Transverse Beam Dynamics

JUAS tutorial 3 (solutions)

17 January 2013

1 Exercise: A spectrometer line in CTF3

The CTF3 (CLIC Test Facility 3) experiment at CERN consists of a linac that injects very short electron bunches into an isochronous ring.

A spectrometer line made of one quadrupole and one bending magnet is located at the end of the linac where the particle momentum is $350 \mathrm{MeV} / \mathrm{c}$. the goal of the spectrometer is to measure the energy before injecting the electrons in the ring.

The spectrometer line is sketched on the figure below. It is made of a focusing quadrupole of focal length f, a drift space of length L_{1}, a bending magnet of deflection angle θ in the horizontal plane, and a drift space of length L_{2}. We assume that the spectrometer line starts at the quadrupole and ends at the end of the second drift. We neglect the focusing effect of the dipole.

1.1 If the effective length of the dipole is $l_{B}=0.43 \mathrm{~m}$, what should be the magnetic field (in Tesla) inside the dipole to deflect the electrons by an angle of 35 degrees?
Answer: One has $\theta=\frac{l}{\rho}$ and $B \rho=3.356 p: B=\frac{3.356 p \theta}{l}=1.66 \mathrm{~T}$.
1.2 Starting from the general horizontal 3×3 transfer matrix of a sector dipole of deflection angle θ, show that the transfer matrix of a dipole in the thin lens approximation is

$$
M_{\text {dipole }}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \theta \\
0 & 0 & 1
\end{array}\right)
$$

Which approximations are done?
Hint: A sector dipole has the following 3×3 transfer matrix:

$$
M_{\text {dipole }}=\left(\begin{array}{ccc}
\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{\sin \theta}{\rho} & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right)
$$

Answer: We need to compute the limit for $l \rightarrow 0$ while keeping $\theta=\frac{l}{\rho}=$ const. Remember that, if θ is a small angle, $\cos \theta \approx 1, \sin \theta \approx \theta$. Besides the trivial elements, such as m_{11}, m_{22}, and m_{23}, the others read:

$$
\begin{array}{ll}
m_{12}: \quad & \lim _{l \rightarrow 0} \rho \sin \theta=\lim _{l \rightarrow 0} \frac{\sin \theta}{\frac{1}{\rho}}=\lim _{l \rightarrow 0} l \cdot \underbrace{\frac{\sin \frac{l}{\rho}}{\frac{l}{\rho}}}_{1}=0 \\
m_{13}: \quad & \lim _{l \rightarrow 0} \rho(1-\cos \theta)=\lim _{l \rightarrow 0} \rho\left(1-\cos \frac{l}{\rho}\right)=\lim _{l \rightarrow 0} l \cdot \underbrace{\frac{1-\cos \frac{l}{\rho}}{\frac{l}{\rho}}}_{0}=0 \\
m_{21}: \quad & \lim _{l \rightarrow 0}-\frac{\sin \theta}{\rho}=0
\end{array}
$$

therefore, in thin-lens approximation the matrix of a dipole magnet, is

$$
M_{\text {dipole }}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \theta \\
0 & 0 & 1
\end{array}\right)
$$

1.3 In the thin lens approximation, derive the horizontal extended 3×3 transfer matrix of the spectrometer line. Show that it is:

$$
M_{\text {spectro }}=\left(\begin{array}{ccc}
\frac{f-L_{1}-L_{2}}{f} & L_{1}+L_{2} & L_{2} \theta \\
-\frac{1}{f} & 1 & \theta \\
0 & 0 & 1
\end{array}\right)
$$

Answer: For the spectrometer line, one has

$$
M_{\text {spectro }}=M_{\text {Drift } 2} \cdot M_{\text {Dipole }} \cdot M_{\text {Drift } 1} \cdot M_{\text {Quad }}
$$

therefore:

$$
M_{\text {spectro }}=\left(\begin{array}{ccc}
1 & L_{2} & L_{2} \theta \\
0 & 1 & \theta \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{ccc}
1-\frac{L_{1}}{f} & L_{1} & 0 \\
-\frac{1}{f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

1.4 Assuming $D=D^{\prime}=0$ at the entrance of the quadrupole, what is the dispersion and its derivative at the end of the spectrometer line? Give the numerical value of D^{\prime} at the end of the spectrometer line for the angle of 35 degrees.

Answer: At the entrance of the line, $D=0$ and $D^{\prime}=0$. If M is the transfer matrix of a system the dispersion D at exit is the element m_{13} of M, whereas D^{\prime} is the element m_{23} :

$$
\begin{aligned}
D & =L_{2} \theta \\
D^{\prime} & =\theta=35 \text { degrees }=0.61
\end{aligned}
$$

1.5 What is the difference between a periodic lattice and

 a beam transport lattice (or transfer line) as concerns the betatron function?Answer: In a periodic lattice the β-functions are periodic and contained in the (periodic) transfer matrix of the lattice. In transfer line one needs t know the initial conditions in order to calculate the β-functions at any point (using the transfer matrix).

1.6 The Courant-Snyder invariant allows to trace the Twiss parameters α, β, and γ through a transfer line.

Remember from the lecture:

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

An alternative way to transport the Twiss parameters is through the σ matrix:

$$
\sigma_{i}=\left(\begin{array}{cc}
\beta_{i} & -\alpha_{i} \\
-\alpha_{i} & \gamma_{i}
\end{array}\right)
$$

This matrix multiplied by the emittance ϵ gives the so-called beam matrix (which has already been introduced during the lecture):

$$
\Sigma_{i}=\left(\begin{array}{cc}
\beta_{i} \epsilon & -\alpha_{i} \epsilon \\
-\alpha_{i} \epsilon & \gamma_{i} \epsilon
\end{array}\right)
$$

If σ_{1} is the matrix at the entrance of the transfer line, the matrix σ_{2} at the exit of the transfer line is given by

$$
\sigma_{2}=M \sigma_{1} M^{T}
$$

where M is the 2×2 transfer matrix of the line extracted from the extended 3×3 transfer matrix (see question 1.3), and M^{T} the transpose matrix of M.

Assuming $\alpha_{1}=0$, derive the betatron function β_{2} at the end of the spectrometer line in terms of L_{1}, L_{2}, f and β_{1}.

Hint: For the calculations, write M as $M=\left(\begin{array}{cc}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$ and replace the values of the matrix elements only at the end.

Answer: One has $\sigma_{2}=M \sigma_{1} M^{T}$. If $\alpha_{1}=0$, then $\sigma_{1}=\left(\begin{array}{cc}\beta_{1} & 0 \\ 0 & 1 / \beta_{1}\end{array}\right)$

$$
\sigma_{2}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & 1 / \beta_{1}
\end{array}\right)\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

remember that M is symmetric.

$$
\sigma_{2}=\left(\begin{array}{cc}
\beta_{1} m_{11}^{2}+m_{12}^{2} / \beta_{1} & \beta_{1} m_{11} m_{21}+m_{12} m_{22} / \beta_{1} \\
\beta_{1} m_{11} m_{21}+m_{12} m_{22} / \beta_{1} & \beta_{1} m_{21}^{2}+m_{22}^{2} / \beta_{1}
\end{array}\right)
$$

Therefore:

$$
\beta_{2}=\beta_{1} m_{11}^{2}+m_{12}^{2} / \beta_{1}
$$

Since $m_{11}=\frac{f-L_{1}-L_{2}}{f}$ and $m_{12}=L_{1}+L_{2}$, one has:

$$
\beta_{2}=\beta_{1}\left(1-\frac{L_{1}+L_{2}}{f}\right)^{2}+\frac{\left(L_{1}+L_{2}\right)^{2}}{\beta_{1}}
$$

1.7 Given the numerical values $L_{1}=1 \mathbf{m}, L_{2}=2 \mathbf{m}, \beta_{1}=10$ $\mathbf{m}, \alpha_{1}=0$, compute the betatron function β_{2} at the end of the spectrometer line as a function of the focal length f of the quadrupole.

Answer: If $L_{1}=1 \mathrm{~m}, L_{2}=2 \mathrm{~m}$, and $\beta_{1}=10 \mathrm{~m}$, then $\beta_{2}=0.9+10\left(1-\frac{3}{f}\right)^{2}$.
1.8 Find the value of the focal length f such that the betatron function β_{2} at the end of the spectrometer line is minimum. Give the minimum value of β_{2}.

Answer: To have β_{2} minimum one needs $\left(1-\frac{3}{f}=0\right)$.Therefore, $f=3 \mathrm{~m}$.
1.9 In the presence of dispersion, what is the particle deviation from the design orbit due to the different particle momentum $p \neq p_{0}$ (p_{0} is the design momentum)? Why is it important to minimize the β function in the spectrometer?
Answer: With dispersion, the deviation from the design orbit is $\Delta_{s}=D \frac{\Delta p}{p_{0}}$.
Measuring Δ_{s} allows to determine Δp and therefore p, if one has calibrated the spectrometer at p_{0}. It is important to minimize β_{2} in order to have the best possible resolution for Δ_{s} : on the spectrometer screen, we want a spot with small transverse size for an accurate measurement.

