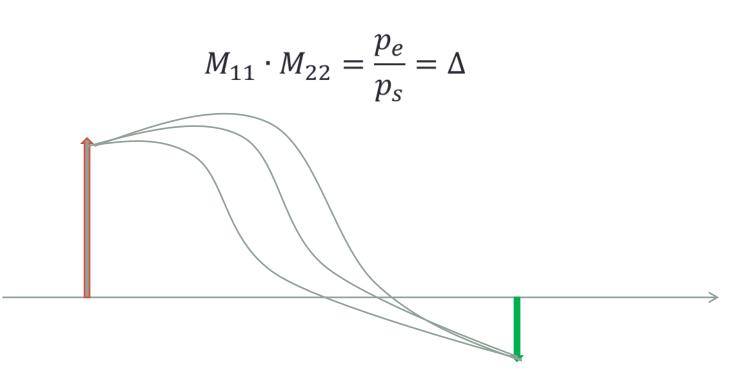
Defocusing thin lens



Point to point imaging

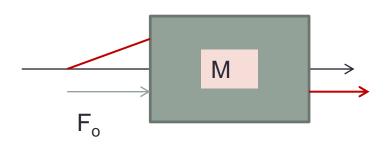
$$M_{s\leftarrow e} = \begin{bmatrix} M_{11} & 0\\ M_{21} & M_{22} \end{bmatrix}$$

M₁₁ is the magnification



Focal points

Object

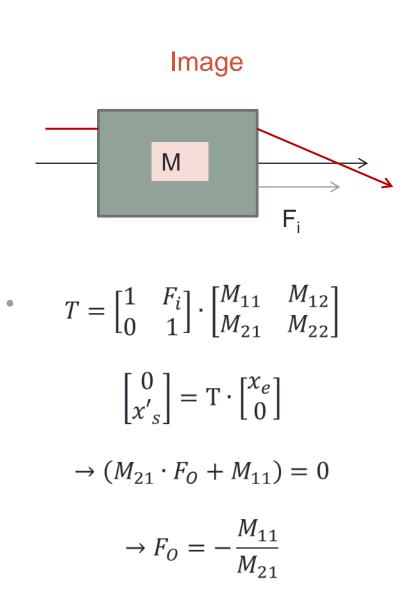


$$T = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 & F_0 \\ 0 & 1 \end{bmatrix}$$

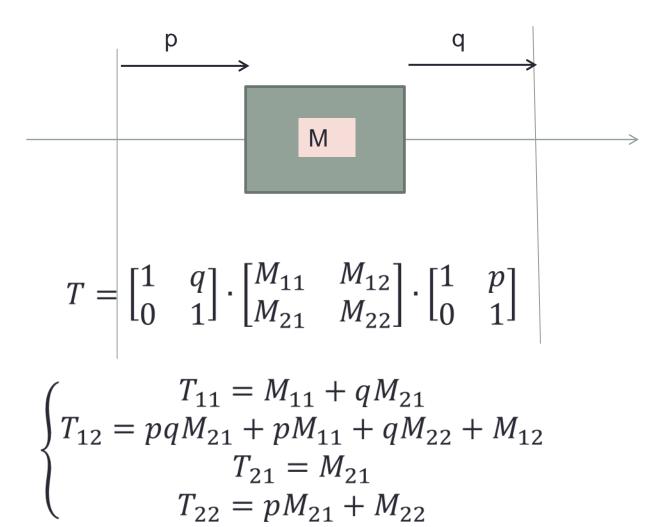
$$\begin{bmatrix} x_s \\ 0 \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} 0 \\ x'_e \end{bmatrix}$$

$$\rightarrow (M_{21} \cdot F_O + M_{22}) = 0$$

$$\rightarrow F_O = -\frac{M_{22}}{M_{21}}$$

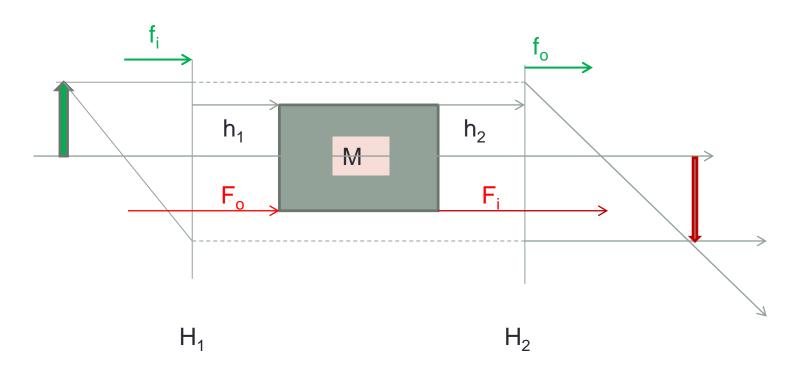


A useful formula: drift/matrix/drift



Principal planes

- Position of the 2 planes H₁ and H₂ with
 - Point to point imaging from H_1 to H_2
 - Magnification equal to 1
 - \rightarrow any incoming beam exits with the same position (x_s=x_e)



Position

$${ T_{11} = M_{11} + h_2 M_{21} = 1 T_{12} = h_1 \cdot h_2 M_{21} + h_1 \cdot M_{11} + h_2 \cdot M_{22} + M_{12} = 0$$

•
$$h_2 = \frac{1 - M_{11}}{M_{21}}$$

• $h_1 = \frac{\Delta - M_{22}}{M_{21}}$

Warning: h_1 is positive upstream, h_2 is positive downstream

Foci vs principal planes

We consider the T matrix instead of the M matrix

•
$$f_o = -\frac{T_{22}}{T_{21}} = -\frac{h_1 \cdot M_{21} + M_{22}}{M_{21}} = -\frac{\Delta}{M_{21}}$$

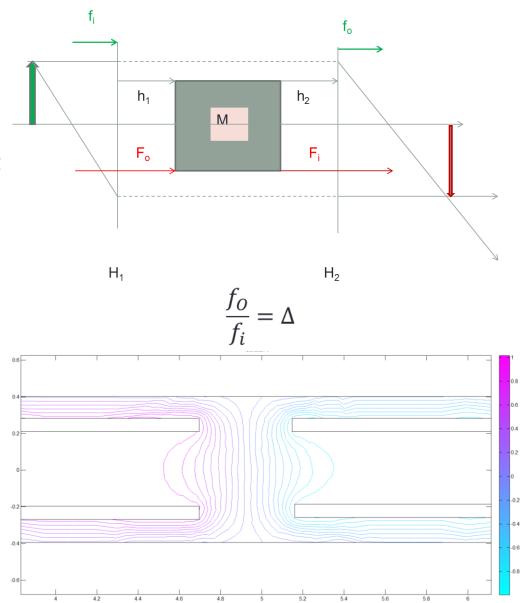
• $f_i = -\frac{T_{11}}{T_{21}} = -\frac{h_2 \cdot M_{21} + M_{11}}{M_{21}} = -\frac{1}{M_{21}}$

$$\frac{f_O}{f_i} = \Delta$$

19

Use

- This description is useful when using non sharp edge elements like electrostatic lenses and to construct easily trajectories.
- It tells you "where" and "how" the system is. Ex: h₁=-h₂ ↔ thin lens
- A tracking code provides the transfer matrix M between given planes (far enough in a low field region).
- The values of F_o and F_i depend on the choice of the plane: not constant not a real lens characteristic
- The position of H_o and H_i, the values of f_o and f_i are constant
- The focal lengths given by codes are $\rm f_o$ and $\rm f_i$



Symetric system

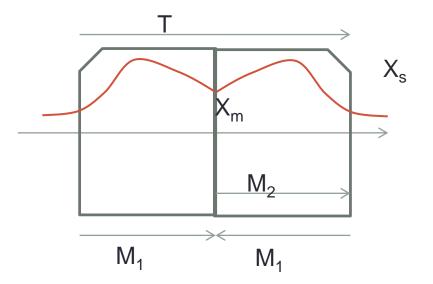
 Backward motion is obtained by changing x'→-x'

$$J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = J^{-1}$$

$$J \cdot X_m = M_1 \cdot J \cdot X_s = M_1 \cdot J \cdot M_2 \cdot X_m$$

$$M_2 = J \cdot M_1^{-1} \cdot J$$

$$T = J \cdot M_1^{-1} \cdot J \cdot M_1$$



Warning: structure is symetric, trajectory may be

•
$$T = \frac{1}{\det(M_1)} \begin{bmatrix} M_{11}M_{22} + M_{12}M_{21} & 2M_{22}M_{12} \\ 2M_{11}M_{21} & M_{11}M_{22} + M_{12}M_{21} \end{bmatrix}$$

Two last properties

General expression of the transfer matrix

$$M = \frac{1}{f_i} \cdot \begin{bmatrix} F_i & f_i \cdot f_O - F_i \cdot F_O \\ -1 & F_O \end{bmatrix}$$

 Point to point imaging for any system: an objet is at a distance p from an optical system. Where is the image?

$$T_{12} = pqM_{21} + pM_{11} + qM_{22} + M_{12} = 0$$

$$\rightarrow (p - F_o) \cdot (q - F_i) = f_i \cdot f_o$$

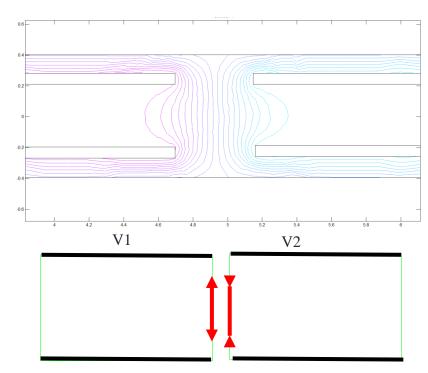
Classical thin lens $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$

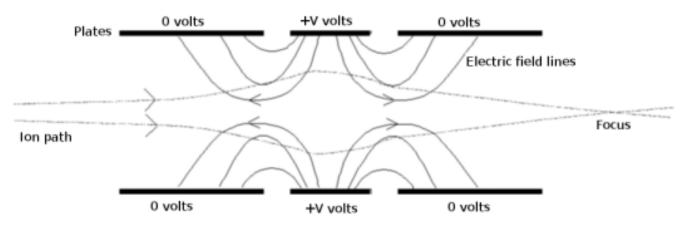
FOCUSING ELEMENTS

Electrostatic lenses Electrostatic quadrupole Magnetic quadrupole Solenoid

Electrostatic lenses

- Can be flat, round (cylindrical)...
- Can be accelerating or decelerating
- Always focusing





Equation of motion (non relativistic)

- Example on a cylindrical lens
 - Poisson
 - $A_0(s) = potential on axis$
 - Paraxial equation of motion
- Same equation for another lens

$$\Delta V = \frac{\partial^2 V}{\partial s^2} + \frac{1}{r} \cdot \frac{\partial}{\partial r} \cdot \left(r \cdot \frac{\partial V}{\partial r}\right) = 0$$
$$V(r, s) = \sum_{n=0}^{+\infty} A_n(s) \cdot r^{2n}$$

$$V(r,s) = A_0(s) - \frac{A''_0}{2^2}r^2 + \sum_{n=2}^{+\infty} (-1)^n \frac{A_0^{(2n)}}{(2n!)^2} r^{2n}$$

- No formula for transfer matrix
- Tables with principal planes and associated focal lengths
- Computer codes. Be careful with the numbers (meaning of the focal lengths, again)

$$r'' + \frac{A'_0}{2A_0}r' + \frac{A''_0}{4A_0}r = 0$$

V=0 MUST be for v=0

Electrostatic quadrupole

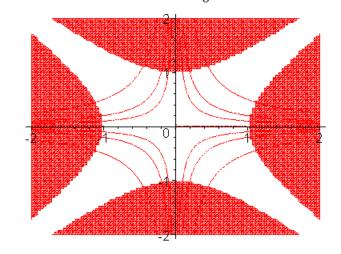
•
$$\vec{F} = \begin{bmatrix} m\ddot{x} \\ m\ddot{y} \end{bmatrix} = -2q \frac{\Delta V}{R_0^2} \cdot \begin{bmatrix} x \\ -y \end{bmatrix}$$

• $x'' = -\frac{g}{v \cdot (B\rho)} x \equiv -K^2 \cdot x$ (case of x-focusing)
• $y'' = \frac{g}{v \cdot (B\rho)} y = K^2 \cdot y$

•
$$x = x_0 \cdot cos(KL) + x'_0 \cdot \frac{1}{K} \cdot sin(KL)$$

•
$$y = y_0 \cdot ch(KL) + x'_0 \cdot \frac{1}{K} \cdot sh(KL)$$

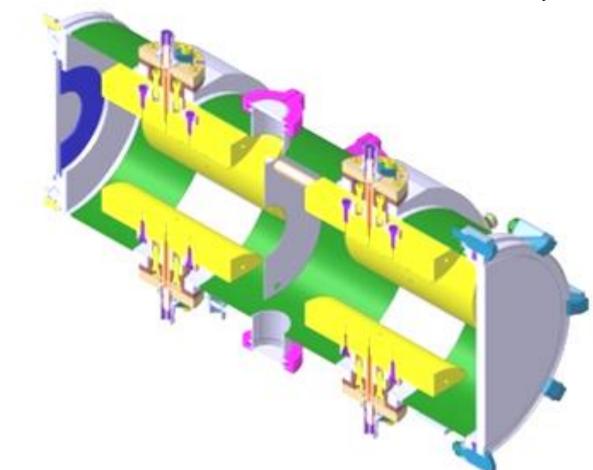
$$V(x,y) = \frac{\Delta V}{R_0^2} \cdot (x^2 - y^2)$$
$$g = \frac{2\Delta V}{R_0^2}$$



a	<i>M</i> =	cos(KL)	$\sin(KL)/K$	
$K^2 = \frac{g}{\nu \cdot (B\rho)}$		-Ksin(KL) 0	cos(KL) 0	$\begin{array}{c} 0 & 0 \\ ch(KL) & sh(KL)/K \end{array}$
		0	0	Ksh(KL) ch(KL)

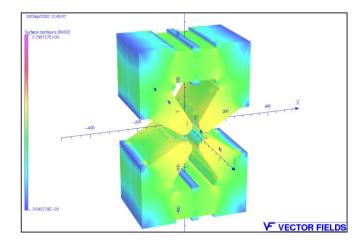
Courtesy Bernard Launé

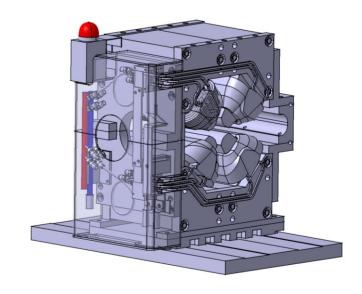
26

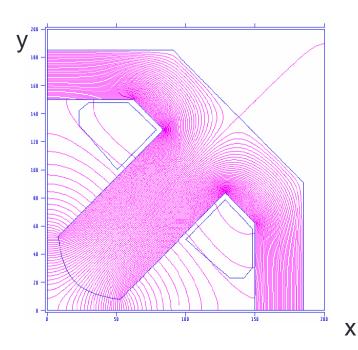


- Inside the vacuum chamber
- No power losses
- Insulators must be protected (collimators)

Magnetic quadrupoles







SOLEIL quadrupoles Courtesy Bernard Launé

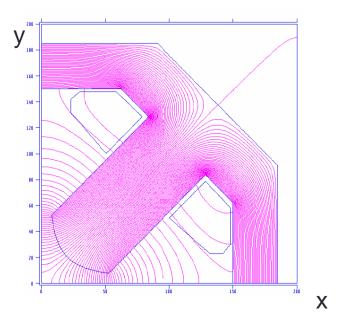
Magnetic quadrupole

Scalar potential:
$$\phi = gxy$$

Field: $\vec{B} = grad\phi = \begin{bmatrix} gx \\ gy \end{bmatrix}$
 $g = \frac{B_0}{R_0}$
Velocity: longitudinal
 $\vec{F} = q \vec{v} \wedge \vec{B}$

•
$$x'' = -\frac{qvgx}{mv^2} = -\frac{g}{(B\rho)}x$$

• $x'' = -K^2x$
• $y'' = K^2x$



$$K^{2} = \frac{g}{(B\rho)} \qquad M = \begin{bmatrix} \cos(KL) & \sin(KL)/K & 0 & 0 \\ -Ksin(KL) & \cos(KL) & 0 & 0 \\ 0 & 0 & ch(KL) & sh(KL)/K \\ 0 & 0 & Ksh(KL) & ch(KL) \end{bmatrix}$$

Optical properties of quadrupoles

Principal planes (ex foc plane):

•
$$h_1 = h_2 = \frac{1 - M_{11}}{M_{21}} = \frac{1 - \cos(KL)}{-Ksin(KL)} \sim -\frac{K^2 L^2}{2K^2 L} = -\frac{L}{2}$$

- A quadrupole is equivalent (up to the validity of the approximation before) to a thin lens surrounded by two drift spaces of half-length
- The focal length of the lens is given by:

• $\frac{1}{f} = K^2 L$ ie $\frac{2\Delta V \cdot L}{\nu(B\rho)R_0^2} \sim \frac{\Delta V \cdot L}{TR_0^2}$ (electrostatic, then non relativistic) and $\frac{gL}{(B\rho)} = \frac{B_0 L}{R_0(B\rho)}$ (magnetic)

• A quadrupole is not stigmatic: $|M_{21}| \neq |M_{34}|$

Doublet and triplet of identical quads

Doublet: FOD (focusing, drift, defocusing)

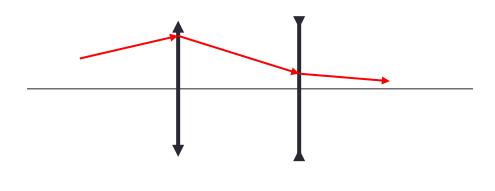
$$M = \begin{bmatrix} 1 - L/f & L \\ -L/f^2 & 1 + L/f \end{bmatrix}$$
$$h_1 = -f \text{ and } h_2 = f$$

- A doublet is always convergent but never equivalent to a thin lens
- Symmetric triplet: FODOF

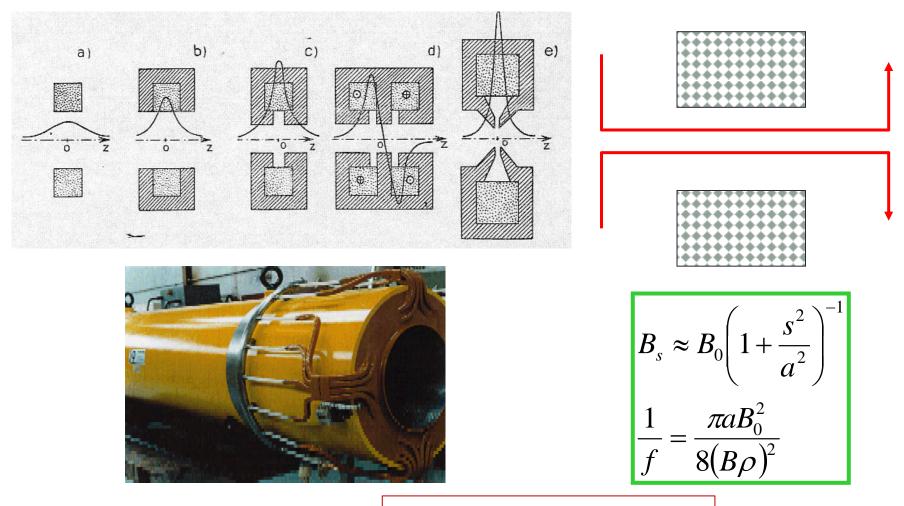
$$M = \begin{bmatrix} 1 - 2L^2/f^2 & 2L(1 + \frac{L}{f}) \\ -2L(1 - \frac{L}{f})/f^2 & 1 - 2L^2/f^2 \end{bmatrix}$$
$$h_1 = h_2 = \frac{-L}{1 - L/f} \sim -L \text{ if } f \gg L \text{ (thin lens)}$$

FODO structure

- A quadrupole focusing in one direction is defocusing in the other one
- The only way to have a stable system is to have an alternate gradient structure with identical quadrupoles : the FODO cell
- Exercise: show a FODO cell is always converging



Solenoid – Glaser lenses



~equivalent to a thin lens

Transfer matrix

- Equation of radial motion
- Radial focusing+rotation.
- The transfer matrix is the product of a rotation R_{KL} and a focusing matrix N
- Coupling H/V

$$N = \begin{bmatrix} C & S/K & 0 & 0 \\ -KS & C & 0 & 0 \\ 0 & 0 & C & S/K \\ 0 & 0 & -KS & C \end{bmatrix}$$

$$r'' + \left[\frac{B_s}{2(B\rho)}\right]^2 \cdot r = 0$$

$$K = \frac{B_s}{2(B\rho)}$$

$$C = \cos(KL)$$
 and $S = \sin(KL)$

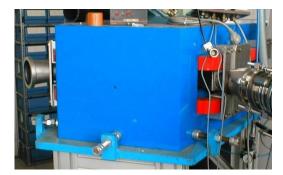
$$M = \begin{bmatrix} C^2 & SC/K & SC & S^2/K \\ -KSC & C^2 & -KS^2 & SC \\ -SC & -S^2/K & C^2 & SC/K \\ KS^2 & -SC & -KSC & C^2 \end{bmatrix}$$

$$M = N \cdot R_{KL}$$

MAGNETS

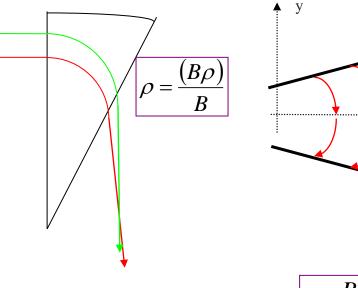
Sector magnet Field index Edge focusing Achromatic systems

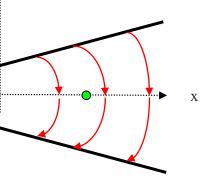
Dipole magnet: beam bending and focusing



- Here: focusing in the deviation plane
- **Field index** : <u>horizontal</u> component out of the middle plane \rightarrow <u>vertical</u> focusing
- The choice of the index allows any kind of focusing
- No index: focusing in the deviation plane, drift space in the other one

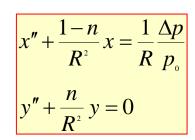
$$B_{y} \sim B_{0} + \frac{\partial B_{y}}{\partial x} x = B_{0} \cdot \left[1 - \frac{n}{R}x\right]$$
$$B_{x} = -B_{0} \cdot \frac{n}{R}y$$





$$n = \frac{B_0}{R} \frac{\partial B_y}{\partial x} = -\frac{B_0}{R} \frac{\partial B_x}{\partial y}$$

$$x'' + \frac{1-n}{R^2} x = \frac{1}{R} \frac{\Delta p}{p_0}$$
$$y'' + \frac{n}{R^2} y = 0$$



$$1 - n > 0 \text{ and } n > 0$$

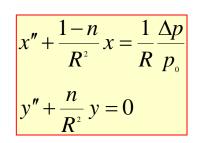
$$K_x = \sqrt{\frac{1 - n}{R^2}}, K_y = \sqrt{\frac{n}{R^2}}, \theta_x = K_x L, \ \theta_y = K_y L$$

$$C_x = \cos(\theta_x), S_x = \sin(\theta_x), \ C_y = \cos(\theta_y), S_y = \sin(\theta_y),$$

$$\begin{bmatrix} C_x & S_x/K_x & 0 & 0 & 0 & \frac{(1-C_x)}{RK_x^2} \\ -K_x S_x & C_x & 0 & 0 & 0 & \frac{S_x}{RK_x} \\ 0 & 0 & C_y & S_y/K_y & 0 & 0 \\ 0 & 0 & -K_y S_y & C_y & 0 & 0 \\ S_x/RK_x & -(1-C_x)/K_x^2 & 0 & 0 & 1 & -\frac{\theta_x - S_x}{R^2 K_x^3} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{aligned} x'' + \frac{1-n}{R^2} x &= \frac{1}{R} \frac{\Delta p}{p_0} \\ y'' + \frac{n}{R^2} y &= 0 \end{aligned} \qquad \begin{aligned} & 1-n < 0 \text{ and } n > 0 \\ K_x &= \sqrt{\frac{1-n}{R^2}}, K_y &= \sqrt{\frac{n}{R^2}}, \theta_x = K_x L, \ \theta_y = K_y L \\ C_x &= ch(\theta_x), S_x = sh(\theta_x), C_y = \cos(\theta_y), S_y = sin(\theta_y), \end{aligned}$$

$$\begin{bmatrix} C_x & S_x/K_x & 0 & 0 & -\frac{(1-C_x)}{RK_x^2} \\ K_x S_x & C_x & 0 & 0 & 0 & \frac{S_x}{RK_x} \\ 0 & 0 & C_y & S_y/K_y & 0 & 0 \\ 0 & 0 & -K_y S_y & C_y & 0 & 0 \\ S_x/RK_x & (1-C_x)/K_x^2 & 0 & 0 & 1 & \frac{\theta_x - S_x}{R^2 K_x^3} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$



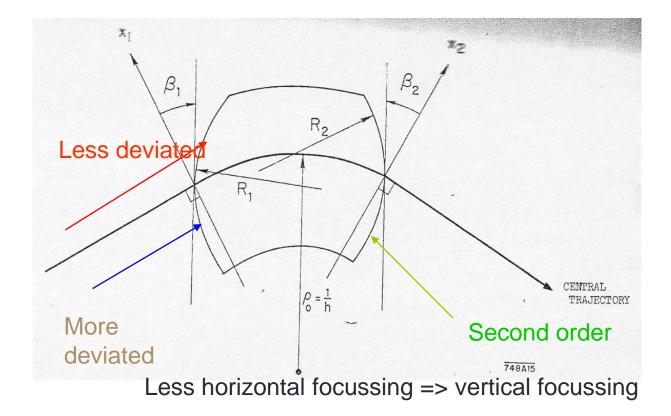
$$1 - n < 0 \text{ and } n < 0$$

$$K_x = \sqrt{\frac{1 - n}{R^2}}, K_y = \sqrt{\frac{n}{R^2}}, \theta_x = K_x L, \ \theta_y = K_y L$$

$$C_x = ch(\theta_x), S_x = sh(\theta_x), \ C_y = ch(\theta_y), S_y = sh(\theta_y),$$

$$\begin{bmatrix} C_x & S_x/K_x & 0 & 0 & -\frac{(1-C_x)}{RK_x^2} \\ K_x S_x & C_x & 0 & 0 & 0 & \frac{S_x}{RK_x} \\ 0 & 0 & C_y & S_y/K_y & 0 & 0 \\ 0 & 0 & K_y S_y & C_y & 0 & 0 \\ S_x/RK_x & (1-C_x)/K_x^2 & 0 & 0 & 1 & \frac{\theta_x - S_x}{R^2 K_x^3} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Edge focusing



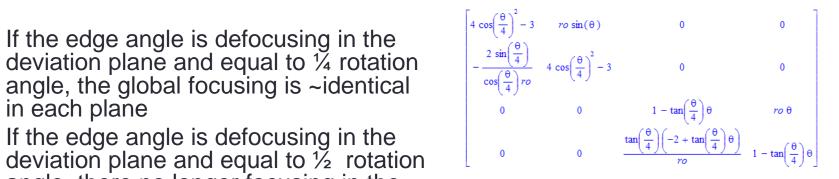
Edge focusing provides more focusing in one plane and the opposite (less focusing) in the other plane

$$\left|\frac{1}{f}\right| \approx \frac{1}{\rho} \tan\beta$$

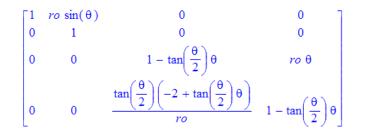
remark

1/4 angle sur chaque face: ~même focalisation x/y

- deviation plane and equal to $\frac{1}{2}$ rotation angle, there no longer focusing in the deviation plane (drift) : use of rectangular magnets



Angle ¹/₂ on chaque face : espace deglissement dans le plan de déviation



Dispersion, achromats

- Let the system to be dispersive
- D = Dispersion function
- Separation versus <u>momentum</u>
- Spot size is increased

$$x'' + \frac{p'}{p}x' + k(s)x = \frac{1}{\rho}\frac{\Delta p}{p_0}$$

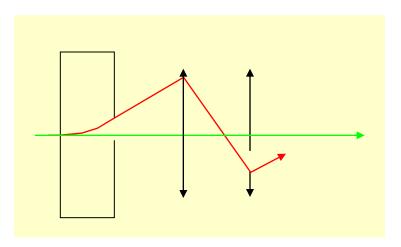
$$\begin{cases} x(s) = C(s)x_0 + S(s)x'_0 + D(s)\frac{\Delta p}{p_0}\\ x'(s) = C'(s)x_0 + S'(s)x'_0 + D'(s)\frac{\Delta p}{p_0}\\ p_0 \end{cases}$$

$$\sigma_x = \sqrt{\sigma_0^2 + D^2 \sigma_{\Delta p/p_0}^2}$$

Make D=D'=0
 → Achromatic system

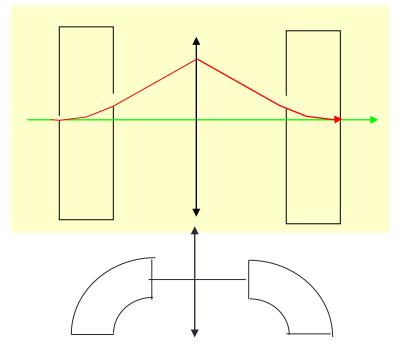
Achromats

Dispersive system



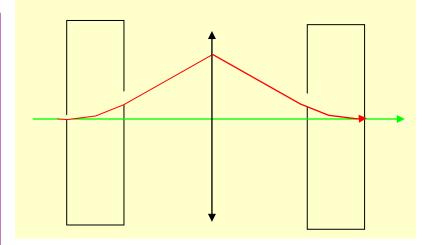
• One example

And for counterwise rotation?



Example

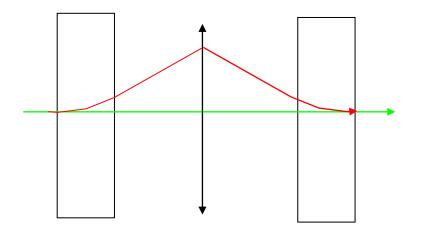
$$\begin{aligned} D_{dip} &= \rho(1 - \cos \theta) \\ D'_{dip} &= \sin \theta \\ \Rightarrow \begin{cases} D_{in} &= \rho(1 - \cos \theta) + L \sin \theta \\ D'_{in} &= \sin \theta \end{cases} \\ \Rightarrow \begin{cases} D_{out} &= D_{in} \\ D'_{out} &= D'_{in} - \frac{D_{in}}{f} \equiv -D'_{in} \\ \Rightarrow f &= \frac{D_{in}}{2D'_{in}} = \frac{\rho(1 - \cos \theta) + L \sin \theta}{2 \sin \theta} \end{aligned}$$

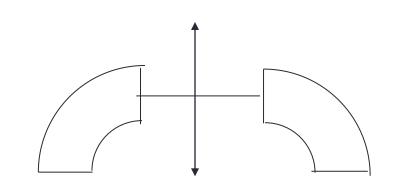


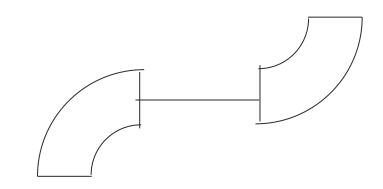
- One lens is needed
- In fact: one triplet
- Achromat+foc

The achromatic chicane

?







examples

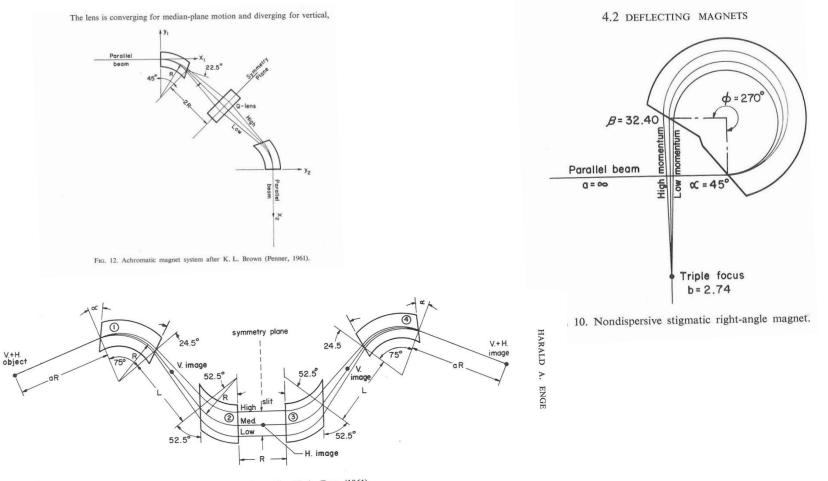
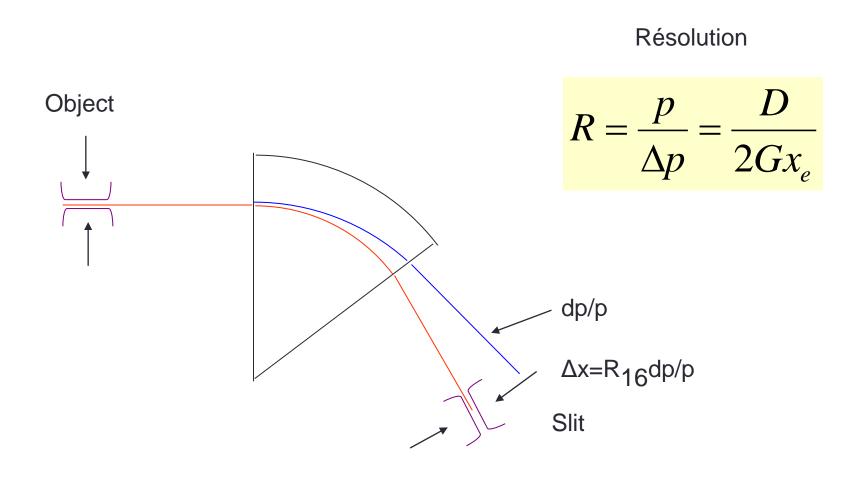


FIG. 13. Achromatic magnet system after H. A. Enge (1961).

Courtesy Bernard Launé

Spectrometer (magnetic separation only)

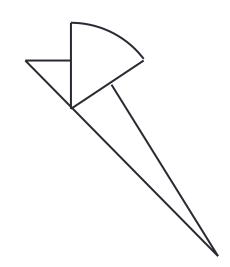


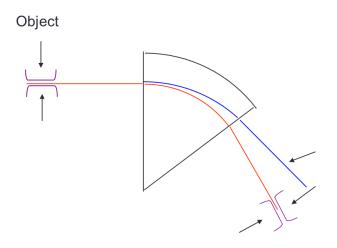
Spectrometer design

- Point to point imaging →system size
- Waist to Waist imaging
- Beam size: $R_S = |M_{11}| \cdot R_E$
- Analysis if $D \frac{\Delta P}{P} = 2R_S$

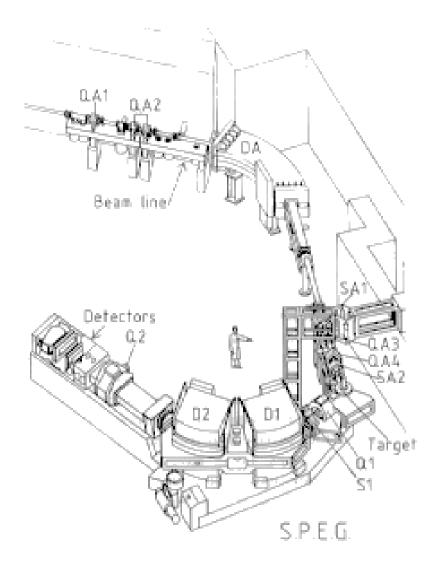
$$\frac{p}{\Delta p} = \frac{D}{2|M_{11}| \cdot R_E}$$

- Resolution is directly depending on the magnetic area covered by the beam, not by optics
- Optics has operational aspects (ex: achievable slit size) and low effect on resolution





SPEG spectrometer (GANIL)

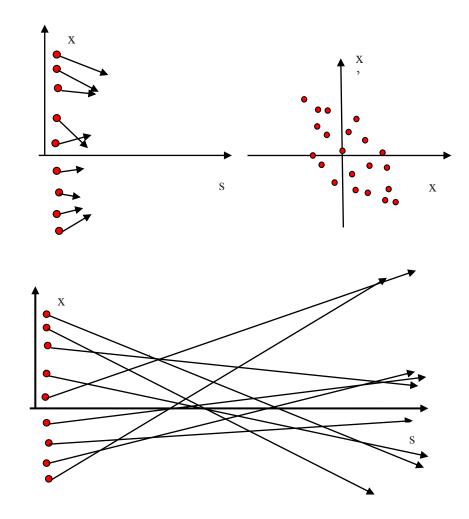


BEAM TRANSPORT

Beam description: emittance, RMS emittance Emittance transport, Liouville theorem Courant-Snyder invariant – Twiss matrix Emittance matching Emittance measurements(examples) Collimators

Global description of a beam (2D case)

- Ex: trajectories of individual particles in a drift space
- Need of a global description
- Need to describe convergence, divergence, beam enveloppe
- Need to describe extrema beam enveloppe ("waist")
- RMS description of the beam



Beam matrix

- Beam matrix
 - Covariance matrix in phase space
 - Here (x, x') only)
 - RMS beam extension in phase space (nD variance)

$$X = \begin{bmatrix} x \\ x' \end{bmatrix} \rightarrow \widetilde{X} = \begin{bmatrix} x & x' \end{bmatrix}$$
$$X\widetilde{X} = \begin{bmatrix} x^2 & xx' \\ xx' & x'^2 \end{bmatrix} \rightarrow \langle X\widetilde{X} \rangle = \begin{bmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{bmatrix} \equiv \Sigma$$

- Linear transport easy
- Transformation is a tensorial transform
- \rightarrow Not a matrix but a tensor
- \rightarrow Matrix: tranformation
- →Tensor: property (here: RMS extent)

$$\begin{split} Y &= MX \Longrightarrow Y\widetilde{Y} = MX\widetilde{X}\widetilde{M} \\ \Longrightarrow < Y\widetilde{Y} > = M < X\widetilde{X} > \widetilde{M} \\ \Longrightarrow \Sigma_1 = M\Sigma_0\widetilde{M} \end{split}$$

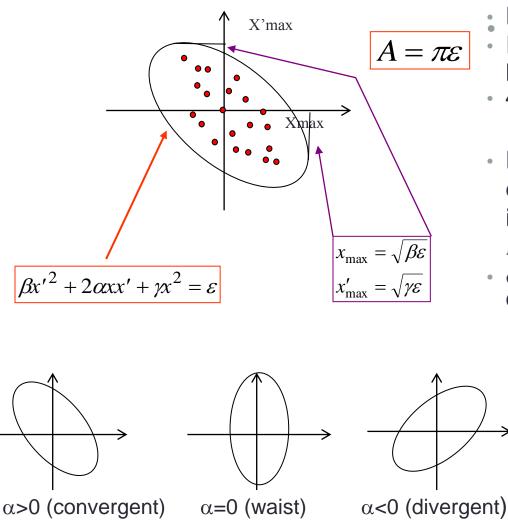
Emittance (Twiss) parameters

- From the beam matrix
- Defines the ellipses including n% of the beam in an RMS (intuitive) sense.
- The ellipse corresponding to ε_{RMS} is the concentration ellipse
- Warning; RMS emittance definition changes upon authors, by a factor ¹/₂, 2 or 4…

$$\Sigma = \begin{bmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{bmatrix} = \begin{bmatrix} \beta \varepsilon_{RMS} & -\alpha \varepsilon_{RMS} \\ -\alpha \varepsilon_{RMS} & \gamma \varepsilon_{RMS} \end{bmatrix}$$
$$\beta \gamma - \alpha^2 \equiv 1$$
$$\beta \left\{ \varepsilon_{RMS} = \sqrt{\det(\Sigma)} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - (\langle xx' \rangle)^2} \\ \beta = \frac{\langle x^2 \rangle}{\varepsilon_{RMS}} \\ \alpha = -\frac{\langle xx' \rangle}{\varepsilon_{RMS}} \right\}$$

Not to be confused with Lorentz factors

Ellipses



- RMS ellipses
- Include more or less (ex : 95%) particles.
 - 4 paramèters $(\alpha, \beta, \gamma, \varepsilon)$ in fact 3.
 - Ex: if the beam is gaussian in two dimensions, the number of particles in the ellipse is

$$N_0 \cdot [1 - exp(-\varepsilon/2\varepsilon_{RMS})]$$

- $\sigma_{\epsilon} = 2\epsilon_{RMS}$ is the emittance standard deviation
 - σ_{ϵ} includes 63%
 - + 2 $\sigma_{\!\epsilon}$ includes 86%
 - $3 \sigma_{\epsilon}$ includes 95%

Emittance transport

Explicit formula

$$\begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix}_{1} = \frac{1}{\Delta} \begin{bmatrix} M_{11}^{2} & -2M_{11}M_{12} & M_{12}^{2} \\ -M_{11}M_{21} & M_{12}M_{21} + M_{11}M_{22} & -M_{22}M_{12} \\ M_{21}^{2} & -2M_{22}M_{21} & M_{22}^{2} \end{bmatrix} \begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix}_{0}$$

Beam RMS enveloppe

$$\sqrt{\langle x^2 \rangle} = \sqrt{\beta \cdot \varepsilon_{rms}}$$

х

• α versus β

$$(s+ds) = x(s) + x'(s)ds \to M_{ds} = \begin{bmatrix} 1 & ds \\ \dots & \dots \end{bmatrix}$$
$$\beta(s+ds) = \beta(s) - 2\alpha \cdot ds$$
$$a = -\frac{\beta'}{2}$$

 Enveloppe extremum if α=0 (waist)

Courant/Snyder invariant – Emittance matching

- Consider a periodic system made of identical cells (no acceleration). Let M be the matrix of each cell. M has 2 eigenvalues λ and $1/\lambda$ (determinant is 1)
- Suppose the motion to be stable, then λ^n and 1/ λ^n must be bounded for any value of n (integer)
- The only way is $|\lambda| = 1 = |1/\lambda| \rightarrow \lambda = e^{i\mu}$

•
$$\rightarrow Tr(M) = \lambda + \frac{1}{\lambda} = 2\cos(\mu)$$

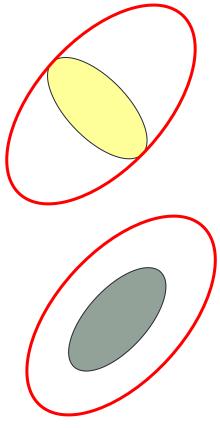
• The motion is stable if and only if $0 \le \frac{1}{2}Tr(M) < 1$

Courant/Snyder invariant – Emittance matching

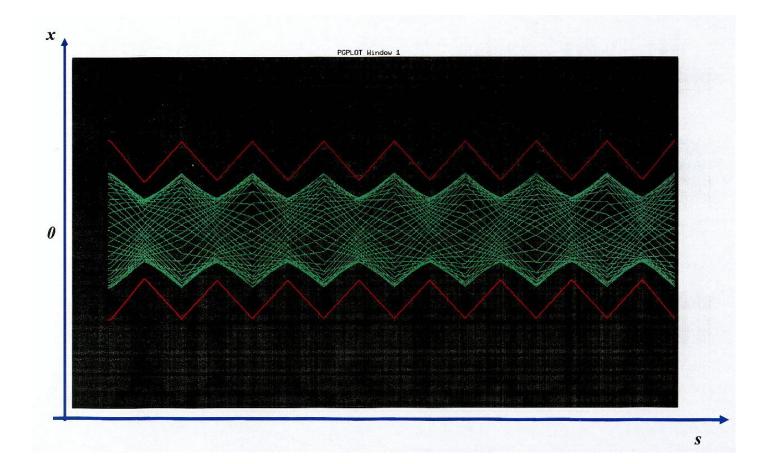
- Suppose the motion to be stable
- The following formulas are straighforward, with the transfer matrix TWISS parameters

$$M = \begin{bmatrix} \cos \mu + \alpha^* \sin \mu & \beta^* \sin \mu \\ \gamma^* \sin \mu & \cos \mu - \alpha^* \sin \mu \end{bmatrix}$$
$$M = \cos \mu \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sin \mu \cdot \begin{bmatrix} \alpha^* & \beta^* \\ \gamma^* & -\alpha^* \end{bmatrix} \equiv \cos \mu \cdot I + \sin \mu \cdot J$$
$$J^2 = -1$$
$$M \cdot \begin{bmatrix} \beta^* & -\alpha^* \\ -\alpha^* & \gamma^* \end{bmatrix} \cdot \tilde{M} = \begin{bmatrix} \beta^* & -\alpha^* \\ -\alpha^* & \gamma^* \end{bmatrix}$$

Emittance matching: if the injected emittance Twiss parameters are equal to the system Twiss parameters, the oscillations of the beam enveloppe are minimized, and the beam occupies less space in phase space.



Beam matching



57

Liouville Theorem (2D)

Let X₁ and X₂ be to vectors in phase space

$$Y_1 = M \cdot X_1$$
 and $Y_2 = M \cdot X_2$

$$det[Y_1 \quad Y_2] = det(M) \cdot det[X_1 \quad X_2] = \frac{p_e}{p_s} \cdot det[X_1 \quad X_2]$$

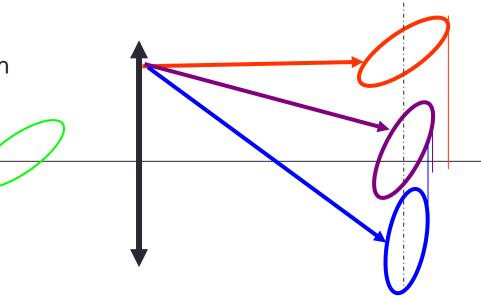
- The area in phase space varies accordingly to momentum
- $\cdot \rightarrow$ the area is constant if there is no acceleration
- $\rightarrow \beta_{Lorentz} \cdot \gamma_{Lorentz} \cdot \varepsilon$ is constant (normalized emittance)
- Warning: if the motion is not linear, the "apparent" RMS emittance varies, even the surface in phase space is constant

A few words about emittance measurements

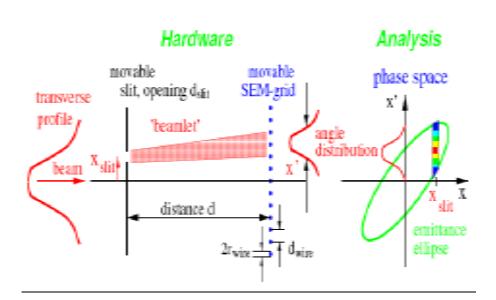
- The RMS enveloppe varies with focusing
- It is related to the initial emittance parameters
- A known lens (system) is used with differents tunings
- N profile (RMS) measurements are made
- N equation with 4 unknown are obtained
- Warning: numerically unstable with solenoids (even if a theoretical solution exists)

$$\langle x^2 \rangle = \sigma_0^2 = \beta_0 \varepsilon_{RMS}$$

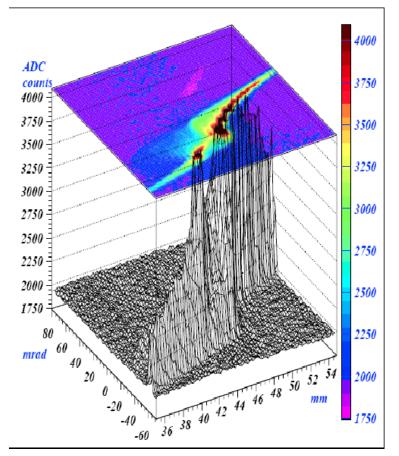
 $\sigma^2 = (A\beta + B\alpha + C\gamma)\varepsilon_{RMS}$



Moving slit (real phase picture)



Elliptic shape might be far from reality at low energy



Courtesy Bernard Launé

The reality (SILHI source, Saclay)



Saclay source SILHI

Courtesy Bernard Launé

Collimators on some examples

- Collimator: $\begin{bmatrix} A \\ \lambda \end{bmatrix}$ (A=aperture, $\lambda \in \mathbb{R}$)
- M: transfer matrix from collimator to target
- Case $1:M_{22} = 0$. A horizontal line is transformed to an horizontal one. No effect on beam size
- Case 2: $M_{12} = 0$. A vertical line is transformed to an vertical one. Effect is maximum. In this case $R_{target} = |M_{11}| \cdot A$

