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Dispersion function and orbit

We need to study the motion for particles with ∆p = p − p0 6= 0 :

x ′′ (s) + K (s) x (s) =
1
ρ

∆p

p0

The general solution of this equation is:

x (s) = xβ (s) + xD (s)


x ′′β (s) + K (s) xβ (s) = 0

D ′′ (s) + K (s)D (s) =
1
ρ

with xD (s) = D (s) ∆p
p0
.

Remarks
I xD (s) describes the deviation from the closed orbit for off-momentum

particles with a fixed ∆p

I D (s) is that special orbit that a particle would have for ∆p/p = 1
I the orbit of a generic particle is the sum of the well known xβ (s) and xD (s)
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Dispersion function and orbit


x (s) = xβ (s) + xD (s)

x (s) = C (s) x0 + S (s) x ′0 + D (s)
∆p

p

In matrix form (
x
x ′

)
s

=

(
C S
C ′ S ′

)(
x
x ′

)
0

+
∆p

p

(
D
D′

)
0

We can rewrite the solution in matrix form: x
x ′

∆p/p


s

=

 C S D
C ′ S ′ D′

0 0 1

 x
x ′

∆p/p


0

Inside a magnet, the dispersion trajectory is solution of D ′′ (s) + K (s)D (s) = 1
ρ
:

D (s) = S (s)

ˆ s

0

1
ρ (t)

C (t) dt − C (s)

ˆ s

0

1
ρ (t)

S (t) dt

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions D0 = D ′0 = 0.
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Dispersion function examples

Let’s study, for different magnetic elements, the solution of:

D (s) = S (s)

ˆ s

0

1
ρ (t)

C (t) dt − C (s)

ˆ s

0

1
ρ (t)

S (t) dt

at the exit of the element: that is, in D (Lmagnet)

I Drift space:

MDrift =

(
1 L
0 1

)
C (t) = 1, S (t) = L ⇒ the integrals cancel

MDrift =

 1 L 0
0 1 0
0 0 1
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Dispersion function: sector dipole

I Sector dipole:
K = 1

ρ2 :

MDipole =

 cos
(√

KL
)

1√
K
sin
(√

KL
)

−
√
K sin

(√
KL
)

cos
(√

KL
)  =

(
cos L

ρ
ρ sin L

ρ

− 1
ρ
sin L

ρ
cos L

ρ

)

which gives

D (s) = ρ

(
1− cos

L

ρ

)
D ′ (s) = sin

L

ρ

therefore

MDipole =

 cos L
ρ

ρ sin L
ρ

ρ
(
1− cos L

ρ

)
− 1
ρ
sin L

ρ
cos L

ρ
sin L

ρ

0 0 1
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Dispersion function: quadrupole

I Focusing quadrupole:

MQF =


cos
(√

KL
)

1√
K
sin
(√

KL
)

0

−
√
K sin

(√
KL
)

cos
(√

KL
)

0
0 0 1

 ;

I Defocusing quadrupole:

MQD =


cosh

(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
0√

|K | sinh
(√
|K |L

)
cosh

(√
|K |L

)
0

0 0 1
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Dispersion propagation through the machine

I The equation:

D (s) = S (s)

ˆ s

0

1
ρ (t)

C (t) dt − C (s)

ˆ s

0

1
ρ (t)

S (t) dt

shows that the dispersion inside a magnet does not depend on the dispersion
that might have been generated by the upstreams magnets.

I At the exit of a magnet of length Lm the dispersion reaches the value D (Lm),
then it propagates from there on through the rest of the machine, just like
any other particle:(

D
D ′

)
s

=

(
C S
C ′ S ′

)(
D
D ′

)
0

7 / 29



Closed orbit for an off-momentum particle

In a circular accelerator, even the trajectory of an off-energy particle must be
periodic.

That is, for

 η
η′

1

 we want:

 η
η′

1

 =

 C S D
C ′ S ′ D ′

0 0 1

 η
η′
1


Let’s rewrite this in 2× 2 form:(

η
η′

)
=

(
C S
C ′ S ′

)(
η
η′

)
+

(
D
D ′

)
(

1− C −S
−C ′ 1− S ′

)(
η
η′

)
=

(
D
D ′

)
The solution is:(

η
η′

)
=

1
(1− C) (1− S ′)− C ′S

(
1− S ′ S
C ′ 1− C

)(
D
D ′

)
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Dispersion function: example

In this example from the HERA storage ring
(DESY) we see the twiss parameters and the dis-
persion near the interaction point. In the periodic
region,

xβ (s) = 1 . . . 2 mm

D (s) = 1 . . . 2 m

∆p/p ≈ 1 · 10−3

Remember:

x (s) = xβ (s) + D (s)
∆p

p

Beware: the dispersion contributes to the beam size:

σx =

√
σ2
xβ +

(
D · ∆p

p

)2

=

√
εβ +

(
D · ∆p

p

)2

I We need to suppress the dispersion at the IP !
I We need a special insertion section: a dispersion suppressor
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The momentum compaction factor
The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

x (s) = xβ (s) + D (s)
∆p

p

The dispersion changes also the length of the off-
energy orbit.

particle with offset x w.r.t. the design orbit:

ds ′

ds
=
ρ+ x

ρ
→ ds ′ =

(
1 +

x

ρ

)
ds

The circumference change is ∆C , that is C ′ =
¸ (

1 + x
ρ

)
ds = C + ∆C

We define the “momentum compaction factor”, α, such that:

∆C

C
= α

∆p

p
→ a rough estimate is α =

1
Q2

x
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The beam matrix
To track a beam of particles, let’s assume with Gaussian distribution, the beam ellipse can be
characterised by a “beam matrix” Σ

The equation of an ellipse can be written in ma-
trix form:

XT ΣX = 1

with X =

(
x
x ′

)
,

Σ =

(
σ11 σ12
σ21 σ22

)
=

( 〈
x2〉 〈xx ′〉
〈x ′x〉

〈
x ′2
〉 )

Σ is the covariance matrix of the particles distri-
bution

I The area of the ellipse is
A = π

√
detΣ = πε

with slope r21 = σ21/
√
σ11σ22.

I The transformation that transports the beam ellipse from a position 0 to a position s is:

Σs = M ΣMT
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Beam matrix and Twiss parameters

The beam matrix is the covariance matrix of the particle distribution

Σ =

(
σ11 σ12
σ21 σ22

)
=

( 〈
x2〉 〈xx ′〉
〈x ′x〉

〈
x ′2
〉 )

this matrix can be also expressed in terms of Twiss parameters α, β, γ and ε:

Σ =

( 〈
x2〉 〈xx ′〉
〈x ′x〉

〈
x ′2
〉 ) = ε

(
β −α
−α γ

)
We can transport the beam matrix, or the twiss parameters, from 0 to s by two equivalent ways:

I Twiss 3× 3 transport matrix β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′
C ′2 −2S ′C ′ S ′2

 β
α
γ


0

I Using the transfer matrix M =

(
C S
C ′ S ′

)
0→s

:

Σs = M Σ0 M
T
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Magnetic imperfections
HIgh order multipolar components
Taylor expansion of the B field:

By (x) = By0︸︷︷︸
dipole

+
∂By

∂x︸︷︷︸
quad

x +
1
2
∂2By

∂x2︸ ︷︷ ︸
sextupole

x2 +
1
3!

∂3By

∂x3︸ ︷︷ ︸
octupole

x3 + . . . divide by By0

There can be undesired multipolar compo-
nents, due to small fabrication defects

Or also errors in the windings, in the gap h,

... remember: B =
µ0nI

h
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Dipole magnet errors

Let’s imagine to have a magnet with Bx = B0 + ∆B. This will give an additional kick to
each particle, and will distort the ideal design orbit

Fx = ev (B0 + ∆B) ; ∆x ′ = ∆Bds/Bρ

A dipole error will cause a distortion of the closed orbit, that will „run around“ the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error(
x
x ′

)
s

= Mlattice

(
0

∆x ′

)
0

In order to have bounded motion the tune Q must be non-integer, Q 6= 1. We see that
even for particles with reference momentum p0 an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

We consider a single thin dipole field error at the location s = s0, with a kick angle ∆x ′.

X− =

(
x0

x ′0 + ∆x ′

)
, X+ =

(
x0
x ′0

)
are the phase space coordinates before and after the kick located at s0. The closed-orbit
condition becomes

MLattice

(
x0
x ′0

)
=

(
x0

x ′0 + ∆x ′

)
The resulting closed orbit at s0 is

x0 =
β0∆x ′

2 sinπQ
cosπQ; x ′0 =

∆x ′

2 sinπQ
(sinπQ − α0 cosπQ)

where Q is the tune. The orbit at any other location s is

x(s) =

√
βsβ0

2 sinπQ
cos (πQ − |µs − µ0|) ∆x ′

(see the references for a demonstration)
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Orbit distortion for a distributed dipole field errors

One single dipole field error

x(s) =

√
β (s)β (0)

2 sinπQ
cos (πQ − |µ (s)− µ (0)|) ∆x ′

Distributed dipole field errors

x(s) =

√
β (s)

2 sinπQ

˛ √
β (t) cos (πQ − |µ (s)− µ (t)|) ∆x ′dt

I orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point s0

I the β function describes the sensitivity of the beam to external fields
I the β function acts as amplification factor for the orbit amplitude at the

given observation point
I there is a resonance denominator (Q integer)
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The resonances

Closed orbit distortion due to dipole field errors:

x(s) =

√
β (s)

2 sinπQ

˛ √
β (t) cos (πQ − |µ (s)− µ (t)|) ∆x ′dt

Remember the definition of tune:

Q =
µL

2π

is the phase advance for a revolution µL in units of 2π.

Extremely important:
I In case of imperfections the orbit becomes unstable for Q integer
I Integer tunes lead to a resonant increase of the closed orbit amplitude in

presence of the smallest dipole field error!
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Tunes and resonances

The particles – oscillating under the influence of the external magnetic fields – can
be excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

The cure:
1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m·Qx+n·Qy 6=p

with m, n, p integer numbers
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Resonance diagram

A resonance diagram for the Diamond light source. The lines shown are the
resonances and the black dot shows a suitable place where the machine could be
operated.

19 / 29



Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

MPerturbed =

(
1 0

∆kds 1

)
︸ ︷︷ ︸

perturbation

(
cosµ0 + α sinµ0 β sinµ0

−γ sinµ0 cosµ0 − α sinµ0

)
︸ ︷︷ ︸

ideal ring

Let’s see how the tunes changes:

MPerturbed =

(
cosµ0 + α sinµ0 β sinµ0

∆kds (cosµ0 + α sinµ0)− γ sinµ0 ∆kdsβ sinµ0 + cosµ0 − α sinµ0

)

Remember the rule for computing the tune:

2 cosµ = trace (M) = 2 cosµ0 + ∆kdsβ sinµ0
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Quadrupole errors: tune shift (cont.)
We rewrite cosµ = cos (µ0 + ∆µ)

cos (µ0 + ∆µ) = cosµ0 +
1
2

∆kdsβ sinµ0

from which we can compute that

∆µ =
∆kdsβ

2
shift in the phase advance

∆Q =

ˆ s0+L

s0

∆k (s)β (s) ds
4π

tune shift

Important remarks:
I the tune shift if proportional to the β-function at the quadrupole

I field quality, power supply tolerances etc. are much tighter at places where β
is large

I β is a measurement of the sensitivity of the beam
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Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

∆Q =

ˆ s0+L

s0

∆K (s)β (s) ds
4π

≈ ∆K (s) Lquad β

4π

the tune is measured permanently

⇒

After changing the strength of a quad:
we get a second peak
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Quadrupole errors: beta beat
A quadrupole error at s0 causes distortion of β-function at s: ∆β(s) due to the errors of
all quadrupoles:

∆β (s)

β (s)
=

1
2 sin 2πQ

˛
β (t) ∆k (t) cos (2πQ − 2 (µ (t)− µ (s))) dt

affects the element M12 of the M matrix.
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Quadrupole errors: chromaticity, ξ
Is an error (optical aberration) that happens in quadrupoles when ∆p/p 6= 0:

The chromaticity ξ is the variation of tune ∆Q with the relative momentum error:

∆Q = ξ
∆p

p0
⇒ ξ =

d∆Q

d∆p/p

Remember the quadrupole strength:

k =
g
p/e

with p = p0 + ∆p

then

k =
eg

p0 + ∆p
≈ e

p0

(
1− ∆p

p0

)
g = k0 + ∆k

∆k = −∆p

p0
k0

(cont.)
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Quadrupole errors: chromaticity (cont.)

∆k = −∆p

p0
k0

⇒ Chromaticity acts like a quadrupole error and leads to a tune spread:

∆Qone quad = − 1
4π

∆p

p0
k0β (s) ds ⇒ ∆Qall quads = − 1

4π
∆p

p0

˛
k (s)β (s) ds

Therefore the definition of chromaticity ξ is

ξ = − 1
4π

˛
quads

k (s)β (s) ds

The peculiarity of chromaticity is that it isn’t due to external agents, it is generated by
the lattice itself!

Remarks:
I ξ is a number indicating the size of the tune spot in the working diagram
I ξ is always created by the focusing strength k of all quadrupoles

In other words, because of chromaticity the tune is not a point, but it is pancake
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Example: Chromaticity of the FODO cell
Consider a ring composed by Ncell FODO cells like in figure, with two thin quads
separated by length L/2,

The natural chromaticity ξN for the Ncell cells is:

ξN = −
1
4π

˛
β(s)k(s)ds

= −
1
4π

Ncell

ˆ
cell

β(s) k(s)d︸ ︷︷ ︸
1
f

= −
1
4π

Ncell

[
β+

(
1
fF

)
− β−

(
1
fD

)]

= −
1

4π sinµ
Ncell

[(
L +

L2

4fD

)
1
fF
−
(
L−

L2

4fF

)
1
fD

]
= −

1
4π sinµ

Ncell

[
L

fF
−

L

fD
+

L2

2fF fD

]
' −

1
8π sinµ

Ncell
L2

fF fD

The chromaticity of the ring is the same as the FODO cell.
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Quadrupole errors: chromaticity
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Summary

orbit for an off-momentum particle x (s) = xβ (s) + D (s) ∆p
p

dispersion trajectory D (s) = S (s)
´ s
0

1
ρ(t)

C (t) dt − C (s)
´ s
0

1
ρ(t)

S (t) dt

equations of motion with dispersion

 x
x ′

∆p/p


s

=

 C S D
C ′ S ′ D′

0 0 1

 x
x ′

∆p/p


0

definition of momentum compaction ∆C
C

= α∆p
p

stability condition m · Qx + n · Qy 6= p with n,m, p integers

tune shift ∆Q = 1
4π

¸
quads ∆k (s)β (s) ds

beta beat

∆β (s)

β (s)
=

1
2 sin 2πQ

·
˛
β (t) ∆k (t) cos (2πQ − 2 (µ (t)− µ (s))) dt

chromaticity ξ = d∆Q
d∆p/p

= − 1
4π

¸
quads k (s)β (s) ds
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