Introduction to Transverse Beam Dynamics
 Lecture 4: Dispersion / Errors in fields and gradient

Andrea Latina (CERN)

JUAS 2013
17th January 2013

Dispersion function and orbit

We need to study the motion for particles with $\Delta p=p-p_{0} \neq 0$:

$$
x^{\prime \prime}(s)+K(s) \times(s)=\frac{1}{\rho} \frac{\Delta p}{p_{0}}
$$

The general solution of this equation is:

$$
x(s)=x_{\beta}(s)+x_{D}(s) \quad\left\{\begin{array}{l}
x_{\beta}^{\prime \prime}(s)+K(s) x_{\beta}(s)=0 \\
D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho}
\end{array}\right.
$$

with $x_{D}(s)=D(s) \frac{\Delta p}{p_{0}}$.

Remarks

- $x_{D}(s)$ describes the deviation from the closed orbit for off-momentum particles with a fixed Δp
- $D(s)$ is that special orbit that a particle would have for $\Delta p / p=1$
- the orbit of a generic particle is the sum of the well known $x_{\beta}(s)$ and $x_{D}(s)$

Dispersion function and orbit

$$
\left\{\begin{array}{l}
x(s)=x_{\beta}(s)+x_{D}(s) \\
x(s)=C(s) x_{0}+S(s) x_{0}^{\prime}+D(s) \frac{\Delta p}{p}
\end{array}\right.
$$

In matrix form

$$
\binom{x}{x^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{0}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}_{0}
$$

We can rewrite the solution in matrix form:

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Inside a magnet, the dispersion trajectory is solution of $D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho}$:

$$
D(s)=S(s) \int_{0}^{s} \frac{1}{\rho(t)} C(t) \mathrm{d} t-C(s) \int_{0}^{s} \frac{1}{\rho(t)} S(t) \mathrm{d} t
$$

Exercise: show that $D(s)$ is a solution for the equation of motion, with the initial conditions $D_{0}=D_{0}^{\prime}=0$.

Dispersion function examples

Let's study, for different magnetic elements, the solution of:

$$
D(s)=S(s) \int_{0}^{s} \frac{1}{\rho(t)} C(t) \mathrm{d} t-C(s) \int_{0}^{s} \frac{1}{\rho(t)} S(t) \mathrm{d} t
$$

at the exit of the element: that is, in $D\left(L_{\text {magnet }}\right)$

- Drift space:

$$
M_{\text {Drift }}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

$C(t)=1, S(t)=L \quad \Rightarrow$ the integrals cancel

$$
M_{\text {Drift }}=\left(\begin{array}{ccc}
1 & L & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Dispersion function: sector dipole

- Sector dipole:

$$
K=\frac{1}{\rho^{2}}:
$$

$$
M_{\text {Dipole }}=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right)=\left(\begin{array}{cc}
\cos \frac{L}{\rho} & \rho \sin \frac{L}{\rho} \\
-\frac{1}{\rho} \sin \frac{L}{\rho} & \cos \frac{L}{\rho}
\end{array}\right)
$$

which gives

$$
\begin{aligned}
D(s) & =\rho\left(1-\cos \frac{L}{\rho}\right) \\
D^{\prime}(s) & =\sin \frac{L}{\rho}
\end{aligned}
$$

therefore

$$
M_{\text {Dipole }}=\left(\begin{array}{ccc}
\cos \frac{L}{\rho} & \rho \sin \frac{L}{\rho} & \rho\left(1-\cos \frac{L}{\rho}\right) \\
-\frac{1}{\rho} \sin \frac{L}{\rho} & \cos \frac{L}{\rho} & \sin \frac{L}{\rho} \\
0 & 0 & 1
\end{array}\right)
$$

Dispersion function: quadrupole

- Focusing quadrupole:

$$
M_{\mathrm{QF}}=\left(\begin{array}{ccc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) & 0 \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L) & 0 \\
0 & 0 & 1
\end{array}\right) ;
$$

- Defocusing quadrupole:

$$
M_{\mathrm{QD}}=\left(\begin{array}{ccc}
\cosh (\sqrt{|K|} L) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K|} L) & 0 \\
\sqrt{|K|} \sinh (\sqrt{|K|} L) & \cosh (\sqrt{|K|} L) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Dispersion propagation through the machine

- The equation:

$$
D(s)=S(s) \int_{0}^{s} \frac{1}{\rho(t)} C(t) \mathrm{d} t-C(s) \int_{0}^{s} \frac{1}{\rho(t)} S(t) \mathrm{d} t
$$

shows that the dispersion inside a magnet does not depend on the dispersion that might have been generated by the upstreams magnets.

- At the exit of a magnet of length L_{m} the dispersion reaches the value $D\left(L_{m}\right)$, then it propagates from there on through the rest of the machine, just like any other particle:

$$
\binom{D}{D^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{D}{D^{\prime}}_{0}
$$

Closed orbit for an off-momentum particle

In a circular accelerator, even the trajectory of an off-energy particle must be periodic.
That is, for $\left(\begin{array}{c}\eta \\ \eta^{\prime} \\ 1\end{array}\right)$ we want:

$$
\left(\begin{array}{c}
\eta \\
\eta^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\eta \\
\eta^{\prime} \\
1
\end{array}\right)
$$

Let's rewrite this in 2×2 form:

$$
\begin{gathered}
\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{\eta}{\eta^{\prime}}+\binom{D}{D^{\prime}} \\
\left(\begin{array}{cc}
1-C & -S \\
-C^{\prime} & 1-S^{\prime}
\end{array}\right)\binom{\eta}{\eta^{\prime}}=\binom{D}{D^{\prime}}
\end{gathered}
$$

The solution is:

$$
\binom{\eta}{\eta^{\prime}}=\frac{1}{(1-C)\left(1-S^{\prime}\right)-C^{\prime} S}\left(\begin{array}{cc}
1-S^{\prime} & S \\
C^{\prime} & 1-C
\end{array}\right)\binom{D}{D^{\prime}}
$$

Dispersion function: example

In this example from the HERA storage ring (DESY) we see the twiss parameters and the dispersion near the interaction point. In the periodic region,

$$
\begin{aligned}
x_{\beta}(s) & =1 \ldots 2 \mathrm{~mm} \\
D(s) & =1 \ldots 2 \mathrm{~m} \\
\Delta p / p & \approx 1 \cdot 10^{-3}
\end{aligned}
$$

Remember:

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}
$$

Beware: the dispersion contributes to the beam size:

$$
\sigma_{x}=\sqrt{\sigma_{x_{\beta}}^{2}+\left(D \cdot \frac{\Delta p}{p}\right)^{2}}=\sqrt{\epsilon \beta+\left(D \cdot \frac{\Delta p}{p}\right)^{2}}
$$

- We need to suppress the dispersion at the IP !
- We need a special insertion section: a dispersion suppressor

The momentum compaction factor

The dispersion function relates the momentum error of a particle to the horizontal orbit coordinate

The general solution of the equation of motion is

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}
$$

The dispersion changes also the length of the offenergy orbit.
 particle with offset \times w.r.t. the design orbit:

$$
\mathrm{d} s^{\prime}=\mathrm{d} s\left(1+\frac{x}{\rho}\right) \quad \frac{\mathrm{d} s^{\prime}}{\mathrm{d} s}=\frac{\rho+x}{\rho} \quad \rightarrow \quad \mathrm{~d} s^{\prime}=\left(1+\frac{x}{\rho}\right) \mathrm{d} s
$$

The circumference change is ΔC, that is $C^{\prime}=\oint\left(1+\frac{x}{\rho}\right) \mathrm{d} s=C+\Delta C$
We define the "momentum compaction factor", α, such that:

$$
\frac{\Delta C}{C}=\alpha \frac{\Delta p}{p} \quad \rightarrow \text { a rough estimate is } \alpha=\frac{1}{Q_{x}^{2}}
$$

The beam matrix

To track a beam of particles, let's assume with Gaussian distribution, the beam ellipse can be characterised by a "beam matrix" Σ

The equation of an ellipse can be written in matrix form:

$$
X^{T} \Sigma X=1
$$

with $X=\binom{x}{x^{\prime}}$,

$$
\Sigma=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x^{\prime} x\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)
$$

Σ is the covariance matrix of the particles distri-
 bution

- The area of the ellipse is

$$
A=\pi \sqrt{\operatorname{det} \Sigma}=\pi \epsilon
$$

with slope $r_{21}=\sigma_{21} / \sqrt{\sigma_{11} \sigma_{22}}$.

- The transformation that transports the beam ellipse from a position 0 to a position s is:

$$
\Sigma_{s}=M \Sigma M^{T}
$$

Beam matrix and Twiss parameters

The beam matrix is the covariance matrix of the particle distribution

$$
\Sigma=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x^{\prime} x\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)
$$

this matrix can be also expressed in terms of Twiss parameters α, β, γ and ϵ :

$$
\Sigma=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x^{\prime} x\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)=\epsilon\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

We can transport the beam matrix, or the twiss parameters, from 0 to s by two equivalent ways:

- Twiss 3×3 transport matrix

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{S}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

- Using the transfer matrix $M=\left(\begin{array}{cc}C & S \\ C^{\prime} & S^{\prime}\end{array}\right)_{0 \rightarrow s}$:

$$
\Sigma_{s}=M \Sigma_{0} M^{T}
$$

Magnetic imperfections

HIgh order multipolar components
Taylor expansion of the B field:

$$
B_{y}(x)=\underbrace{B_{y 0}}_{\text {dipole }}+\underbrace{\frac{\partial B_{y}}{\partial x}}_{\text {quad }} x+\frac{1}{2} \underbrace{\frac{\partial^{2} B_{y}}{\partial x^{2}}}_{\text {sextupole }} x^{2}+\frac{1}{3!} \underbrace{\frac{\partial^{3} B_{y}}{\partial x^{3}}}_{\text {octupole }} x^{3}+\ldots \quad \text { divide by } B_{y 0}
$$

There can be undesired multipolar compo-
 nents, due to small fabrication defects

Or also errors in the windings, in the gap h, ... remember: $B=\frac{\mu_{0} n l}{h}$

Dipole magnet errors

Let's imagine to have a magnet with $B_{x}=B_{0}+\Delta B$. This will give an additional kick to each particle, and will distort the ideal design orbit

$$
F_{x}=e v\left(B_{0}+\Delta B\right) ; \quad \Delta x^{\prime}=\Delta B \mathrm{~d} s / B \rho
$$

A dipole error will cause a distortion of the closed orbit, that will „run around" the storage ring, being observable everywhere. If the distortion is small enough, it will still lead to a closed orbit.

Example: 1 single dipole error

$$
\binom{x}{x^{\prime}}_{s}=M_{\text {lattice }}\binom{0}{\Delta x^{\prime}}_{0}
$$

In order to have bounded motion the tune Q must be non-integer, $Q \neq 1$. We see that even for particles with reference momentum p_{0} an integer Q value is forbidden, since small field errors are always present.

Orbit distortion for a single dipole field error

We consider a single thin dipole field error at the location $s=s_{0}$, with a kick angle Δx^{\prime}.

$$
X_{-}=\binom{x_{0}}{x_{0}^{\prime}+\Delta x^{\prime}}, \quad X_{+}=\binom{x_{0}}{x_{0}^{\prime}}
$$

are the phase space coordinates before and after the kick located at s_{0}. The closed-orbit condition becomes

$$
M_{\text {Lattice }}\binom{x_{0}}{x_{0}^{\prime}}=\binom{x_{0}}{x_{0}^{\prime}+\Delta x^{\prime}}
$$

The resulting closed orbit at s_{0} is

$$
x_{0}=\frac{\beta_{0} \Delta x^{\prime}}{2 \sin \pi Q} \cos \pi Q ; \quad x_{0}^{\prime}=\frac{\Delta x^{\prime}}{2 \sin \pi Q}\left(\sin \pi Q-\alpha_{0} \cos \pi Q\right)
$$

where Q is the tune. The orbit at any other location s is

$$
x(s)=\frac{\sqrt{\beta_{s} \beta_{0}}}{2 \sin \pi Q} \cos \left(\pi Q-\left|\mu_{s}-\mu_{0}\right|\right) \Delta x^{\prime}
$$

(see the references for a demonstration)

Orbit distortion for a distributed dipole field errors

One single dipole field error

$$
x(s)=\frac{\sqrt{\beta(s) \beta(0)}}{2 \sin \pi Q} \cos (\pi Q-|\mu(s)-\mu(0)|) \Delta x^{\prime}
$$

Distributed dipole field errors

$$
x(s)=\frac{\sqrt{\beta(s)}}{2 \sin \pi Q} \oint \sqrt{\beta(t)} \cos (\pi Q-|\mu(s)-\mu(t)|) \Delta x^{\prime} \mathrm{d} t
$$

- orbit distortion is visible at any position s in the ring, even if the dipole error is located at one single point s_{0}
- the β function describes the sensitivity of the beam to external fields
- the β function acts as amplification factor for the orbit amplitude at the given observation point
- there is a resonance denominator (Q integer)

The resonances

Closed orbit distortion due to dipole field errors:

$$
x(s)=\frac{\sqrt{\beta(s)}}{2 \sin \pi Q} \oint \sqrt{\beta(t)} \cos (\pi Q-|\mu(s)-\mu(t)|) \Delta x^{\prime} \mathrm{d} t
$$

Remember the definition of tune:

$$
Q=\frac{\mu_{L}}{2 \pi}
$$

is the phase advance for a revolution μ_{L} in units of 2π.
Extremely important:

- In case of imperfections the orbit becomes unstable for Q integer
- Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the smallest dipole field error!

Tunes and resonances

The particles - oscillating under the influence of the external magnetic fields - can be excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.
The cure:

1. avoid large magnet errors
2. avoid forbidden tune values in both planes

$$
\mathrm{m} \cdot Q_{x}+\mathrm{n} \cdot Q_{y} \neq \mathrm{p}
$$

with m, n, p integer numbers

Resonance diagram

A resonance diagram for the Diamond light source. The lines shown are the resonances and the black dot shows a suitable place where the machine could be operated.

Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

$$
M_{\text {Perturbed }}=\underbrace{\left(\begin{array}{cc}
1 & 0 \\
\Delta k \mathrm{~d} s & 1
\end{array}\right)}_{\text {perturbation }} \underbrace{\left(\begin{array}{cc}
\cos \mu_{0}+\alpha \sin \mu_{0} & \beta \sin \mu_{0} \\
-\gamma \sin \mu_{0} & \cos \mu_{0}-\alpha \sin \mu_{0}
\end{array}\right)}_{\text {ideal ring }}
$$

Let's see how the tunes changes:

$$
M_{\text {Perturbed }}=\left(\begin{array}{cc}
\cos \mu_{0}+\alpha \sin \mu_{0} & \beta \sin \mu_{0} \\
\Delta k \mathrm{~d} s\left(\cos \mu_{0}+\alpha \sin \mu_{0}\right)-\gamma \sin \mu_{0} & \Delta k \mathrm{~d} \boldsymbol{\beta} \beta \sin \mu_{0}+\cos \mu_{0}-\alpha \sin \mu_{0}
\end{array}\right)
$$

Remember the rule for computing the tune:

$$
2 \cos \mu=\operatorname{trace}(M)=2 \cos \mu_{0}+\Delta k \mathrm{~d} s \beta \sin \mu_{0}
$$

Quadrupole errors: tune shift (cont.)

We rewrite $\cos \mu=\cos \left(\mu_{0}+\Delta \mu\right)$

$$
\cos \left(\mu_{0}+\Delta \mu\right)=\cos \mu_{0}+\frac{1}{2} \Delta k \mathrm{~d} s \beta \sin \mu_{0}
$$

from which we can compute that

$$
\begin{gathered}
\Delta \mu=\frac{\Delta k \mathrm{~d} s \beta}{2} \text { shift in the phase advance } \\
\Delta Q=\int_{s_{0}}^{s_{0}+L} \frac{\Delta k(s) \beta(s) \mathrm{d} s}{4 \pi} \text { tune shift }
\end{gathered}
$$

Important remarks:

- the tune shift if proportional to the β-function at the quadrupole
- field quality, power supply tolerances etc. are much tighter at places where β is large
- β is a measurement of the sensitivity of the beam

Quadrupole errors: tune shift example

Deliberate change of a quadrupole strength in a synchrotron:

$$
\Delta Q=\int_{s_{0}}^{s_{0}+L} \frac{\Delta K(s) \beta(s) \mathrm{d} s}{4 \pi} \approx \frac{\Delta K(s) L_{\text {quad }} \bar{\beta}}{4 \pi}
$$

the tune is measured permanently

After changing the strength of a quad: we get a second peak

GI06 NR

Quadrupole errors: beta beat

A quadrupole error at s_{0} causes distortion of β-function at $s: \Delta \beta(s)$ due to the errors of all quadrupoles:

$$
\frac{\Delta \beta(s)}{\beta(s)}=\frac{1}{2 \sin 2 \pi Q} \oint \beta(t) \Delta k(t) \cos (2 \pi Q-2(\mu(t)-\mu(s))) \mathrm{d} t
$$

affects the element M_{12} of the M matrix.

Quadrupole errors: chromaticity, ξ

Is an error (optical aberration) that happens in quadrupoles when $\Delta p / p \neq 0$:

The chromaticity ξ is the variation of tune ΔQ with the relative momentum error:

$$
\Delta Q=\xi \frac{\Delta p}{p_{0}} \quad \Rightarrow \quad \xi=\frac{\mathrm{d} \Delta Q}{\mathrm{~d} \Delta p / p}
$$

Remember the quadrupole strength:

$$
k=\frac{g}{p / e} \quad \text { with } p=p_{0}+\Delta p
$$

then

$$
\begin{gathered}
k=\frac{e g}{p_{0}+\Delta p} \approx \frac{e}{p_{0}}\left(1-\frac{\Delta p}{p_{0}}\right) g=k_{0}+\Delta k \\
\Delta k=-\frac{\Delta p}{p_{0}} k_{0}
\end{gathered}
$$

Quadrupole errors: chromaticity (cont.)

$$
\Delta k=-\frac{\Delta p}{p_{0}} k_{0}
$$

\Rightarrow Chromaticity acts like a quadrupole error and leads to a tune spread:

$$
\Delta Q_{\text {one quad }}=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} k_{0} \beta(s) \mathrm{d} s \quad \Rightarrow \Delta Q_{\text {all quads }}=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} \oint k(s) \beta(s) \mathrm{d} s
$$

Therefore the definition of chromaticity ξ is

$$
\xi=-\frac{1}{4 \pi} \oint_{\text {quads }} k(s) \beta(s) \mathrm{d} s
$$

The peculiarity of chromaticity is that it isn't due to external agents, it is generated by the lattice itself!

Remarks:

- ξ is a number indicating the size of the tune spot in the working diagram
- ξ is always created by the focusing strength k of all quadrupoles In other words, because of chromaticity the tune is not a point, but it is pancake

Example: Chromaticity of the FODO cell

Consider a ring composed by $N_{\text {cell }}$ FODO cells like in figure, with two thin quads separated by length $L / 2$,

The natural chromaticity ξ_{N} for the $N_{\text {cell }}$ cells is:

$$
\begin{array}{rl|l}
\xi_{N} & =-\frac{1}{4 \pi} \oint \beta(s) k(s) d s & \\
& =-\frac{1}{4 \pi} N_{\text {cell }} \int_{\text {cell }} \beta(s) \underbrace{k(s) d}_{\frac{1}{f}} & =-\frac{1}{4 \pi \sin \mu} N_{\text {cell }}[(L+ \\
& =-\frac{1}{4 \pi \sin \mu} N_{\text {cell }}\left[\frac{L}{f_{F}}-\right. \\
\text { cell }\left[\beta^{+}\left(\frac{1}{f_{F}}\right)-\beta^{-}\left(\frac{1}{f_{D}}\right)\right] & \simeq-\frac{1}{8 \pi \sin \mu} N_{\text {cell }} \frac{L^{2}}{f_{F} f_{D}}
\end{array}
$$

The chromaticity of the ring is the same as the FODO cell,

Quadrupole errors: chromaticity

Tune signal for a nearly uncompensated cromaticity (Q^{\prime} * 20)

Ideal situation: cromaticity well corrected, (Q^{\prime} ~1)

Summary

orbit for an off-momentum particle $\quad x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}$
dispersion trajectory $\quad D(s)=S(s) \int_{0}^{s} \frac{1}{\rho(t)} C(t) \mathrm{d} t-C(s) \int_{0}^{s} \frac{1}{\rho(t)} S(t) \mathrm{d} t$
equations of motion with dispersion $\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p\end{array}\right)_{s}=\left(\begin{array}{ccc}C & S & D \\ C^{\prime} & S^{\prime} & D^{\prime} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p\end{array}\right)_{0}$
definition of momentum compaction $\quad \frac{\Delta C}{C}=\alpha \frac{\Delta p}{p}$
stability condition $\quad m \cdot Q_{x}+n \cdot Q_{y} \neq p \quad$ with n, m, p integers

$$
\text { tune shift } \quad \Delta Q=\frac{1}{4 \pi} \oint_{\text {quads }} \Delta k(s) \beta(s) \mathrm{d} s
$$

beta beat

$$
\begin{aligned}
\frac{\Delta \beta(s)}{\beta(s)}= & \frac{1}{2 \sin 2 \pi Q} \\
& \oint \beta(t) \Delta k(t) \cos (2 \pi Q-2(\mu(t)-\mu(s))) d t
\end{aligned}
$$

chromaticity $\quad \xi=\frac{\mathrm{d} \Delta Q}{\mathrm{~d} \Delta p / p}=-\frac{1}{4 \pi} \oint_{\text {quads }} k(s) \beta(s) \mathrm{d} s$

References

Derivation of the equation of the orbit distortion for a dipole field errors:

1. Shyh-Yuan Lee: Accelerator Physics, World Scientific, 2004
2. The CERN Accelerator School (CAS) Proceedings
