

25ns Machine Studies

G. Arduini, H. Bartosik, G. Iadarola, G. Rumolo

Machine Coordinators: M. Lamont, B. Holzer

T. Baer, Cryogenics, Operation, Vacuum teams and many others

Injected and ramped to 4 TeV 12+72 bunches

~1.1x10¹¹ p/b

150

200

250

Emittances [13/12/12 04:50:44]

2

0.5

1.02 x10¹¹ p/b in collision with ~3.1 μ m.

372 bunches at 4 TeV/beam

- 15:00 17:50 Ramp with 12+5x72 = 372 bunches
- Kept at flat top for ~2 hours. Then dump to increase intensity. Spike occurring during the ramp starting at ~2 TeV when photoelectrons start to play a role.

804 bunches at 4TeV/beam

19:00-20:46. Filling with 12+11x72 = 804 bunches and ramp. Filling in steps to allow cryo team to adapt regulation. A lot of work with loss of cryo start in two sectors during the ramp.

BUT: Heat load

Heat load not varying significantly (~ linear with intensity).

4TeV Arc UFOs with 25ns

T. Baer

- With 50ns, 1374b: ≈ 1.3 arc UFOs per hour
- Fill 3428 (156b):
 27 arc UFOs in 2.25 hours
 -> 12.0 UFOs per hour
- Fill 3429 (804b):
 71 arc UFOs in 9.75 hours
 -> 7.3 UFOs per hour
 highest UFO activity in
 first hour.

In fills 3428 – 3429:

5 UFOs > 10% of BLM dump threshold

Largest UFO: 42% of BLM dump threshold

– Morning:

- Loss map at the end of squeeze and in collision (with 12 bunches)
- BCMS injection (12 bunches available on the same cycle)
- Afternoon:
 - Fill with 804 bunches
- Night:
 - Calibration fills at 450 GeV (72 bunches trains and 288 bunch trains)
- Tomorrow: physics 25 ns provided loss maps understood

Conclusion so far:

25ns will not be "a walk in the park".

50ns is still a valid alternative, so detectors should keep working on event pile up