

Higgs's year!

p-value = probability of
observing such a result if
the Higgs was not there
-> ~10⁻¹²

Is like flipping a coin 40 times and getting 40 heads

Recipe for a success

• High luminosity from LHC and CMS amazing performances

CMS Integrated Luminosity, pp

■ High energy (8 TeV) -> Larger S/B: fundamental ingredient of the discovery

Re-discovering the Standard Model at 8 TeV

- Perfect control of such a huge and sophisticated system (calibration)
 - -> rediscovery of the Standard Model
 - -> precise knowledge of background to Higgs search

1 Higgs event each 10¹⁰ events

Event display of a clean Higgs candidate

Four-leptons final state

☐ Good control of detector performances (down to very low pT)

 \square Measurement of **ZZ** \rightarrow **4l** xsec

-> even more rare process: **Z** → **4I**

$H \rightarrow ZZ \rightarrow 4$ leptons

$H \rightarrow ZZ \rightarrow 4$ leptons

Event display of Higgs → 2 photons candidate

$H \rightarrow photons (\gamma \gamma)$

- Distinguishing between $\pi^0 \rightarrow \gamma \gamma$ and isolated γ : multi-variate analysis for **photon identification**
- Very good mass resolution (~2 GeV) to identify small peak over large background

Missing energy and jets

Run/Event: 194424 / 468904706

☐ Very precise energy scale/resolution

☐ High precision in jet energy measurement ->

dijet cross-section and mass spectrum on many

order of magnitude

Disentangling fine details of the **jets substructures**

(winning bet: particle flow approach)

Top mass

e; μ; τ; q

$H \rightarrow WW \rightarrow |\nu|\nu$

H → WW transverse mass:

critical importance of background control (WW, top)

Comparison of data with background-only hypothesis:

b-jets: top cross-section

☐ **Jets from b-quark** have peculiar signature:

- B hadrons have long lifetime
 - -> secondary vertices
- needs tracking/vertexing in high pile-up
- **Top cross section** measured with high precision:

Measurement of Z+bb jets cross-section

New hadronic resonance

■ New particle discovered: Ξ_b*

long chain of EWK decays ->
many secondary vertices

H \rightarrow fermions (bb, $\tau\tau$)

Small peak over huge background ->

- associated production: Higgs + something else
- crucial ingredients:

b-tagging and jet energy precision,
Particle Flow for tau reconstruction

Comparison of data with background-only hypothesis:

Fresh result: limit on $H \rightarrow Z\gamma$

Large signal enhancement expected in many BSM theories

Higgs properties

Mass M = 125.8 \pm 0.4 (stat) \pm 0.4 (syst) GeV

Couplings:

Need high energy and luminosity to reduce the uncertainties

Parity:

Spin:

New Physics search: new particles

New unknown/undetectable particles -> Dark Matter candidate and Extra-Dimensions models

Search in 1 jet (or 1 photon) + missing energy

1 jet recoiling against new unknown/undetectable particle -> missing energy

-> strict limits on Dark Matter competitive with direct search from astro-particle

New Physics search: new resonances

Heavy new resonances (eg, graviton or Kaluza-Klein particles in Extra-Dimensions)

High energy and high luminosity will strongly increase the sensitivity

SUper-SYmmetry

Very promising model: solution of hierarchy problem, dark matter candidate, ...

Chain production of many new particles (a SUSY partner for each SM particle)

- -> crowded final states with (b)-jets, MET, leptons ...
- -> analysis of inclusive variables (missing energy, H_T)
- General search for high mass:
 - -> squarks and gluinos: m < 1 TeV excluded
- More **exclusive search for stop, sbottom** (eg, b-tagging):
 - -> stop, sbottom: < 300-450 GeV excluded
- Search for ewkinos (charginos, neutralinos, sleptons) into rare leptonic final states (3 leptons, same sign leptons, ...)
 - -> ewkinos: < 300-700 GeV excluded
 - -> very clean but low xsec, strongly profit of high lumi

14 TeV will highly increase the sensitivity

Heavy Ions

Disentangling excited Y states in Heavy Ions for first time!

■ "The ridge": unexpected/unexplained angular correlation observed in pp in 2010 ->

now observed in p-Pb too

Conclusions

2012 was the year of the discovery: new boson at ~126 GeV

- Higgs discovery is the result of a long road of high precision SM measurements
- it is the long-awaited SM Higgs?
 - measuring the properties
 - direct search for New Physics
 - -> search for new resonances at high mass and non-SM signatures
 - -> good control of the detector in very crowded and high energy events

-> we are in good shape to afford the next challenge: eagerly awaiting for high energy and high luminosity