Introduction to Transverse Beam Dynamics

Lecture 4: Dispersion / Errors in fields and gradient

Andrea Latina (CERN)
JUAS 2013

17th January 2013



Dispersion function and orbit

We need to study the motion for particles with Ap =p — po # 0 :
1Ap

X" (s)+ K(s)x(s) ===

() + K (2)x(s) = 2

The general solution of this equation is:

x5 (s) + K (s)xs (s) = 0
= +
"O=RO ) g k(g =L

with xp (s) = D (s) %.

Remarks
> xp (s) describes the deviation from the closed orbit for off-momentum
particles with a fixed Ap
» D (s) is that special orbit that a particle would have for Ap/p =1
> the orbit of a generic particle is the sum of the well known xz (s) and xp (s)
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Dispersion function and orbit

x(s) = xp (s) +xp (s)
x(s) = C(s)xo—&—S(s)x[)—&-D(s)%

(2)=06 3)(2) 5 (a)
x' ). c s x' ) p b,
We can rewrite the solution in matrix form:
X c S D X
X/ — C/ S/ D/ X/
Ap/p A 0 0 1 Ap/p o
Inside a magnet, the dispersion trajectory is solution of D" (s) + K (s) D (s) = % :

D(s):S(s)/OSp(lt) (t)dt — s)/ S

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions Do = D} = 0.

In matrix form
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Dispersion function examples

Let's study, for different magnetic elements, the solution of:

1 1

Ds:Ss/ Ctdt—Cs/ S(t)dt
(=56 [ SigC@d-c [ s
at the exit of the element: that is, in D (Lmagnet)

» Drift space:

1 L
MDrift: < 0 1 )

C(t)=1, S(t)=L = the integrals cancel

MDrift = (

oo
o~

= O O
~
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Dispersion function: sector dipole

> Sector dipole:
K = p%:

o cos (\/RL) LK sin (\/RL) _ cos %
Morpole = ( —VKsin (\/RL) Cos (\/RL) B <

D(s):p(l—cos%)

which gives

L
D’ (s) =sin —
P
therefore
L s L L
cos psin p(l—cos;)
Mbipole = | —1gint cost sin £
P p p p
0 0 1
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Dispersion function: quadrupole

» Focusing quadrupole:

cos (\/RL) ﬁ sin (\/RL) 0
Mar = | —\/Ksin (\/RL) cos (\/RL) 0
0 0 1

» Defocusing quadrupole:

cosh (\/WL) \/T7I sinh (mL) 0
Map = | /[K]sinh (mL) cosh (\/WL) 0
0 0 1
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Dispersion propagation through the machine

» The equation:
D(s):5(s)/osp(lt)C(t)dt— C(s)/osp(lt)S(t)dt

shows that the dispersion inside a magnet does not depend on the dispersion
that might have been generated by the upstreams magnets.

> At the exit of a magnet of length L, the dispersion reaches the value D (L),
then it propagates from there on through the rest of the machine, just like
any other particle:

(2).-(&5)(z),
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Closed orbit for an off-momentum particle

In a circular accelerator, even the trajectory of an off-energy particle must be
periodic.

n
That is, for | 7' | we want:
1
n
/
77 =
Let's rewrite this in 2 x 2 form:
n oy _ c S U D
,r]/ C/ S/ 77/ D/
1-C -S n _ D
- 1-9 n )\ D
The solution is:

(;}z):(1%)(1;,)%/5(12,5’ 1—SC><5’>
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Dispersion function: example

In this example from the HERA storage ring

O P ing, Lomi-A-Opt. 7/03 m. 8/0+

(DESY) we see the twiss parameters and the dis- !
persion near the interaction point. In the periodic
region,
xg(s)=1...2 mm i A
D(s)=1...2m DANANANANAIM N UM RANAAANANAL
Apfprz1-1073 A—
R b PR T S T TR T T R T
emember: :
Ap e LML A LA e
x(s) =xg(s)+D(s) —
p

Beware: the dispersion contributes to the beam size:

2 2
O'XZ\/O'gﬂ-’v‘(D-A,J) :\/eﬁ+(D~Ap)
p p

» We need to suppress the dispersion at the IP !

» We need a special insertion section: a dispersion suppressor
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The momentum compaction factor

The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

x(s):xﬁ(s)w(s)%

The dispersion changes also the length of the off-
energy orbit.

p /XA particle with offset x w.r.t. the design orbit:

/T : ds’ p+x / X
s z‘dS:dS(hPi) — = — ds:(1+7)ds

[/ ds p P

The circumference change is AC, thatis C' = ¢ (1 + %) ds=C+ AC

We define the "momentum compaction factor”, «, such that:
A—C = a& — a rough estimate is o = L
c " g e
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The beam matrix

To track a beam of particles, let's assume with Gaussian distribution, the beam ellipse can be

characterised by a "beam matrix” X

The equation of an ellipse can be written in ma- )
trix form: A
XTEX =1 O e =V Tz =T
-
with X = ( X ) ou-Vorti -
X
Xinax = VO = Ve
5 ( o1 012 )7 ( COREY )
- - ’ 2
021 022 (xX'xy  (x"?) CENTROID S

Y is the covariance matrix of the particles distri-

bution

» The area of the ellipse is

A=rnVdetX = me
with sIope ] = 0'21/\/0'110'22.

» The transformation that transports the beam ellipse from a position 0 to a position s is:

Ss=MxIMT
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Beam matrix and Twiss parameters

The beam matrix is the covariance matrix of the particle distribution
s ( o o2\ _ (x®)y (o)
021 022 (x'x) <X/2 >
this matrix can be also expressed in terms of Twiss parameters o, 3, v and €:
<x2> (xx") B —«a
> = ( (x'x) <x’2> “\ —a 5

We can transport the beam matrix, or the twiss parameters, from 0 to s by two equivalent ways:

» Twiss 3 X 3 transport matrix

B c2 —25C s? B
a = —-Ccc’ sc'+s'c -ss e
v . CIZ _28'c! 512 ~ 0
» Using the transfer matrix M = ( c s ) :
0—s

CI S/

Ss=MIoMT
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Magnetic imperfections

Hlgh order multipolar components
Taylor expansion of the B field:

9B, 1 8B, , 1 8B,

B, (x) = +—Lx+ X<+ = X34 divide by B
v (x) 22 ox 2 0x? 31 0x3 Y Byo
divol S—~— S~—~—
ipole
quad sextupole octupole
There can be undesired multipolar compo-
L . nents, due to small fabrication defects
ipoles
1ot an
2 Or also errors in the windings, in the gap h,
nl
h l ... remember: B = M(Z
0 b osnmdnyedhd
rgoe LA SULE

O German
® [talian

L1 1 1 I
0 2 4 6 B W 12 W 16
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Dipole magnet errors

Let’s imagine to have a magnet with B = By + AB. This will give an additional kick to
each particle, and will distort the ideal design orbit

F.=ev(Bo + AB); Ax = ABds/Bp

A dipole error will cause a distortion of the closed orbit, that will ,,run around” the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error X9

0
( )):/ )S = MIattice( Ax’ >0

In order to have bounded motion the tune @ must be non-integer, Q # 1. We see that
even for particles with reference momentum po an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

X0 dipole kick 1/p*4s

We consider a single thin dipole field error at the location s = sp, with a kick angle Ax’.

_ X0 N )
X—‘(xs+Ax')7 X*‘(xs)

are the phase space coordinates before and after the kick located at sp. The closed-orbit

condition becomes
X0 X0
ML attice (Xé) = (Xé -I—AX')

The resulting closed orbit at sg is
BoAx! , Ax'
Xo = ——=cosmQR; Xg=——=
2sinTQ 2sinTQ
where Q is the tune. The orbit at any other location s is
Vv /BSBO

X(S) = m COoSs (7TQ - |,U’S - ’[,[,0|)AX/

(see the references for a demonstration)

(sinTQ — o cos T Q)
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Orbit distortion for a distributed dipole field errors
One single dipole field error

- 250

Distributed dipole field errors

X(5) = 2Ll @ cos(r@ I (9) — (1)) AX'e

cos (1Q — |u(s) — n(0)]) Ax'

> orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point sg

> the [ function describes the sensitivity of the beam to external fields

» the (3 function acts as amplification factor for the orbit amplitude at the
given observation point

> there is a resonance denominator (Q integer)

16 /29



The resonances

Closed orbit distortion due to dipole field errors:

x9) = L /T cos (1@ ~ I (5) — (1)) A

Remember the definition of tune:

_ M
Q_27T

is the phase advance for a revolution py in units of 27.
Extremely important:

» In case of imperfections the orbit becomes unstable for Q integer

» Integer tunes lead to a resonant increase of the closed orbit amplitude in
presence of the smallest dipole field error!
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Tunes and resonances

The particles — oscillating under the influence of the external magnetic fields — can
be excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

The cure:
1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m'Qx+n'Qy #p

with m, n, p integer numbers
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Resonance diagram

114 \ / /'/»

-
-
(]

Vertical Tune
=

S
[N

_—T TN/

18.6 28.8 29 29.2 29.4
Horizontal Tune

10.6

A resonance diagram for the Diamond light source. The lines shown are the
resonances and the black dot shows a suitable place where the machine could be

operated.
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

M . 1 0 €Os 1o + a:sin fio Bsin o
Perturbed = | " Akds 1 —'sin o COs o — Qsin fig
perturbation ideal ring

Let’s see how the tunes changes:

M . €os o + asin o Bsin o
Perturbed =\ © A kds (cos po + arsin po) — ysin o Akdsfsin puo + cos o — avsin pig

Remember the rule for computing the tune:

2 cos p = trace (M) = 2 cos o + Akdsf sin o

20/29



Quadrupole errors: tune shift (cont.)
We rewrite cos p = cos (po + Ap)

1
cos (po + Ap) = cos o + EAkdsﬁ sin Lo

from which we can compute that

Ak
Ap = ;sﬂ shift in the phase advance
AQ :/ w tune shift
So ™

Important remarks:
» the tune shift if proportional to the S-function at the quadrupole

> field quality, power supply tolerances etc. are much tighter at places where
is large

» (3 is a measurement of the sensitivity of the beam

21 /29



Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

ro- /50+L AK (s) B(s)ds N AK (s) Lquad B

47 47
=
] 72| AN | 0TS [ = i
the tune is measured permanently
After changing the strength of a quad:
we get a second peak
GI06 NR
¥=-6.7863: + 03803
03050
0.3000 .
02850 \“——\_\_
g 02000 _-----H-‘
10,2850
Gt T 1L
10,2800 *

0.01250 0.01300 0.01350 001400 D450 22 /29



Quadrupole errors: beta beat
all quadrupoles:

A quadrupole error at s causes distortion of S-function at s: Aj(s) due to the errors of

AB(s) _

1
B(s) _ 2sn2rQ ?gﬁ(t) Ak (t)cos (2mQ — 2 (u(t) — pu(s))) dt
affects the element Mi> of the M matrix.

orbit is not affected to
first order !

1PN G4
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Quadrupole errors: chromaticity, &
Is an error (optical aberration) that happens in quadrupoles when Ap/p # 0:

The chromaticity £ is the variation of tune AQ with the relative momentum error:
_dAQ@
dAp/p

A
AQ=¢"" = ¢
Po
Remember the quadrupole strength:
_ & : _
kip/e with p = pg + Ap

then
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Quadrupole errors: chromaticity (cont.)

Po
= Chromaticity acts like a quadrupole error and leads to a tune spread:

1A 1A
A(?one quad — _E?kaﬁ (5) ds = A(?all quads — _Epif %k (S)B(S) ds

Therefore the definition of chromaticity & is

f=—2 b Kk(s)B(s)ds

4 quads

The peculiarity of chromaticity is that it isn't due to external agents, it is generated by
the lattice itself!

Remarks:
» ¢ is a number indicating the size of the tune spot in the working diagram
» ¢ is always created by the focusing strength k of all quadrupoles
In other words, because of chromaticity the tune is not a point, but it is pancake
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Example: Chromaticity of the FODO cell

Consider a ring composed by N FODO cells like in figure, with two thin quads

separated by length L/2,

sample trajectory

>3

T \envelope
L L |

cell length

The natural chromaticity &y for the Neey cells is:

&= - P Bk L (e B
=—-— s)k(s)ds =_ —
N 4m 4msin cell {( + 4fD)
1
= i Nean [ () k() I SRV WS
g cell “1’" 47sinp fr fp
f 1 L2
~ ———— Nee ——
= 74iNcell [5+ (fi) - B~ (%)] 8msin cell fefp
o F D

The chromaticity of the ring is the same as the FODO cell.

L2
26 fp

17(1_
fr

)

L2
,E

)l
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Quadrupole errors: chromaticity

Tune signal for a nearly
uncompensated cromaticity
(Q'~20)

Ideal situation: cromaticity well corrected,
(Q=~1)




Summary

orbit for an off-momentum particle  x(s) = xg (s) + D (s) %

dispersion trajectory D (s) = S(s) fo C(t )dt — C(s) fo G S(t t
X c S D X
equations of motion with dispersion x' = c s D x’
2p/p ) 0o 0 1 Befp )
definition of momentum compaction % = a%

stability condition m-Qx+n-Qy #p with n, m, p integers

tune shift  AQ = - gﬁquads Ak (s)B(s)ds

NI
beta beat Bs) 2sin27Q
8 (1) Ak (1) os (27 @ — 2.1 () — (51 e
chromaticity & = %p?p = 1 ) uads k(s)B(s)ds 220
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