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EQUATION OF MOTION"
"

Charged particles in a transport channel or in a circular/linear accelerator are 
accelerated,  guided  and  confined  by  external  electromagnetic  fields.  The 
motion of  a  single  charge  is  governed by the  Lorentz  force  through the 
equation:"

Where  m0  is  the  rest  mass,  !  is  the  relativistic  factor  and  v  is  the  particle 
velocity. "
Acceleration is usually provided by the electric field of RF cavities.  Magnetic 
fields  are  produced in  the  bending magnets  for  guiding the  charges  on the 
reference trajectory (orbit), in the quadrupoles for the transverse confinement, 
in the sextupoles for the chromaticity correction. "
"
However, there is another source of e.m. fields, the beam itself…!

 "
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d m0" v( )
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In  a  real  accelerator,  there  is  another  important  source  of  e.m.  fields  to  be 
considered,  the  beam  itself,  which  circulating  inside  the  pipe,  produces 
additional e.m. fields:"

Direct space charge"

Image space charge"

 Wake  fields  "

SPACE CHARGE AND WAKE FIELDS"

Space Charge"



   "
•  betatron tune shift"
•  synchrotron tune shift   "
•  energy loss"
•  energy spread and emittance degradation"
•  instabilities. "

These fields depend on:"
•  the total current"
•  the geometry and the beam pipe "
•  the surrounding  material."
"
They are responsible of many phenomena of beam 
dynamics: !



Fields of a point charge with uniform motion "
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•    In O’ the charge is at rest"
•    The electric field is radial with spherical symmetry"
•    The magnetic field is zero"
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vt is the position of the point charge in the system O."
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Relativistic transforms of the fields and coordinates from O’ to O"
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The fields have lost the spherical symmetry but still keep a "
symmetry with respect the z-axis."
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The field pattern is moving "
with the charge and it can "
be observed at t=0."
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B is transverse to the motion direction"
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Relativistic transform "

Lorentz force"

Two point charges with same velocity on parallel trajectories!



Space Charge: What does it mean?"
It is the net effect of the Coulomb interactions in a multi-particle system, and it 

can be classified  into two regimes:"

1)   Collisional Regime ==> dominated by binary collisions between particles 
==> Single Particle Effects!

!

!

!

2) !Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compared to the average separation of the particles ==> Collective Effects"



Example 1. Relativistic Uniform Cylindrical Beam!
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Lorentz Force"
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Fr = e Er " #cB$( ) = e 1" #2( )Er =
eEr
% 2

The  attractive  magnetic  force,  which  becomes  significant  at  high 
velocities, tends to compensate the repulsive electric force. Therefore, 
space charge defocusing is primarily a non-relativistic effect."

•  has only radial component"

•  is a linear function of the transverse coordinate"
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Relativistic  Uniform Cylindrical Beam – finite length !

! 

"s # b
2$

l0 >> "s

$ >>
b
2l0Beam pipe radius b!

Bunch length l0"
Widening at the wall $s !

$s#l0!

e.g.: "
b = 1 cm "
l0 = 100 $m#

# >> 500#

$s#

! 

1
2"

b#

! 

b
2"



Space charge with image!

 charges/currents!



Static Fields: conducting or magnetic screens !

Let us consider a point charge q close to a conducting screen. "

The electrostatic field can be derived through the "image method". 
Since the metallic screen is an equi-potential plane, it can be 
removed provided that a "virtual" charge is introduced such that the 
potential is constant at the position of the screen"

q" q" - q"



A constant current in the free space produces circular magnetic field. "

If µr%1, the material, even in the case of a good conductor, does not 
affect the field lines.!

I"



For  ferromagnetic  type,  with  µr>>1,  the  very  high  magnetic 
permeability makes the tangent magnetic field zero at the boundary 
so that the magnetic field is perpendicular to the surface, just like the 
electric field lines close to a conductor. "

In analogy with the image method we get the magnetic field, in the 
region outside the material, as superposition of the fields due to two 
symmetric equal currents flowing in the same direction. "



Satisfying a magnetic boundary condition by an image current."

" " " " " " "A. Hofmann "



Time-varying Fields  !

Static  electric  fields  vanish  inside  a  conductor  for  any  finite 
conductivity, while magnetic fields pass through unless of an high 
permeability. "
This is no longer true for time changing fields, which can penetrate 
inside  the  material  in  a  region  !w  called  skin  depth.  Inside  the 
conducting material we write the following Maxwell equations:"

Copper & = 5.8 107 ('m)-1 "
Aluminium & = 3.5 107 ('m)-1 "
Stainless steel & = 1.4 106 ('m)-1 "
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Consider a plane wave (Hy, Ex) propagating in the material"
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(the same equation holds for Hy). Assuming that fields propagate  "
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Fields propagating along “z” are attenuated. "
The attenuation constant measured in meters is called skin depth $w: 

!w !
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The skin depth depends on the material properties and on the frequency."
Fields pass through the conductor wall if the skin depth is larger than "
the wall thickness *w. This happens at relatively low frequencies. 
 
At higher frequencies, for a good conductor  $w<< *w and both  
electric and magnetic fields vanish inside the wall.   
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For a pipe 2mm thick, the fields pass through the wall up to 1 kHz. "
(Skin depth of Aluminium is larger by a factor 1.28)"
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Ratio #/$% as a function of frequency f for some common media (log-log plot)!

Note  that  copper behaves 
like  a  conductor  at 
frequencies  far  above  the 
microwave region. On the 
other  hand,  fresh  water 
acts  like  a  dielectrics  at 
frequencies  above  about 
10MHz!



• Compare  the  wall  thickness  and  the  skin  depth  (region  of 
penetration of the e.m. fields) in the conductor. "

•  If the fields penetrate and pass through the material, they can  
interact with bodies in the outer region. "

•  If the skin depth is very small (rapidly varying fields), fields do 
not penetrate, the electric field lines are perpendicular to the 
wall, as in the static case, while the magnetic field lines are 
tangent to the surface. !
"
"
"
"
"
"
"
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Example 2: Circular  Perfectly Conducting  Pipe !
(Uniform Beam at Center)!

In the case of  cylindrical  charge distribution, 
and  !+,,  the  electric  field  lines  are 
perpendicular to the direction of motion. The 
transverse fields intensity can be computed as 
in  the  static  case,  applying  the  Gauss  and 
Ampere laws."
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•  Due to the symmetry, the transverse fields produced by an ultra-
relativistic charge inside the pipe are the same as in the free space."

•  For  a  distribution  with  cylindrical  symmetry,  in  the  ultra-
relativistic  regime,  there  is  a  cancellation  of  the  electric  and 
magnetic forces. "

•  The uniform beam produces exactly the same forces as in the 
free space. "

•  This result does not depend on the longitudinal distribution of 
the beam. In this case one should consider the local charge density 
-(z)"



Parallel Plates (Beam at Center)!

In some cases, the beam pipe cross 
section is such that we can consider 
only the surfaces closer to the beam, 
which  behave  like  two  parallel 
plates. In this case, we use the image 
method  to  a  charge  distribution  of 
radius  a  between  two  conducting 
plates  2h  apart.  By  applying  the 
superposition  principle  we  get  the 
total  image  field  at  a  position  y 
inside the beam. "
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Where we have assumed h>>a>y. "

For d.c. or slowly varying currents, the boundary condition imposed 
by the conducting plates does not affect the magnetic field. "

There is no magnetic field which can compensate the electric field 
due to the "image" charges. "

y"

Fy (y) = e
! 2 Ey

dir + eEy
im =

e
! 2

"(z)
2#  $0

y
a2 +

e"  (z)
4#  $oh

2
# 2

12
y



From the divergence equation we derive also the other transverse 
component:"
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Including also the direct space charge force, we get:"
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Therefore, for !>>1, and for d.c. or slowly varying currents the cancellation effect 
applies  only  for  the  direct  space  charge  forces.  There  is  no  cancellation  of  the 
electric and magnetic forces due to the "image" charges."



Usually, the frequency beam spectrum is quite rich of harmonics, 
especially for bunched beams. "

It is convenient to decompose the current into a d.c. component, I, 
for which $w >>*w, and an a.c. component, Î, for which $w<< *w."

While the d.c. component of the magnetic field does not perceive 
the presence of the material, its a.c. component is obliged to be 
tangent at the wall. "
"
We can see  that  this  current  produces  a  magnetic  field  able  to 
cancel the effect of the electrostatic force."

Parallel Plates (Beam at Center) a.c. currents!
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There is cancellation of the electric and magnetic forces."
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Parallel Plates - General expression of the force !

Taking into account all the boundary conditions for d.c. and a.c. 
currents, we can write the expression of the force as:"
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where - is the total current divided by %c, - its d.c. part, g the gap of a 
bending magnet, and we take the sign (+) if u=y, and the sign (–) if 
u=x."
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-L. J. Laslett, LBL Document PUB-616, 1987, vol III"
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Space charge effects in !

circular accelerators!



Consider a perfectly circular accelerator with radius "x. The beam 
circulates  inside  the  beam pipe.  The  transverse  single  particle 
motion  in  the  linear  regime,  is  derived  from  the  equation  of 
motion. Including the self field forces in the motion equation, we 
have "

d m!  v( )
dt

= F ext !r( )+F self !r( )
dv
dt
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Self Fields and betatron motion!
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Following the same steps already seen in the "transverse dynamics" 
lectures, we write:"
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We assume a small transverse displacement x, and only transverse 
quadrupole forces which keep the beam around the closed orbit:"
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where Eo is the particle energy. This equation expressed as function of 
“s” reads:"
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•  In the analysis of the motion of the particles in presence of the 
self  field,  we  will  adopt  a  simplified  model  where  particles 
execute simple harmonic oscillations around the reference orbit. "

•  This is the case where the focusing term is constant. Although 
this condition in never fulfilled in a real accelerator, it provides a 
reliable model for the description of the beam instabilities"
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" " x (s)+ Kx x(s) = 0
Free betatron motion:"

Perturbed motion:"



Transverse Incoherent Effects!

We take the linear term of the transverse force in the betatron 
equation:"
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Transverse Incoherent Effects!

The shift of betatron wave number (tune shift) is negative since 
the  space  charge  forces  are  defocusing  on  both  planes  (the 
betatron  wavelength  increases).  Notice  that  the  space  charge 
force,  and then the tune shift,  is,  in general,  function of “z”, 
therefore  this  expression  represents  a  tune  spread  inside  the 
beam.  This  is  why  we  call  it  incoherent.  Notice  that  if  we 
include higher order terms in the transverse force,  we cannot 
write  the  harmonic  oscillator  equation  any  more,  and,  in 
general, we get a tune shift that depends on the amplitude of the 
betatron oscillation."
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Example  3:  incoherent  betatron  tune  shift  for  a  uniform 
electron beam of  radius  a=100&m, length lo=100&m, inside a 
circular perfectly conducting  pipe (energy E0=1GeV, N=1010, 
'x=20m, Qxo=4.15)!
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Remember that for real bunched beams the space charge forces depend on the 
longitudinal and radial position of the charge."



Shift and Spread of the Incoherent  Tunes!
If the beam is located at the centre of symmetry of the pipe, the e.m. 
forces due to space charge and images cannot affect the motion of the 
centre  of  mass  (coherent),  but  change  the  trajectory  of  individual 
charges in the beam (incoherent). "

CONSEQUENCES:  in  circular  accelerators  the  values  of  the 
betatron wave numbers should not be close to rational numbers in 
order to avoid the crossing of linear and non-linear resonances where 
the beam becomes unstable. The spread induced by the space charge 
force can make hard to satisfy this basic requirement. "



CERN  PS  Booster  accelerates  proton 
bunches from 50 to 800 MeV in about 0.6 s. 
The  tunes  occupied  by  the  particles  are 
indicated in the diagram by the shaded area. 
As time goes on, the energy increases and the 
space  charge  tune  spread  gets  smaller 
covering at t=100 ms the tune area shown by 
the  darker  area.  The  point  of  highest  tune 
corresponds to the particles which are least 
affected  by  the  space  charge.  This  point 
moves  in  the  Q diagram since  the  external 
focusing  is  adjusted  such  that  the  reduced 
tune spread lies in a region free of harmful 
resonances."

The small  red  area  shows the  situation  at  t=600 ms  when the  beam has 
reached the energy of 800 MeV. The tune spread reduction is  lower than 
expected  with  the  energy  increase  (1/!3) dependence since the bunch 
dimensions also decrease during the acceleration. 

Example from A. Hofmann in CAS 1992 (General Course - Jyväskylä Finland) 



Transverse Coherent Effects!

If  the  beam  experiences  a  transverse  deflection  kick,  it  starts  to 
perform betatron oscillations as a whole.  The beam, source of the 
space  charge  fields  moves  transversely  inside  the  pipe,  while 
individual particles still continue their incoherent motion around the 
common coherent trajectory."

X!
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The image charge is at a distance “d” such that"
the pipe surface is at constant voltage, and pulls"
 the beam away from the center of the pipe."



The effect is defocusing: the horizontal electric image"
 field E and the horizontal force F are: "
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Example 4: coherent betatron tune shift for a uniform electron 
beam of length lo=100&m, inside a circular perfectly conducting  
pipe  of  radius  b=2cm,  (energy  E0=1GeV,  N=1010,  'x=20m, 
Qxo=4.15)!
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Self Fields and synchrotron motion!

The longitudinal motion is governed by the RF voltage"
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With longitudinal space charge forces the equation becomes:"



  LONGITUDINAL FORCES "
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We  choose  as  path  a 
rectangle going through the 
beam  pipe  and  the  beam, 
parallel to the axis. "

In  order  to  derive  the  relationship  between  the  longitudinal  and 
transverse  forces  inside  a  beam,  let  us  consider  the  case  of 
cylindrical symmetry and ultra-relativistic bunches.  We know from 
Faraday's law of induction that a varying magnetic field produces a 
rotational electric field:"
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where (1-.2)=1/!2. For perfectly conducting walls Ez=0. "
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Transverse uniform beam in a circular p.c. pipe. "


