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constraints on cosmological parameters prior to Planck, this dis-
crepancy merits a detailed analysis, which is presented in ap-
pendix A. The S12 and K11 data are not used in combination
with Planck in this paper. Since the primary purpose of includ-
ing high-` CMB data is to provide stronger constraints on fore-
grounds, we use the R12 SPT data at ` > 2000 only in combina-
tion with Planck. We ignore any correlations between ACT/SPT
and Planck spectra over the overlapping multipole ranges.

Table 3 summarizes some key features of the CMB data sets
used in this paper.

4.2. Model of unresolved foregrounds and “nuisance”
parameters

The model for unresolved foregrounds used in the Planck
likelihood is described in detail in Planck Collaboration XV
(2013). Briefly, the model includes power spectrum templates
for clustered extragalactic point sources (the cosmic infra-red
background, hereafter CIB), thermal (tSZ) and kinetic (kSZ)
Sunyaev-Zeldovich contributions, and the cross-correlation
(tSZ⇥CIB) between infra-red galaxies and the thermal Sunyaev-
Zeldovich e↵ect. The model also includes amplitudes for the
Poisson contributions from radio and infra-red galaxies. The
templates are described in Planck Collaboration XV (2013) and
are kept fixed here. (Appendix B discusses briefly a few tests
showing the impact of varying some aspects of the foreground
model.) The model for unresolved foregrounds is similar to the
models developed by the ACT and the SPT teams (e.g., R12;
Dunkley et al. 2013). The main di↵erence is in the treatment of
the Poisson contribution from radio and infra-red galaxies. In
the ACT and SPT analyses, spectral models are assumed for ra-
dio and infra-red galaxies. The Poisson point source contribu-
tions can then be described by an amplitude for each population,
assuming either fixed spectral parameters or solving for them.
In addition, one can add additional parameters to describe the
decorrelation of the point source amplitudes with frequency (see
e.g., Millea et al. 2012). The Planck model assumes free am-
plitudes for the point sources at each frequency, together with
appropriate correlation coe�cients between frequencies. The
model is adapted to handle the ACT and SPT data as discussed
later in this section.

Figure 5 illustrates the importance of unresolved foregrounds
in interpreting the power spectra of the three CMB data sets.
The upper panel of Fig. 5 shows the Planck temperature spec-
tra at 100, 143, and 217 GHz, without corrections for unre-
solved foregrounds (to avoid overcrowding, we have not plot-
ted the 143 ⇥ 217 spectrum). The solid (red) lines show the
best-fit base ⇤CDM CMB spectrum corresponding to the com-
bined Planck+ACT+SPT+WMAP polarization likelihood anal-
ysis, with parameters listed in Table 5. The middle panel shows
the SPT spectra at 95, 150 and 220 GHz from S12 and R12.
In this figure, we have recalibrated the R12 power spectra to
match Planck using calibration parameters derived from a full
likelihood analysis of the base ⇤CDM model. The S12 spec-
trum plotted is exactly as tabulated in S12, i.e., we have not re-
calibrated this spectrum to Planck. (The consistency of the S12
spectrum with the theoretical model is discussed in further detail
in Appendix A.) The lower panel of Fig. 5 shows the ACT spec-
tra from D13, recalibrated to Planck with calibration coe�cients
determined from a joint likelihood analysis. The power spectra
plotted are an average of the ACTe and ACTs spectra, and in-
clude the small Galactic dust corrections described in Das et al.
(2013).

Fig. 5. Top: Planck spectra at 100, 143 and 217 GHz without
subtraction of foregrounds. Middle: SPT spectra from R12 at
95, 150 and 220 GHz, recalibrated to Planck using the best-
fit calibration, as discussed in the text. The S12 SPT spec-
trum at 150 GHz is also shown, but without any calibration cor-
rection. This spectrum is discussed in detail in Appendix A,
but is not used elsewhere in this paper. Bottom: ACT spectra
(weighted averages of the equatorial and southern fields) from
D13 at 148 and 220 GHz, and the 148⇥220 GHz cross-spectrum,
with no extragalactic foreground corrections, recalibrated to the
Planck spectra as discussed in the text. The solid line in each
panel shows the best-fit base ⇤CDM model from the combined
Planck+WP+highL fits listed in Table 5.
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Non-CMB spectra at small scales modeled with 
extra parameters!

Planck spectra!Planck power spectrum
Conservative spectral analysis

•Uses small portions of the sky with 
minimal foreground contamination

•Uses detector cross-spectra to remove 
uncorrelated noise from power

•Non-CMB spectra at small-scales are 
modeled with extra parameters 
(dust, SZ, CIB etc)

•CMB likelihoods published ... 
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Planck frequency maps
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Foreground-cleaned CMB maps
Foreground-cleaned CMB maps

SMICA works in harmonic space; it uses a 3% processing mask to prevent foreground leakage 
from low to high Galactic latitudes, hence the smooth appearance in the Galactic plane 

C-R NILC

SEVEM SMICA
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Commander-Ruler (C-R) - Pixel 
domain: fits parametrized model of 
CMB and foregrounds

Internal linear combination (NILC) 
Needlet (wavelet) domain:  minimizes

variance of CMB signal

Template fitting (SEVEM) - Pixel 
domain: removes templates found 
by subtracting frequency channels

Spectral matching (SMICA)
Harmonic domain: fits model of 
foregrounds and solves for CMB 



Union Mask
Union mask

Union of the confidence masks (U73), leaving 73% of the sky

Union of confidence masks for all four methods (U73), leaving 73% of the sky



Leading method for high-l analysis - min. foreground residuals and preserves non-Gaussianity
       - the 3% processing mask has been filled in with a constrained realization

Key public data product from the Planck mission, refer to: 
http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive
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WMAP vs Planck



2 10 50
0

1000

2000

3000

4000

5000

6000

D
`[
µ
K

2 ]

90� 18�

500 1000 1500 2000 2500

Multipole moment, `

1� 0.2� 0.1� 0.07�
Angular scale

Non-Gaussianity (NG)

Triumph of inflation
A self-consistent 
concordance model 
with 68.3% dark energy,
26.8% dark matter, and
4.9% ordinary matter.

Based on the two-point
correlator or angular
power spectrum Cl 

But there is more information ... 



Determined only by mean µ and standard deviation σ 

Central limit theorem: any independent random process
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WMAP anomalies II
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Triangles in the Sky

The CMB Bispectrum



Triangles in the Sky

The CMB Bispectrum



Allowed multipoles l1,l2,l3 for the CMB bispectrum live in the domain

Reduced bispectrum bl1l2l3 from primordial bispectrum B(k1,k2,k3)

Inner product:
Defined by estimator sum

with weight  

Tetrapyd - Bispectrum domain

6

III. SEPARABLE MODE EXPANSIONS

When analysing the CMB bispectrum bl1l2l3 , we are restricted to a tetrahedral domain of multipole
triples {l1l2l3} satisfying both a triangle condition and a limit given by the maximum resolution lmax of
the experiment. This three-dimensional domain VT of allowed multipoles is illustrated in fig. 2 and it is
explicitly defined by

Resolution: l1, l2, l3 ⇥ lmax , l1, l2, l3 ⇧ N ,

Triangle condition: l1 ⇥ l2 + l3 for l1 ⇤ l2, l3, + cyclic perms. , (18)

Parity condition: l1 + l2 + l3 = 2n , n ⇧ N .

The multipole domain is denoted a ‘tetrapyd’ because it arises from the union of a regular tetrahedron
from the origin out to the plane l1 + l2 + l3 ⇥ 2lmax and a triangular pyramid constructed from the corner
of the cube taking in the remaining multipole values out to li ⇥ lmax. Summed bispectrum expressions
such as (15) indicate that we must define a weight function wl1l2l3 on the tetrapyd domain in terms of the
geometrical factor hl1l2l3 , that is,

wl1l2l3 = h2l1l2l3 . (19)

This is a nearly constant function on cross sections defined by l1 + l2 + l3 = const, except very near the
tetrahedral boundaries where it is still bounded, and a useful and accurate continuum limit w(l1, l2, l3) is
given in [1]. In order to eliminate an l�1/2 scaling in the bispectrum estimator functions, we usually exploit
the freedom to divide by a separable function and to employ instead the weight

ws(l1, l2, l3) =
wl1l2l3

v2l1v
2
l2
v2l3

, where vl = (2l + 1)1/6 . (20)

We can then define an inner product of two functions f(l1, l2, l3), g(l1, l2, l3) on the tetrapyd domain (18)
through

⌃f, g⌥ �
�

l1,l2,l3⇤VT

ws(l1, l2, l3) f(l1, l2, l3) g(l1, l2, l3) . (21)

Given that calculations generally deal with smooth functions f, g, w, v, we can use a variety of schemes to
speed up this summation (e�ectively an integration).
Our goal is to represent the observed CMB bispectrum estimator functions, such as those in (12) and

(15), on the multipole domain (18) using a separable mode expansion,

vl1vl2vl3⇥
Cl1Cl2Cl3

bl1l2l3 =
�

n

�̄Q
nQn(l1, l2, l3) , (22)

where the Qn are basis functions constructed from symmetrised polynomial products

Qn(l1, l2, l3) = 1
6 [q̄p(l1) q̄r(l2) q̄s(l3) + q̄r(l1) q̄p(l2) q̄s(l3) + cyclic perms in prs]

� q̄{pqrqs} with n ⌅ {prs} , (23)

with the q̄p(l) defined below. Here, the six permutations of the polynomial products which we denote
as {prs} reflect the underlying symmetries of the bispectrum bl1l2l3 . For convenience, we define a one-
to-one mapping n ⌅ {prs} ordering the permuted triple indices into a single list labelled by n ⇧ N.
Alternative ‘slicing’ and ‘distance’ orderings were presented in ref. [1], but the results presented here are
robust to this change. However, we shall quote explicit coe⇥cients ⇥Q

n resulting from distance ordering
(i.e. n(l1, l2, l3) < n⇥(l⇥1, l

⇥
2, l

⇥
3) implies l21 + l22 + l23 ⇥ l⇥1

2 + l⇥2
2 + l⇥3

2 and in the instance of two modes being
equidistant the one with most equal li takes precedence).
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 f, g⌦ �
�

l1,l2,l3⇥VT

ws(l1, l2, l3) f(l1, l2, l3) g(l1, l2, l3) . (45)
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III. SEPARABLE MODE EXPANSIONS

When analysing the CMB bispectrum bl1l2l3 , we are restricted to a tetrahedral domain of multipole
triples {l1l2l3} satisfying both a triangle condition and a limit given by the maximum resolution lmax of
the experiment. This three-dimensional domain VT of allowed multipoles is illustrated in fig. 2 and it is
explicitly defined by

Resolution: l1, l2, l3 ⇥ lmax , l1, l2, l3 ⇧ N ,

Triangle condition: l1 ⇥ l2 + l3 for l1 ⇤ l2, l3, + cyclic perms. , (18)

Parity condition: l1 + l2 + l3 = 2n , n ⇧ N .

The multipole domain is denoted a ‘tetrapyd’ because it arises from the union of a regular tetrahedron
from the origin out to the plane l1 + l2 + l3 ⇥ 2lmax and a triangular pyramid constructed from the corner
of the cube taking in the remaining multipole values out to li ⇥ lmax. Summed bispectrum expressions
such as (15) indicate that we must define a weight function wl1l2l3 on the tetrapyd domain in terms of the
geometrical factor hl1l2l3 , that is,
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III. SEPARABLE MODE EXPANSIONS

When analysing the CMB bispectrum bl1l2l3 , we are restricted to a tetrahedral domain of multipole
triples {l1l2l3} satisfying both a triangle condition and a limit given by the maximum resolution lmax of
the experiment. This three-dimensional domain VT of allowed multipoles is illustrated in fig. 2 and it is
explicitly defined by

Resolution: l1, l2, l3 ⇥ lmax , l1, l2, l3 ⇧ N ,

Triangle condition: l1 ⇥ l2 + l3 for l1 ⇤ l2, l3, + cyclic perms. , (18)

Parity condition: l1 + l2 + l3 = 2n , n ⇧ N .

The multipole domain is denoted a ‘tetrapyd’ because it arises from the union of a regular tetrahedron
from the origin out to the plane l1 + l2 + l3 ⇥ 2lmax and a triangular pyramid constructed from the corner
of the cube taking in the remaining multipole values out to li ⇥ lmax. Summed bispectrum expressions
such as (15) indicate that we must define a weight function wl1l2l3 on the tetrapyd domain in terms of the
geometrical factor hl1l2l3 , that is,

wl1l2l3 = h2l1l2l3 . (19)

This is a nearly constant function on cross sections defined by l1 + l2 + l3 = const, except very near the
tetrahedral boundaries where it is still bounded, and a useful and accurate continuum limit w(l1, l2, l3) is
given in [1]. In order to eliminate an l�1/2 scaling in the bispectrum estimator functions, we usually exploit
the freedom to divide by a separable function and to employ instead the weight

ws(l1, l2, l3) =
wl1l2l3

v2l1v
2
l2
v2l3

, where vl = (2l + 1)1/6 . (20)

We can then define an inner product of two functions f(l1, l2, l3), g(l1, l2, l3) on the tetrapyd domain (18)
through

⌃f, g⌥ �
�

l1,l2,l3⇤VT

ws(l1, l2, l3) f(l1, l2, l3) g(l1, l2, l3) . (21)

Given that calculations generally deal with smooth functions f, g, w, v, we can use a variety of schemes to
speed up this summation (e�ectively an integration).
Our goal is to represent the observed CMB bispectrum estimator functions, such as those in (12) and

(15), on the multipole domain (18) using a separable mode expansion,

vl1vl2vl3⇥
Cl1Cl2Cl3

bl1l2l3 =
�

n

�̄Q
nQn(l1, l2, l3) , (22)

where the Qn are basis functions constructed from symmetrised polynomial products

Qn(l1, l2, l3) = 1
6 [q̄p(l1) q̄r(l2) q̄s(l3) + q̄r(l1) q̄p(l2) q̄s(l3) + cyclic perms in prs]

� q̄{pqrqs} with n ⌅ {prs} , (23)

with the q̄p(l) defined below. Here, the six permutations of the polynomial products which we denote
as {prs} reflect the underlying symmetries of the bispectrum bl1l2l3 . For convenience, we define a one-
to-one mapping n ⌅ {prs} ordering the permuted triple indices into a single list labelled by n ⇧ N.
Alternative ‘slicing’ and ‘distance’ orderings were presented in ref. [1], but the results presented here are
robust to this change. However, we shall quote explicit coe⇥cients ⇥Q

n resulting from distance ordering
(i.e. n(l1, l2, l3) < n⇥(l⇥1, l

⇥
2, l

⇥
3) implies l21 + l22 + l23 ⇥ l⇥1

2 + l⇥2
2 + l⇥3

2 and in the instance of two modes being
equidistant the one with most equal li takes precedence).
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(L,0,L)

(L,L,L)

(L,L,0)
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�54 < fNL < 114 W3, Spergel et al 2007 �256 < fNL < 332 W3, Creminelli et al 2006

Pseudo-optimal

�27 < fNL < 121 W1, Creminelli et al, 2006 �151 < fNL < 253 W5, Komatsu et al 2009

�36 < fNL < 100 W3, Creminelli et al 2006

27 < fNL < 147 W3, Yadav Wandelt 2008

9 < fNL < 129 W3, Smith et al 2009

�9 < fNL < 111 W5, Komatsu et al 2009

Optimal
12 < fNL < 104 W3, Smith et al 2009 �125 < fNL < 435 W5, Smith et al 2009

�4 < fNL < 80 W5, Smith et al 2009 �254 < fNL < 306 W7, Komatsu et al 2010
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Parity condition: l1 + l2 + l3 = 2n , n ⇧ N .
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, where vl = (2l + 1)1/6 . (44)
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III. SEPARABLE MODE EXPANSIONS

When analysing the CMB bispectrum bl1l2l3 , we are restricted to a tetrahedral domain of multipole
triples {l1l2l3} satisfying both a triangle condition and a limit given by the maximum resolution lmax of
the experiment. This three-dimensional domain VT of allowed multipoles is illustrated in fig. 2 and it is
explicitly defined by

Resolution: l1, l2, l3 ⇥ lmax , l1, l2, l3 ⇧ N ,

Triangle condition: l1 ⇥ l2 + l3 for l1 ⇤ l2, l3, + cyclic perms. , (18)

Parity condition: l1 + l2 + l3 = 2n , n ⇧ N .

The multipole domain is denoted a ‘tetrapyd’ because it arises from the union of a regular tetrahedron
from the origin out to the plane l1 + l2 + l3 ⇥ 2lmax and a triangular pyramid constructed from the corner
of the cube taking in the remaining multipole values out to li ⇥ lmax. Summed bispectrum expressions
such as (15) indicate that we must define a weight function wl1l2l3 on the tetrapyd domain in terms of the
geometrical factor hl1l2l3 , that is,

wl1l2l3 = h2l1l2l3 . (19)

This is a nearly constant function on cross sections defined by l1 + l2 + l3 = const, except very near the
tetrahedral boundaries where it is still bounded, and a useful and accurate continuum limit w(l1, l2, l3) is
given in [1]. In order to eliminate an l�1/2 scaling in the bispectrum estimator functions, we usually exploit
the freedom to divide by a separable function and to employ instead the weight

ws(l1, l2, l3) =
wl1l2l3

v2l1v
2
l2
v2l3

, where vl = (2l + 1)1/6 . (20)

We can then define an inner product of two functions f(l1, l2, l3), g(l1, l2, l3) on the tetrapyd domain (18)
through

⌃f, g⌥ �
�

l1,l2,l3⇤VT

ws(l1, l2, l3) f(l1, l2, l3) g(l1, l2, l3) . (21)

Given that calculations generally deal with smooth functions f, g, w, v, we can use a variety of schemes to
speed up this summation (e�ectively an integration).
Our goal is to represent the observed CMB bispectrum estimator functions, such as those in (12) and

(15), on the multipole domain (18) using a separable mode expansion,
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n
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nQn(l1, l2, l3) , (22)

where the Qn are basis functions constructed from symmetrised polynomial products
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No-Go for Inflation
Simple inflation models cannot generate observable non-Gaussianity:
            • single scalar field
            • canonical kinetic terms
            • always slow roll 
            • ground state initial vacuum
            • standard Einstein gravity 
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No-Go for Inflation
Simple inflation models cannot generate observable non-Gaussianity:
            • single scalar field
            • canonical kinetic terms
            • always slow roll 
            • ground state initial vacuum
            • standard Einstein gravity 

 I.e. simple inflation predicts no (observable) randomness (see DB talk)
 

            B ~ P3/2 / 1,000,000 
 so deviations less than 1 part in a million!
Non-Gaussianity arguably the most stringent test of standard picture
But simple inflation model-building faces rigorous challenges in 
fundamental theory (e.g. eta problem and super-Planckian field values).   
Many fundamental cosmology ideas/solutions violate these conditions!



NG from interacting potentials 

Significant final fNL  ingredients:
• corner turning
• nontrivial potential 
• or breakout (hybrid models) 

•Curvatons - post-inflation eqn of state domination
e.g. Linde & Mukhanov 96; Enqvist & Sloth 01; Lyth & Wands 01; Moroi &Takahashi 01

•End of inflation, reheating and preheating
Modulated reheating e.g. Kofman et al 05; Dvali et al 06; etc

Nonlinear perturbations from preheating 
e.g. Chambers & Rajantie 07,08; Bond, Frolov, Huang & Kofman, 09.

•Particle production during inflation 
(incl. warm inflation)  Moss & Xiong, 07; Moss & Graham, 07.

•Scale-dependent bispectra  e.g. Byrnes et al, 08; Liguori & Sefusatti et al, 09.

Multifield inflation

fNL

Time (e-foldings)
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⇤
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2 �m2)2 + ⇥(⇤1 + m)3

Rigopoulos, EPS, van Tent 05, 06;
Vernizzi & Wands 06,
and Bernadeau & Uzan 02 etc etc
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Non-Canonical Inflation
• Single field: K-inflation, DBI inflation - modified sound speed

• Multifield DBI inflation

• NG effects from Galileons

• Vector inflation (anisotropy), Modified gravity etc. 

Excited initial states - non-Bunch-Davies vacuum

Feature and periodic models 

Alternative primordial scenarios - 
      e.g. cosmic superstrings, textures, ekpyrotic models etc 

Secondary NGs - second-order Einstein-Boltzmann eqns, ISW etc.

Non-Gaussian Sources (cont.)

e.g. Silverstein & Tong 2003; Alishaha et al 2004; Chen et al 2006,
Burrage et al, 2011 etc.

e.g. Chen,10; Renaux-Petel, 10.

e.g. Chen, Easther & Lim, 2005; Meerburg, 2010;  Westerval et al 2009
Interesting work on polyspectra correlations - Chen, 2011.

e.g. Chen, et al, 2006; Holman & Tolley, 2008; Meerburg et al 2008 

Bartolo, Mataresse et al, 08; Pitrou & Bernardeau, 10; Pitrou, 11; Zichi et al 12; Su et al 12, etc;
Important contaminant at Planck sensitivity; dominant for LSS (see later).

e.g. Renaux-Petel, 10.

e.g. Shiraishi et al, 10, Bartolo et al 11 etc..
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Axion Monodromy
Large-field inflation predicts gravitational waves - r ~ 0.05 - but ...
- large excursions with a flat potential not natural (corrections)
- slow-roll inflation requires an effective shift symmetry Φ – >  Φ+c
Ingredients:  UV completion - string theory
Shift symmetry - axions  a – >   a+2π
Axion potential recycled - monodromy
Predictions: Tensor modes r>0.07
Power spectrum periodicity
Bispectrum oscillations

e.g. Silverstein & Westphal 2008
Flauger et al 2009



Cosmic strings and topological 
defects form at phase transitions 
Key parameter Gμ = (η/MPl)2

Evolve in a scale-invariant manner

Different varieties:  
Local Nambu-Goto (super-)strings -
modelled with line-like simulations

Strings with radiative effects -
modelled with field theory simulations
(Abelian-Higgs or global strings)

Cosmic Defects

Planck Collaboration: Cosmic strings and other topological defects

D-strings) or a small reconnection probability, p < 1. We expect
to investigate these models using the Planck full mission data.

The outline of this paper is as follows. In Sect. 2 we briefly
describe the di↵erent types of topological defects that we con-
sider, and their impact on the CMB anisotropies. We also dis-
cuss how the CMB power spectrum is computed and how we
obtain CMB maps with a cosmic string contribution. In Sect. 3
we present the defect constraints from the CMB power spectrum
(with numbers given in Table 2), while Sect. 4 discusses searches
for topological defects with the help of their non-Gaussian sig-
nature. We finally present the overall conclusions in Sect. 5.

2. Theoretical Modelling and Forecasting

2.1. Cosmic strings and their cosmological consequences

2.1.1. String network evolution

A detailed quantitative understanding of the cosmological evo-
lution of string networks is an essential pre-requisite for mak-
ing accurate predictions about the cosmological consequences
of strings. Fortunately, all string network simulations to date
have demonstrated convincingly that the large-scale properties
of strings approach a self-similar scale-invariant regime soon af-
ter formation. If we treat the string as a one-dimensional object,
then it sweeps out a two-dimensional worldsheet in spacetime

xµ = xµ(⇣a), a = 0, 1, (2)

where the worldsheet parameters ⇣0 and ⇣1 are time-like and
space-like respectively. The Nambu-Goto action that governs
string motion then becomes

S = � µ
Z p�� d 2⇣, (3)

where �ab = gµ⌫@axµ@bx⌫ is the two-dimensional worldsheet
metric (� = det(�ab)) induced by the spacetime metric gµ⌫. The
Nambu-Goto action Eq. (3) can be derived systematically from
a field theory action, such as that for the abelian-Higgs model
describing U(1) vortex-strings:

S =
Z

d4x
p�g

"
(Dµ�)⇤(Dµ�) �

1
4e2 Fµ⌫Fµ⌫ �

�

4
(|�|2 � ⌘2)2

#
,

(4)
where � is a complex scalar field, Fµ⌫ is the U(1) field strength
and Dµ = @µ + iAµ is the gauge-covariant derivative with e and
� dimensionless coupling constants. The transverse degrees of
freedom in � can be integrated out provided the string is not
strongly curved, that is, the string width � ⇡ ~c/⌘ ⌧ L where
L is the typical radius of curvature. For a cosmological string
network today with Gµ/c2 ⇠ 10�7, these two lengthscales are
separated by over 40 orders of magnitude, so this should be a
valid approximation.

In an expanding universe, the Nambu-Goto action Eq. (3)
yields a Hubble-damped wave equation governing the string
motion. These equations can be solved numerically, pro-
vided “kinks” or velocity discontinuities are treated carefully.
However, they can also be averaged analytically to describe the
scale-invariant evolution of the whole string network in terms of
two quantities, the energy density ⇢ and the r.m.s. velocity v. Any
string network divides fairly neatly into two distinct populations
of long (or “infinite”) strings ⇢1 stretching beyond the Hubble
radius and the small loops ⇢l with length l ⌧ H�1 that the long
strings create Kibble (1985). Assuming the long strings form a

Table 1. Summary of numerical simulation results for the string density
parameter ⇣ defined in Eq. (5). The Nambu-Goto string simulations are
respectively labelled as MS (Martins & Shellard 2006), RSB (Ringeval
et al. 2007), and BOS (Blanco-Pillado et al. 2011). This is contrasted
with the much lower density results from lattice field theory simula-
tions of vortex-strings labelled as MMS (Moore et al. 2002) and BHKU
(Bevis et al. 2007b).

Epoch . . . . . . . . . . MS RSB BOS MSM BHKU

Radiation . . . . . . . . 11.5 9.5 11.0 5.0 3.8
Matter . . . . . . . . . . . 3.0 3.2 3.7 1.5 1.3

Brownian random walk characterised by a correlation length L,
we have

⇢1 =
µ

L2 ⌘
⇣µ

t2 , (5)

and the averaged equations of motion become simply

2
dL
dt
= 2HL(1 + v2) + c̃v ,

dv1
dt
=
⇣
1 � v2

⌘ "k(v)
L
� 2Hv

#
, (6)

where c̃ measures the network loop production rate and k(v) is a
curvature parameter with k ⇡ 2

p
2(1�

p
2v). This is the velocity-

dependent one-scale (VOS) model and, with a single parameter
c̃, it provides a good fit to both Nambu and field theory simula-
tions, notably through the radiation-matter transition (Martins &
Shellard 1996).

A general consensus has emerged from the three main simu-
lation codes describing Nambu-Goto string networks (Martins &
Shellard 2006; Ringeval et al. 2007; Blanco-Pillado et al. 2011).
These independent codes essentially solve for left- and right-
moving modes along the string using special techniques to han-
dle contact discontinuities or kinks, including “shock fronting”,
artificial compression methods and an exact solver for piecewise
linear strings, respectively. The consistency between simulations
is shown in Table 1 for the string density parameter ⇣ defined in
Eq. (5). Averaging yields the radiation era density ⇣ = 10.7 and
a matter era value ⇣ = 3.3. Note that these asymptotic values and
the intervening matter-radiation transition can be well-described
by the VOS model Eq. (6) with c̃ = 0.23. The matter era VOS
value appears somewhat anomalous from the other two simula-
tions, but this is obtained from larger simulations in a regime
where convergence is very slow, so it may more closely reflect
the true asymptotic value. These simulations have also advanced
the study of string small-scale structure and the loop distribution,
about which there had been less consensus (see, e.g., Blanco-
Pillado et al. 2011). However, note that CMB anisotropy is far
less sensitive to this issue compared to constraints from gravita-
tional waves.

Field theory simulations using lattice gauge techniques have
also been employed to study the evolution of string networks in
an expanding universe. Comparatively, these three-dimensional
simulations are constrained to a lower dynamic range and the
simulations require the solution of modified field equations to
prevent the string core width shrinking below the lattice reso-
lution. On the other hand, field theory simulations include field
radiation and therefore provide a more complete account of the
string physics. In Table 1 the lower string densities obtained
from two sets of abelian-Higgs simulations are given (Moore
et al. 2002; Bevis et al. 2007b). The evolution can be fitted with
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Bispectrum estimator
Purpose: Test a model with predicted theoretical bispectrum

Estimator gives a least squares fit to the data

with covariance matrix                                            

with inverse weighting                                                             (ideal case)
(Neglected discussion of  ‘linear term’, incorporating systematic effects.)

Gl1l2l3
m1m2m3

⇥
�

d� Yl1m1(n̂) Yl2m2(n̂) Yl3m3(n̂) = hl1l2l3

⇧
l1 l2 l3
m1 m2 m3

⌃

bth
l1l2l3 =

⌥

mi

G l1 l2 l3
m1m2m3

⌃ath
l1m1

ath
l2m2

ath
l3m3

⌥ (12)

bth
l1l2l3 =

⌥

mi

G l1 l2 l3
m1m2m3

⌃ath
l1m1

ath
l2m2

ath
l3m3

⌥ (13)

E =
1

N2

⌥

li,mi

⌃ath
l1m1

ath
l2m2

ath
l3m3

⌥(C�1a)l1m1(C
�1a)l2m2(C

�1a)l3m3

=
1

N2

⌥

limi

Gl1l2l3
m1m2m3

bth
l1l2l3

Cl1Cl2Cl3

al1m1al2m2al3m3 (14)

(C�1a)lm = C�1
lm,l�m�al�m� ⇤ alm

Cl
with Clm,l�m� = ⌃almal�m� (15)

E =
1

N2

⌥

li,mi

 
G l1 l2 l3

m1m2m3
bth
l1l2l3

⇤
C�1

l1m1,l4m4
al1m1

⌅⇤
C�1

l2m2,l5m5
al2m2

⌅⇤
C�1

l3m3,l6m6
al3m3

⌅

� 3 ⌃al1m1al2m2al3m3⌥C�1
l1m1,l2m2

C�1
l3m3,l4m4

al4m4

⌦
, (16)

E =
1

Ñ2
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Ñ2

⌥

limi

Gl1l2l3
m1m2m3

b̃th
l1l2l3

C̃l1C̃l2C̃l3

�
al1m1al2m2al3m3 � 6 Csim

l1m1,l2m2
al3m3

⇥
(19)

E =
1

Ñ2
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Ñ2

⌥

limi

⌥ath
l1m1

ath
l2m2

ath
l3m3

�
C̃l1C̃l2C̃l3

�
al1m1al2m2al3m3�6 Csim

l1m1,l2m2
al3m3

⇥
(20)

=
1

Ñ2
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Model

Babich, 2005; see also KSW etc

Mainly work done in Planck with James Fergusson and Michele Liguori



Bispectrum estimator
Purpose: Test a model with predicted theoretical bispectrum

Estimator gives a least squares fit to the data

with covariance matrix                                            

with inverse weighting                                                             (ideal case)
(Neglected discussion of  ‘linear term’, incorporating systematic effects.)
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Model

Babich, 2005; see also KSW etc

Mainly work done in Planck with James Fergusson and Michele Liguori



Bispectrum estimator
Purpose: Test a model with predicted theoretical bispectrum

Estimator gives a least squares fit to the data

with covariance matrix                                            

with inverse weighting                                                             (ideal case)
(Neglected discussion of  ‘linear term’, incorporating systematic effects.)
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Ñ2

⌥

limi

Gl1l2l3
m1m2m3

b̃th
l1l2l3

C̃l1C̃l2C̃l3

�
al1m1al2m2al3m3�6 Csim

l1m1,l2m2
al3m3

⇥
(20)

C̃l = b2
l Cl + Nl and b̃l1l2l3 = bl1bl2bl3 bl1l2l3 . (21)

C̃l = b2
l Cl + Nl and b̃l1l2l3 = bl1bl2bl3 bl1l2l3 (22)

bmask
l1l2l3 = fskybl1l2l3 and Cmask

l = fskyCl (23)

bmask
l1l2l3 = fskybl1l2l3 and Cmask

l = fskyCl (24)

Gl1l2l3
m1m2m3

⇥
�

d� Yl1m1(n̂) Yl2m2(n̂) Yl3m3(n̂) = hl1l2l3

⇧
l1 l2 l3
m1 m2 m3

⌃

bth
l1l2l3 =

⌥

mi

G l1 l2 l3
m1m2m3

⌥ath
l1m1

ath
l2m2

ath
l3m3

� (12)

bth
l1l2l3 =

⌥

mi

G l1 l2 l3
m1m2m3

⌥ath
l1m1

ath
l2m2

ath
l3m3

� (13)

E =
1

N2

⌥

li,mi

⌥ath
l1m1

ath
l2m2

ath
l3m3

�(C�1a)l1m1(C
�1a)l2m2(C

�1a)l3m3

=
1

N2

⌥

limi

Gl1l2l3
m1m2m3

bth
l1l2l3

Cl1Cl2Cl3

al1m1al2m2al3m3 (14)

Clm,l�m� = ⌥almal�m�� �⌅ (C�1a)lm = C�1
lm,l�m�al�m� ⇤ alm

Cl
(15)

E =
1

N2

⌥

li,mi

 
G l1 l2 l3

m1m2m3
bth
l1l2l3

⇤
C�1

l1m1,l4m4
al1m1

⌅⇤
C�1

l2m2,l5m5
al2m2

⌅⇤
C�1

l3m3,l6m6
al3m3

⌅

� 3 ⌥al1m1al2m2al3m3�C�1
l1m1,l2m2

C�1
l3m3,l4m4

al4m4

⌦
, (16)

E =
1

Ñ2
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Ñ2

⌥

limi

Gl1l2l3
m1m2m3

b̃th
l1l2l3

C̃l1C̃l2C̃l3

�
al1m1al2m2al3m3 � 6 Csim

l1m1,l2m2
al3m3

⇥
(19)

E =
1

Ñ2
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Babich, 2005; see also KSW etc

Mainly work done in Planck with James Fergusson and Michele Liguori



CMB modal decompositionCMB DECOMPOSITION
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Fergusson, Liguori and EPS, 2009, 2010; see also KSW



CMB modal decompositionCMB DECOMPOSITION
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Bl1l2l3 reconstruction
SEPARABILITY = TRACTABILITY, so create a basis of separable modes

Expand any (nonseparable) bispectrum signal strength in modes as
                                                      

E.g. Local fNL Model expansion for the an coefficients:

=  -0.07               + 0.14                 + 0.30              

Qn(l1, l2, l3) = 1
6 [q̄p(l1) q̄r(l2) q̄s(l3) + q̄r(l1) q̄p(l2) q̄s(l3) + cyclic perms in prs]

� q̄{pqrqs} with n ⇤ {prs} , (49)

 q̄p(l1), q̄r(l1)⌦ = ⇤pr , (50)

 q̄p(l1), q̄r(l1)⌦ = ⇤pr , (51)

 Qn, Qp⌦ � ⇥np ⌅= ⇤np , (52)

 Qn, Qp⌦ � ⇥np ⌅= ⇤np , (53)

 Rn, Rp⌦ = ⇤np . (54)
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III. SEPARABLE MODE EXPANSIONS

When analysing the CMB bispectrum bl1l2l3 , we are restricted to a tetrahedral domain of multipole
triples {l1l2l3} satisfying both a triangle condition and a limit given by the maximum resolution lmax of
the experiment. This three-dimensional domain VT of allowed multipoles is illustrated in fig. 2 and it is
explicitly defined by

Resolution: l1, l2, l3 ⇥ lmax , l1, l2, l3 ⇧ N ,

Triangle condition: l1 ⇥ l2 + l3 for l1 ⇤ l2, l3, + cyclic perms. , (18)

Parity condition: l1 + l2 + l3 = 2n , n ⇧ N .

The multipole domain is denoted a ‘tetrapyd’ because it arises from the union of a regular tetrahedron
from the origin out to the plane l1 + l2 + l3 ⇥ 2lmax and a triangular pyramid constructed from the corner
of the cube taking in the remaining multipole values out to li ⇥ lmax. Summed bispectrum expressions
such as (15) indicate that we must define a weight function wl1l2l3 on the tetrapyd domain in terms of the
geometrical factor hl1l2l3 , that is,

wl1l2l3 = h2l1l2l3 . (19)

This is a nearly constant function on cross sections defined by l1 + l2 + l3 = const, except very near the
tetrahedral boundaries where it is still bounded, and a useful and accurate continuum limit w(l1, l2, l3) is
given in [1]. In order to eliminate an l�1/2 scaling in the bispectrum estimator functions, we usually exploit
the freedom to divide by a separable function and to employ instead the weight

ws(l1, l2, l3) =
wl1l2l3

v2l1v
2
l2
v2l3

, where vl = (2l + 1)1/6 . (20)

We can then define an inner product of two functions f(l1, l2, l3), g(l1, l2, l3) on the tetrapyd domain (18)
through

⌃f, g⌥ �
�

l1,l2,l3⇤VT

ws(l1, l2, l3) f(l1, l2, l3) g(l1, l2, l3) . (21)

Given that calculations generally deal with smooth functions f, g, w, v, we can use a variety of schemes to
speed up this summation (e�ectively an integration).
Our goal is to represent the observed CMB bispectrum estimator functions, such as those in (12) and

(15), on the multipole domain (18) using a separable mode expansion,

vl1vl2vl3⇥
Cl1Cl2Cl3

bl1l2l3 =
�

n

�̄Q
nQn(l1, l2, l3) , (22)

where the Qn are basis functions constructed from symmetrised polynomial products

Qn(l1, l2, l3) = 1
6 [q̄p(l1) q̄r(l2) q̄s(l3) + q̄r(l1) q̄p(l2) q̄s(l3) + cyclic perms in prs]

� q̄{pqrqs} with n ⌅ {prs} , (23)

with the q̄p(l) defined below. Here, the six permutations of the polynomial products which we denote
as {prs} reflect the underlying symmetries of the bispectrum bl1l2l3 . For convenience, we define a one-
to-one mapping n ⌅ {prs} ordering the permuted triple indices into a single list labelled by n ⇧ N.
Alternative ‘slicing’ and ‘distance’ orderings were presented in ref. [1], but the results presented here are
robust to this change. However, we shall quote explicit coe⇥cients ⇥Q

n resulting from distance ordering
(i.e. n(l1, l2, l3) < n⇥(l⇥1, l

⇥
2, l

⇥
3) implies l21 + l22 + l23 ⇥ l⇥1

2 + l⇥2
2 + l⇥3

2 and in the instance of two modes being
equidistant the one with most equal li takes precedence).
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Bispectrum reconstruction modes
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Planck Bispectrum Reconstruction
SMICA
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WMAP  vs  Planck

Paper XXIII. Isotropy and statistics of the CMBFergusson, Liguori and EPS, 2010

WMAP 7 year                                 Planck SMICA



The Planck Bispectrum

Fourier modes     vs      Polynomials

Modal reconstruction of the full 3D Planck bispectrum 
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Binned slice reconstruction
Binned estimator S/N weighting - comparison of comp-sep maps
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Bispectrum in detail
Constant Local

FlatEquilateralISW

Planck



Bispectrum in detail

Cross sections where L1+L2+L3=const
Vertical axis is L1 (increasing downwards)

Horizontal is L2-L3
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ISW-Lensing
Weak detection of Integrated Sachs-Wolfe (ISW) lensing bispectrum,
i.e. correlation between CMB and large-scale evolving grav. potential.

Significance ~ 2.5σ
weak detection ...

Important as correlated 
with local model fNL ~ 7

Second-order recombination
contributions:  Total fNL ~ 3
        Local fNL ~ 0.88

Planck Collaboration: Planck 2013 resutls. The ISW e↵ect

Table 2. Amplitudes AT�, errors �AT� and significances of the non-Gaussianity due to the ISW-e↵ect, for all component separation
algorithms (SMICA, SEVEM, C-R, and NILC) and all the estimators (potential reconstruction, KSW, binned, and modal). For the
potential reconstruction case, an additional minimum variance (MV) map has been considered (see Planck Collaboration XVII
2013 for details).

Estimator SMICA SEVEM C-R NILC MV

T� ` � 10 0.68 ± 0.30 2.3 0.58 ± 0.31 1.9 0.52 ± 0.33 1.5 0.72 ± 0.30 2.4 0.78 ± 0.32 2.4
` � 2 0.70 ± 0.28 2.5 0.62 ± 0.29 2.1 0.52 ± 0.32 1.6 0.75 ± 0.28 2.7

KSW 0.81 ± 0.31 2.6 0.68 ± 0.32 2.1 0.75 ± 0.32 2.3 0.85 ± 0.32 2.7
binned 0.91 ± 0.37 2.5 0.83 ± 0.39 2.1 0.80 ± 0.40 2.0 1.03 ± 0.37 2.8
modal 0.77 ± 0.37 2.1 0.60 ± 0.37 1.6 0.68 ± 0.39 1.7 0.93 ± 0.37 2.5

Table 3. For each pair of estimators we provide the mean di↵er-
ence among the amplitudes estimated from the data (�AT�), the
dispersion of the di↵erences between the amplitudes estimated
from the simulations (sAT� ), the ratio of this dispersion to the
larger of the corresponding sensitivities (⌘), and the correlation
coe�cient (⇢).

KSW binned modal

T�
�AT� ± sAT� -0.11±0.10 -0.21±0.21 -0.07±0.21
⌘ 0.32 0.56 0.56
⇢ 0.95 0.84 0.84

KSW
�AT� ± sAT� -0.10±0.19 0.04±0.19
⌘ 0.52 0.51
⇢ 0.86 0.87

binned
�AT� ± sAT� 0.14±0.15
⌘ 0.41
⇢ 0.92

pectrum (Eq. 14) is �prim ' 7, corresponding to the theoretical
expectation, as described in detail in Planck Collaboration XXIV
(2013).

4. Cross-Correlation with surveys

The ISW e↵ect can be probed through several di↵erent ap-
proaches. Among the ones already explored in the literature,
the classical test is to study the cross-correlation of the CMB
temperature fluctuations with a tracer of the matter distribution,
typically a galaxy or cluster catalogue. As mentioned in the in-
troduction, the correlation of the CMB with LSS tracers was
firstly proposed by Crittenden & Turok (1996) as a natural way
to amplify the ISW signal, otherwise very much subdominant
with respect to the primordial CMB fluctuations. Actually, it
was this technique the one that reported the first detection of
the ISW (Boughn & Crittenden 2004).

Several methods have been proposed in the literature to study
statistically the cross-correlation of the CMB fluctuations with a
LSS tracer, and, basically, they can be divided into: real space
statistics (e.g., the cross-correlation function, hereinafter CCF),
harmonic space statistics (e.g., the cross-angular power spec-
trum, hereinafter CAPS) and wavelet space statistics (e.g., the
covariance of the Spherical Mexican Hat Wavelet coe�cients,
or SMHWcov from now on). These statistics are equivalent (in
the sense of the significance on the ISW detection) under ideal
conditions. However, the ISW data analysis always presents sev-
eral non-idealities (incomplete sky coverage, presence of sys-
tematics on the LSS maps, foreground residuals on the CMB
map, . . . ). The use of di↵erent statistics as the ones mentioned
above, provides a more robust framework to study the ISW

cross-correlation, since di↵erent statistics are more sensitive in
di↵erent ways to the non-idealities. These methods are described
in subsection 4.1

Besides the choice of the statistical tool, the ISW cross-
correlation can be studied from two di↵erent (and complemen-
tary) perspectives. On the one hand, we can determine the am-
plitude of the ISW signal, as well as the corresponding signal-to-
noise ratio, by comparing the observed cross-correlation to the
expected one. On the other hand, we can postulate a null hypoth-
esis (i.e., there is no correlation between the CMB and the LSS
tracer) and study the p-value of the observed cross-correlation.
Whereas the former answers to the compatibility of the data with
the ISW hypothesis (and provides an estimation of the signal-to-
noise associated to the observed signal), the latter tells us how
incompatible the measured signal with the no-correlation hy-
pothesis is, i.e., against the presence of dark energy (assuming
the Universe is spatially flat). Obviously, both approaches can
be extended to account for the cross-correlation signal obtained
from several surveys at the same time. These two complemen-
tary tests are described in detail in 4.2, and the results are pre-
sented in subsection 4.3.

4.1. Cross-correlation statistics

Let us denote the expected cross-correlation of two signals (x
and y) by ⇠xy

a , where a stands for a distance measure (e.g., the
angular distance ✓ between two points in the sky, the multipole
` of the harmonic transformation, or the wavelet scale R). For
simplicity, we assume that the two signals are given in terms of
a fluctuation field (i.e., with zero mean and dimensionless).

This cross-correlation could represent either the CCF, the
CAPS or the SMHWcov. It has to be understood as a vector of
amax components, where amax is the maximum number of consid-
ered distances. Obviously, when x ⌘ y, ⇠xy

a represents an auto-
correlation. The specific forms for ⇠xy

a and C⇠xy for the di↵er-
ent cross-correlation statistics (CAPS, CCF and SMHWcov) are
given below.

4.1.1. Cross angular power spectrum

The cross-angular power spectrum (CAPS) is a natural tool for
studying the cross-correlation of the CMB fluctuations and trac-
ers of the LSS. Under certain conditions, it provides a statistical
tool with uncorrelated (full-sky coverage) or nearly uncorrelated
(binned spectrum for incomplete sky coverage) components.
Even the unbinned CAPS estimated on incomplete signals can
be easily worked out, since the correlations are mostly related to
the geometry of the mask. This is the case of the CAPS obtained
through MASTER approach (e.g., Hivon et al. 2002; Hinshaw
et al. 2003). Another approach is to work in the map domain

10
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Standard Bispectra
Equilateral bispectra 
Inflation from higher dimensions 
Single-field - sound speed cs << c

Primordial B(k1,k2,k3) CMB Bl1l2l3

Fergusson & EPS, arXiv:1008.1730
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ABSTRACT

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).
Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.
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S. Henrot-Versillé69, C. Hernández-Monteagudo12,76, D. Herranz65, S. R. Hildebrandt10, E. Hivon59,92, M. Hobson6, W. A. Holmes66,

A. Hornstrup16, W. Hovest76, K. M. Hu↵enberger95, T. R. Ja↵e93,9, A. H. Ja↵e54, W. C. Jones28, M. Juvela27, E. Keihänen27, R. Keskitalo22,13,
T. S. Kisner75, J. Knoche76, L. Knox30, M. Kunz17,58,3, H. Kurki-Suonio27,44, F. Lacasa58, G. Lagache58, A. Lähteenmäki2,44, J.-M. Lamarre70,
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M. Linden-Vørnle16, M. López-Caniego65, P. M. Lubin31, J. F. Macı́as-Pérez73, B. Ma↵ei67, D. Maino36,49, N. Mandolesi48,5,34, A. Mangilli59,
D. Marinucci39, M. Maris47, D. J. Marshall71, P. G. Martin8, E. Martı́nez-González65, S. Masi35, S. Matarrese33, F. Matthai76, P. Mazzotta38,
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L. Montier93,9, G. Morgante48, D. Mortlock54, A. Moss85, D. Munshi84, P. Naselsky79,40, P. Natoli34,4,48, C. B. Netterfield20,

H. U. Nørgaard-Nielsen16, F. Noviello67, D. Novikov54, I. Novikov79, S. Osborne89, C. A. Oxborrow16, F. Paci83, L. Pagano35,51, F. Pajot58,
D. Paoletti48,50, F. Pasian47, G. Patanchon1, H. V. Peiris25, O. Perdereau69, L. Perotto73, F. Perrotta83, F. Piacentini35, M. Piat1, E. Pierpaoli24,

D. Pietrobon66, S. Plaszczynski69, E. Pointecouteau93,9, G. Polenta4,46, N. Ponthieu58,52, L. Popa60, T. Poutanen44,27,2, G. W. Pratt71,
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Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.
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P. R. Meinhold31, A. Melchiorri35,51, L. Mendes42, A. Mennella36,49, M. Migliaccio62,68, S. Mitra53,66, M.-A. Miville-Deschênes58,8, A. Moneti59,
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K. M. Górski66,96, S. Gratton68,62, A. Gregorio37,47, A. Gruppuso48, F. K. Hansen63, D. Hanson77,66,8, D. Harrison62,68, A. Heavens54,
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M. Linden-Vørnle16, M. López-Caniego65, P. M. Lubin31, J. F. Macı́as-Pérez73, B. Ma↵ei67, D. Maino36,49, N. Mandolesi48,5,34, A. Mangilli59,
D. Marinucci39, M. Maris47, D. J. Marshall71, P. G. Martin8, E. Martı́nez-González65, S. Masi35, S. Matarrese33, F. Matthai76, P. Mazzotta38,
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L. Montier93,9, G. Morgante48, D. Mortlock54, A. Moss85, D. Munshi84, P. Naselsky79,40, P. Natoli34,4,48, C. B. Netterfield20,

H. U. Nørgaard-Nielsen16, F. Noviello67, D. Novikov54, I. Novikov79, S. Osborne89, C. A. Oxborrow16, F. Paci83, L. Pagano35,51, F. Pajot58,
D. Paoletti48,50, F. Pasian47, G. Patanchon1, H. V. Peiris25, O. Perdereau69, L. Perotto73, F. Perrotta83, F. Piacentini35, M. Piat1, E. Pierpaoli24,

D. Pietrobon66, S. Plaszczynski69, E. Pointecouteau93,9, G. Polenta4,46, N. Ponthieu58,52, L. Popa60, T. Poutanen44,27,2, G. W. Pratt71,
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Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
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Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted

KSW Binned Modal KSW Binned Modal

SMICA

Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . �37 ± 75 �20 ± 73 �20 ± 77 . . . . . �42 ± 75 �25 ± 73 �20 ± 77
Orthogonal . . . . . . . . . . . . �46 ± 39 �39 ± 41 �36 ± 41 . . . . . �25 ± 39 �17 ± 41 �14 ± 42

NILC

Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . �41 ± 76 �31 ± 73 �20 ± 76 . . . . . �48 ± 76 �38 ± 73 �20 ± 78
Orthogonal . . . . . . . . . . . . �74 ± 40 �62 ± 41 �60 ± 40 . . . . . �53 ± 40 �41 ± 41 �37 ± 43

SEVEM

Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . �32 ± 76 �21 ± 73 �13 ± 77 . . . . . �36 ± 76 �25 ± 73 �13 ± 78
Orthogonal . . . . . . . . . . . . �34 ± 40 �30 ± 42 �24 ± 42 . . . . . �14 ± 40 �9 ± 42 �2 ± 42

C-R

Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . �60 ± 79 �52 ± 74 �33 ± 78 . . . . . �62 ± 79 �55 ± 74 �32 ± 78
Orthogonal . . . . . . . . . . . . �76 ± 42 �60 ± 42 �63 ± 42 . . . . . �57 ± 42 �41 ± 42 �42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coe�cient r ⇠
�0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted

Wavelets Wavelets

SMICA

Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . �73 ± 52 �45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C` statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate `-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C` spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for di↵erent values of `. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C` statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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A. Benoit-Lévy25,59,92, J.-P. Bernard9, M. Bersanelli36,49, P. Bielewicz93,9,83, J. Bobin71, J. J. Bock66,10, A. Bonaldi67, L. Bonavera65, J. R. Bond8,
J. Borrill13,87, F. R. Bouchet59,92, M. Bridges68,6,62, M. Bucher1, C. Burigana48,34, R. C. Butler48, J.-F. Cardoso72,1,59, A. Catalano73,70,

A. Challinor62,68,11, A. Chamballu71,15,58, L.-Y Chiang61, H. C. Chiang28,7, P. R. Christensen79,40, S. Church89, D. L. Clements54, S. Colombi59,92,
L. P. L. Colombo24,66, F. Couchot69, A. Coulais70, B. P. Crill66,80, A. Curto6,65, F. Cuttaia48, L. Danese83, R. D. Davies67, R. J. Davis67, P. de

Bernardis35, A. de Rosa48, G. de Zotti45,83, J. Delabrouille1, J.-M. Delouis59,92, F.-X. Désert52, J. M. Diego65, H. Dole58,57, S. Donzelli49,
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ABSTRACT

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).
Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.
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Fig. 3. Map-by-map comparison of the results from the di↵er-
ent estimators for local (top), equilateral (centre), and orthogo-
nal (bottom) fNL for the set of masked non-Gaussian simulations
described in Sect. 6.1.3, assuming the shapes to be independent.
The horizontal solid line is the average value of all maps for
KSW, and the dashed and dotted horizontal lines correspond to
1� and 2� deviations, respectively.

is very consistent with the level of agreement that we find be-
tween estimators for the final results from the data, providing a
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Implications for scale-invariant NG models

Equilateral and orthogonal shapes implications:

• Effective field theory sound speed cs > 0.02 
• For DBI inflation sound speed cs > 0.07
• Ultraviolet DBI models parameter β < 0.7 
• Higher derivative models constrained
• Power law K-inflation ruled out (cf power spectrum)

Local (squeezed) constraints: 

• Curvaton model constraint on “decay fraction” rD > 0.15
• Ekpyrotic/cyclic “conversion mechanism” ruled out 

Local and equilateral in combination
• Quasi-single-field inflation constrained ... 
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Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.
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P. R. Meinhold31, A. Melchiorri35,51, L. Mendes42, A. Mennella36,49, M. Migliaccio62,68, S. Mitra53,66, M.-A. Miville-Deschênes58,8, A. Moneti59,
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local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho
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(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
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constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.
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compositions and were all above 90%, unless stated otherwise.
This primordial modal estimator pipeline has been applied al-
ready extensively to the WMAP-7 data (Fergusson et al. 2012).

7.3.1. Nonseparable single-field bispectrum shape results

Having characterised single-field inflation bispectra using com-
binations of the separable equilateral and orthogonal ansätze,
we note that the actual leading-order non-separable contribu-
tions (Eqs. (6, 7)) exhibit significant di↵erences in the collinear
(flattened) limit. For this reason we provide constraints on DBI
inflation (Eq. (7)) and the two e↵ective field theory shapes
(Eqs. (5, 6)), as well as the ghost inflation bispectrum, which
is an exemplar of higher-order derivative theories (specifically
Eq. (3.8) in Arkani-Hamed et al. 2004). Using the primordial
modal estimator, with the SMICA foreground-cleaned data, we
find:

f DBI
NL = 11 ± 69 (FDBI�eq

NL = 10 ± 77) ,

f EFT1
NL = 8 ± 73 (FEFT1�eq

NL = 8 ± 77) ,

f EFT2
NL = 19 ± 57 (FEFT2�eq

NL = 27 ± 79) ,

f Ghost
NL = �23 ± 88 (FGhost�eq

NL = �20 ± 75) . (86)

where we have normalized with the usual primordial fNL con-
vention which is shape-dependent (i.e., the central value of the
shape function is taken such that S (k, k, k) = 1). In parenthe-
ses we also give a reweighted Fequil

NL constraint for easier com-
parison with the equilateral constraint from the same modal
estimator, i.e., we have rescaled using the Fisher variance for
the closely-related equilateral shape. Given the strong cross-
correlation (above 95%) between all these models, the equi-
lateral family results of (86) reveal larger di↵erences around
�/3 than might be expected (and somewhat larger than ob-
served previously in the WMAP data (Fergusson et al. 2012)).
The reason for this variation between the equilateral shapes in
Planck appears to be the additional signal observed in the flat-
tened limit in the bispectrum reconstruction beyond the WMAP
signal-dominated range (see Fig. 6). There is also a contribution
from the small correlation di↵erence between equilateral models
from primordial modal and KSW methods. The results for these
models for all the SMICA, NILC and SEVEM foreground-separated
maps are given in Appendix B (Table B.3).

7.3.2. Non-Bunch-Davies vacuum results

We have investigated the non-separable shapes arising from ex-
cited initial states (non-Bunch-Davies vacuum models) which
usually peak in the flattened or collinear limit. In particular, we
have searched for the four non-separable bispectra described in
Eqs. (14) and (15), as well as the original flattened shape BNBD

�
(Eq. (6.2-3) in Chen et al. 2007b). This entails choosing suit-
able cut-o↵s kc to ensure that the signal is strongly flattened
(i.e., distinct from flat in Eq. (13)), while also accurately rep-
resented by the modal expansion at both early and late times
(Eqs. (54, 55)). For BNBD

� , we adopted the same edge truncation
and mild Gaussian filter described in Fergusson et al. (2012),
while for BNBD1

� and BNBD2
� , which are described by Eq. (14),

we chose kc = 0.001, and in Eq. (15) we take kc = 0.01. The
shape correlations for most non-Bunch-Davies vacua were good
(above 90%), except for the strongly squeezed model with os-
cillations of Eq. (14) which was relatively poor (60%). Together
with the orthogonal (Eq. (4)), flat (Eq. (13)) and vector (Eq. (19))
shapes, these non-Bunch-Davies models explore a broad range

of flattened models, with a variety of di↵erent widths for picking
out signals around the faces of the tetrapyd (see Fig. 1).

The fNL results obtained for the non-Bunch-Davies models
from the di↵erent foreground-cleaned map bispectra were con-
sistent and the constraints from SMICA (for brevity) are given in
Table 11. More comprehensive results from SMICA, NILC and
SEVEM can be found in Table B.3 in Appendix B. Both BNBD

� and
BNBD2
� (Eq. (14)) produced raw results above 2�, in part picking

out the flattened signal observed in the bispectrum reconstruc-
tion in Fig. 6. However, these flattened squeezed signals are also
correlated with CMB ISW-lensing and so, after subtracting the
predicted ISW bias (as well as the measured point source signal),
most NBD fNL results were reduced to 1� or less (see “Clean
fNL” column in Table 11). The exception was the most flattened
model BNBD

� which remained higher f NDB
NL = 178 ± 78, i.e., with

signals at 2.0�, 1.8� and 2.1� for SMICA, NILC and SEVEM re-
spectively.

We emphasise that this has to be considered just as prelimi-
nary study of flattened NG in the Planck data using four exem-
plar models. In order to reach a complete statistical assessment
of constraints regarding flattened models in forthcoming anal-
yses, we will have to undertake a systematic search for best-fit
Planck NBD models using the parameter freedom available.

7.3.3. Scale-dependent feature and resonant model results

We have investigated whether the Planck bispectrum reconstruc-
tions include oscillations expected in feature or resonant models
(Eqs. (16, 17)). Although poorly correlated with scale-invariant
shapes, the feature and resonant models have (at least) two free
parameters - the period kc and the phase � - forming a model
space which must be scanned to determine if there is any sig-
nificant correlation (in the absence of any physical motivation
for restricting attention to specific periodicities). We have under-
taken an initial survey of these models with the wavelength range
defined by the native resolution of the present modal estimator
(hybrid local polynomials with 600 modes), similar to the feature
model search in WMAP data in Fergusson et al. (2012). For fea-
ture models of Eq. (16) we can obtain high correlations (above
95%) for the predicted CMB bispectrum if we take kc > 0.01,
that is, for an e↵ective multipole periodicity `c > 140 feature
models are accurately represented.

The results of a first survey of feature models in the Planck
data is shown in Table 12 for 0.01  kc  0.1 and phases
� = 0, ⇡/4, ⇡/2, 3⇡/4 (for � � ⇡ we will identify a correlation
with the opposite sign). Again, there was good consistency be-
tween the di↵erent foreground-separation methods SMICA, NILC
and SEVEM showing that the results are robust to potential resid-
ual foreground contamination in the data. For brevity we only
give SMICA results here, while providing measurements from
other component separation methods in Appendix B. Feature
signals are typically largely uncorrelated with the ISW-lensing
or point sources, but nevertheless we subtract these signals and
give results for the cleaned fNL. The Table 12 results show that
there is a parameter region around 0.01  kc  0.025 for which
signals well in excess of 2� are possible (we undertook a broader
search with 0.01  kc  0.1 but found only a low signal be-
yond k > 0.3). It appears that some feature models are able to
match the low-` ‘plus-minus’ and other features in the Planck
bispectrum reconstruction (see Fig. 6). The best fit model has
kc = 0.0185 (`c ⇡ 260) and phase � = 0 with a signal �3�.
As a further validation step of our results, we also re-analysed
the models with > 2.5� significance using a di↵erent modal de-
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Table 11. Constraints on flattened or collinear bispectrum models (and related models) using the SMICA foreground-cleaned Planck
map. These bispectrum shapes, with equation numbers given, are described in detail in the text.

Flattened model (Eq. number) Raw fNL Clean fNL � fNL � Clean �

Flat model (13) . . . . . . . . . . . . . . . . . . . 70 37 77 0.9 0.5
Non-Bunch-Davies (NBD) . . . . . . . . . . . 178 155 78 2.2 2.0
Single-field NBD1 flattened (14) . . . . . . 31 19 13 2.4 1.4
Single-field NBD2 squeezed (14) . . . . . . 0.8 0.2 0.4 1.8 0.5
Non-canonical NBD3 (15) . . . . . . . . . . . 13 9.6 9.7 1.3 1.0
Vector model L = 1 (19) . . . . . . . . . . . . �18 �4.6 47 �0.4 �0.1
Vector model L = 2 (19) . . . . . . . . . . . . 2.8 �0.4 2.9 1.0 �0.1

Table 12. Planck bispectrum estimation results for feature models compared to the SMICA foreground-cleaned maps. This prelim-
inary survey on a coarse grid in the range 0.01  kc  0.025 and 0  kc < ⇡/4 finds specific models with significance up to
99.7%.

Phase � = 0 � = ⇡/4 � = ⇡/2 � = 3⇡/4
Wavenumber fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�)

kc = 0.01000 . . . . . . . �110 ± 159 (�0.7) �98 ± 167 (�0.6) �17 ± 147 (�0.1) 56 ± 142 ( 0.4)
kc = 0.01125 . . . . . . . 434 ± 170 ( 2.6) 363 ± 185 ( 2.0) 57 ± 183 ( 0.3) �262 ± 168 (�1.6)
kc = 0.01250 . . . . . . . �70 ± 158 (�0.4) 130 ± 166 ( 0.8) 261 ± 167 ( 1.6) 233 ± 159 ( 1.5)
kc = 0.01375 . . . . . . . 35 ± 162 ( 0.2) 291 ± 145 ( 2.0) 345 ± 147 ( 2.3) 235 ± 162 ( 1.5)
kc = 0.01500 . . . . . . . �313 ± 144 (�2.2) �270 ± 137 (�2.0) �95 ± 145 (�0.7) 179 ± 154 ( 1.2)
kc = 0.01625 . . . . . . . 81 ± 126 ( 0.6) 177 ± 141 ( 1.2) 165 ± 144 ( 1.1) 51 ± 129 ( 0.4)
kc = 0.01750 . . . . . . . �335 ± 137 (�2.4) �104 ± 128 (�0.8) 181 ± 117 ( 1.5) 366 ± 126 ( 2.9)
kc = 0.01875 . . . . . . . �348 ± 118 (�3.0) �323 ± 120 (�2.7) �126 ± 119 (�1.1) 137 ± 117 ( 1.2)
kc = 0.02000 . . . . . . . �155 ± 110 (�1.4) �298 ± 119 (�2.5) �241 ± 113 (�2.1) �44 ± 105 (�0.4)
kc = 0.02125 . . . . . . . �43 ± 96 (�0.4) �186 ± 107 (�1.7) �229 ± 115 (�2.0) �125 ± 104 (�1.2)
kc = 0.02250 . . . . . . . 22 ± 95 ( 0.2) �115 ± 92 (�1.2) �194 ± 105 (�1.8) �148 ± 107 (�1.4)
kc = 0.02375 . . . . . . . 70 ± 100 ( 0.7) �56 ± 94 (�0.6) �159 ± 93 (�1.7) �164 ± 101 (�1.6)
kc = 0.02500 . . . . . . . 106 ± 93 ( 1.1) 6 ± 97 ( 0.1) �103 ± 98 (�1.1) �153 ± 94 (�1.6)

composition, namely an oscillating Fourier basis (nmax = 300)
augmented with a local SW mode (the same used for the recon-
struction plots in Sect. 7). The results from this basis are shown
in Appendix B and they are fully consistent with the polynomial
measurements presented here. The previous best-fit WMAP fea-
ture model, kc = 0.014 (`c ⇡ 200) and phase � = 3⇡/4, attained
a 2.15� signal with ` < 500 (Fergusson et al. 2012), but it only
remains at this level for Planck.

We note however that the apparently high statistical signifi-
cance of these results is much lower if we consider this to be a
blind survey of feature models, because we are seeking several
uncorrelated models simultaneously. Following what we did for
our study of impact of foregrounds in Sect. 8, we considered a
set of 200 realistic lensed FFP6 simulations, processed through
the SMICA pipeline, and including realistic foreground residuals.
If we use this accurate MC sample to search for the same grid
of 52 feature models as in Table 12, we find a typical maximum
signal of 2.23(±0.56)�. Searching across all feature models (see
below) studied here yields an expected maximum 2.37(±0.53)�
(whereas the survey for all 511 models from all paradigms in-
vestigated yielded 2.55(±0.52)�). This means that our best-fit
model from data has a statistical significance below 1.5� above
the maximum signal expectation from simulations, so we con-
clude that we have no significant detection of feature models
from Planck data.

Feature models typically have a damping envelope repre-
senting the decay of the oscillations as the inflaton returns to
its background slow-roll evolution. Indeed, the feature envelope
is a characteristic of the primordial mechanism producing the
fluctuations, decaying as k increases for inflation while rising

Fig. 12. CMB bispectrum shown for the best-fit feature model
with an envelope with parameters k = 0.01875, phase

for contracting models like the ekpyrotic case (Chen 2011). We
have made an initial survey to determine whether a decaying
envelope improves the significance of any feature models. The
envelope employed was a Gaussian centred at kc = 0.045 with
a fallo↵ �k = 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045 and re-
sults for specific parameters are given in Table 13. The best fit
model remains k = 0.01875 (`c = 265) with phase � = 0 and
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Table 11. Constraints on flattened or collinear bispectrum models (and related models) using the SMICA foreground-cleaned Planck
map. These bispectrum shapes, with equation numbers given, are described in detail in the text.

Flattened model (Eq. number) Raw fNL Clean fNL � fNL � Clean �

Flat model (13) . . . . . . . . . . . . . . . . . . . 70 37 77 0.9 0.5
Non-Bunch-Davies (NBD) . . . . . . . . . . . 178 155 78 2.2 2.0
Single-field NBD1 flattened (14) . . . . . . 31 19 13 2.4 1.4
Single-field NBD2 squeezed (14) . . . . . . 0.8 0.2 0.4 1.8 0.5
Non-canonical NBD3 (15) . . . . . . . . . . . 13 9.6 9.7 1.3 1.0
Vector model L = 1 (19) . . . . . . . . . . . . �18 �4.6 47 �0.4 �0.1
Vector model L = 2 (19) . . . . . . . . . . . . 2.8 �0.4 2.9 1.0 �0.1

Table 12. Planck bispectrum estimation results for feature models compared to the SMICA foreground-cleaned maps. This prelim-
inary survey on a coarse grid in the range 0.01  kc  0.025 and 0  kc < ⇡/4 finds specific models with significance up to
99.7%.

Phase � = 0 � = ⇡/4 � = ⇡/2 � = 3⇡/4
Wavenumber fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�)

kc = 0.01000 . . . . . . . �110 ± 159 (�0.7) �98 ± 167 (�0.6) �17 ± 147 (�0.1) 56 ± 142 ( 0.4)
kc = 0.01125 . . . . . . . 434 ± 170 ( 2.6) 363 ± 185 ( 2.0) 57 ± 183 ( 0.3) �262 ± 168 (�1.6)
kc = 0.01250 . . . . . . . �70 ± 158 (�0.4) 130 ± 166 ( 0.8) 261 ± 167 ( 1.6) 233 ± 159 ( 1.5)
kc = 0.01375 . . . . . . . 35 ± 162 ( 0.2) 291 ± 145 ( 2.0) 345 ± 147 ( 2.3) 235 ± 162 ( 1.5)
kc = 0.01500 . . . . . . . �313 ± 144 (�2.2) �270 ± 137 (�2.0) �95 ± 145 (�0.7) 179 ± 154 ( 1.2)
kc = 0.01625 . . . . . . . 81 ± 126 ( 0.6) 177 ± 141 ( 1.2) 165 ± 144 ( 1.1) 51 ± 129 ( 0.4)
kc = 0.01750 . . . . . . . �335 ± 137 (�2.4) �104 ± 128 (�0.8) 181 ± 117 ( 1.5) 366 ± 126 ( 2.9)
kc = 0.01875 . . . . . . . �348 ± 118 (�3.0) �323 ± 120 (�2.7) �126 ± 119 (�1.1) 137 ± 117 ( 1.2)
kc = 0.02000 . . . . . . . �155 ± 110 (�1.4) �298 ± 119 (�2.5) �241 ± 113 (�2.1) �44 ± 105 (�0.4)
kc = 0.02125 . . . . . . . �43 ± 96 (�0.4) �186 ± 107 (�1.7) �229 ± 115 (�2.0) �125 ± 104 (�1.2)
kc = 0.02250 . . . . . . . 22 ± 95 ( 0.2) �115 ± 92 (�1.2) �194 ± 105 (�1.8) �148 ± 107 (�1.4)
kc = 0.02375 . . . . . . . 70 ± 100 ( 0.7) �56 ± 94 (�0.6) �159 ± 93 (�1.7) �164 ± 101 (�1.6)
kc = 0.02500 . . . . . . . 106 ± 93 ( 1.1) 6 ± 97 ( 0.1) �103 ± 98 (�1.1) �153 ± 94 (�1.6)

composition, namely an oscillating Fourier basis (nmax = 300)
augmented with a local SW mode (the same used for the recon-
struction plots in Sect. 7). The results from this basis are shown
in Appendix B and they are fully consistent with the polynomial
measurements presented here. The previous best-fit WMAP fea-
ture model, kc = 0.014 (`c ⇡ 200) and phase � = 3⇡/4, attained
a 2.15� signal with ` < 500 (Fergusson et al. 2012), but it only
remains at this level for Planck.

We note however that the apparently high statistical signifi-
cance of these results is much lower if we consider this to be a
blind survey of feature models, because we are seeking several
uncorrelated models simultaneously. Following what we did for
our study of impact of foregrounds in Sect. 8, we considered a
set of 200 realistic lensed FFP6 simulations, processed through
the SMICA pipeline, and including realistic foreground residuals.
If we use this accurate MC sample to search for the same grid
of 52 feature models as in Table 12, we find a typical maximum
signal of 2.23(±0.56)�. Searching across all feature models (see
below) studied here yields an expected maximum 2.37(±0.53)�
(whereas the survey for all 511 models from all paradigms in-
vestigated yielded 2.55(±0.52)�). This means that our best-fit
model from data has a statistical significance below 1.5� above
the maximum signal expectation from simulations, so we con-
clude that we have no significant detection of feature models
from Planck data.

Feature models typically have a damping envelope repre-
senting the decay of the oscillations as the inflaton returns to
its background slow-roll evolution. Indeed, the feature envelope
is a characteristic of the primordial mechanism producing the
fluctuations, decaying as k increases for inflation while rising

Fig. 12. CMB bispectrum shown for the best-fit feature model
with an envelope with parameters k = 0.01875, phase

for contracting models like the ekpyrotic case (Chen 2011). We
have made an initial survey to determine whether a decaying
envelope improves the significance of any feature models. The
envelope employed was a Gaussian centred at kc = 0.045 with
a fallo↵ �k = 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045 and re-
sults for specific parameters are given in Table 13. The best fit
model remains k = 0.01875 (`c = 265) with phase � = 0 and
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(Chen et al. 2008; Flauger & Pajer 2011); these induce small
periodic features in the background evolution, with which the
quantum inflaton fluctuations can resonate while still inside
the horizon. Resonant models are particularly relevant in the
context of axion inflation models (e.g., Flauger et al. 2010;
Flauger & Pajer 2011; Barnaby et al. 2012b). These mecha-
nisms also create oscillatory behaviour in the bispectrum, but
with a more constant amplitude and a wavelength that becomes
logarithmically stretched. Here, the resonant oscillations for
most models can be represented in the form

Bres
� (k1, k2, k3) =

6A2 f res
NL

(k1k2k3)2 sin
⇥

C ln(k1 + k2 + k3) + �
⇤

, (17)

where the constant C = 1/ ln(3kc) and � is a phase.
Finally, we note that periodic features in the inflationary po-

tential can excite the vacuum state, as well as perturbing the
background inflation trajectory (Chen 2010a). Such models o↵er
the intriguing possibility of combining the flattened non-Bunch-
Davies shape with periodic oscillations:

BresNBD
� (k1, k2, k3) =

2A2 f resNBD
NL

(k1k2k3)2

n

exp(�k3/5
c (k2 + k3 � k1)/2k1)

⇥ sin[kc((k2 + k3 � k1)/2k1 + ln k1) + �] + 2 perm.
o

. (18)

This ansatz represents the dominant folded resonant contribution
in inflationary models with non-canonical kinetic terms, which
competes with resonant (Eq. (17)) and equilateral (Eq. (3)) con-
tributions; however, for slow-roll single-field inflation, there are
additional terms.
Directional dependence motivated by gauge fields: Additional
variations of the bispectrum shape have been proposed for mod-
els with vector fields, which can have an additional direc-
tional dependence through the parameter µ12 = k̂1 · k̂2 where
k̂ = k/k. For example, primordial magnetic fields sourcing
curvature perturbations can cause a dependence on both µ and
µ2 (Shiraishi et al. 2012), and a coupling between the inflaton
� and the gauge field strength F2 can yield a µ2 dependence
(Barnaby et al. 2012a; Bartolo et al. 2013). We can parameter-
ize these shapes as variations on the local shape, following
Shiraishi et al. (2013), as

B�(k1, k2, k3) =
X

L

cL[PL(µ12)P�(k1)P�(k2) + 2 perm], (19)

where PL(µ) is the Legendre polynomial with P0 = 1, P1 = µ
and P2 =

1
2 (µ2 � 1). For example, for L = 1 we have the shape

BL=1
� (k1, k2, k3) =

2A2 f L=1
NL

(k1k2k3)2

2

6

6

6

6

4

k2
3

k2
1k2

2
(k2

1 + k2
2 � k2

3) + 2 perm.
3

7

7

7

7

5

,(20)

Also the recently introduced “solid inflation”
model (Endlich et al. 2012) generates bispectra similar to
Eq. (19). Here and in the following the nonlinearity parameters
f L
NL are related to the cL coe�cients by c0 = 2 f L=0

NL , c1 = �4 f L=1
NL ,

and c1 = �16 f L=2
NL . The L = 1, 2 shapes exhibit sharp variations

in the flattened limit for e.g., k1 + k2 ⇡ k3, while in the squeezed
limit, L = 1 is suppressed whereas L = 2 grows like the local
bispectrum shape (i.e., the L = 0 case). Whether or not the
underlying gauge field models prove robust, this directional
dependence on the wave vectors is a generic feature which
yields distinct bispectrum families, deserving closer study.
Warm inflation: In warm inflation (Berera 1995), where dissipa-
tive e↵ects are important, a non-Gaussian signal can be gener-
ated (e.g., Moss & Xiong 2007) that peaks in the squeezed limit

– but with a more complex shape than the local one – and ex-
hibiting a low cross-correlation with the other shapes (see refer-
ences in Liguori et al. 2010).

2.4. Higher-order non-Gaussianity: the trispectrum

The connected four-point functions of CMB anisotropies (or the
harmonic counterpart, the so-called trispectrum) can also pro-
vide crucial information about the mechanism that gave rise to
the primordial curvature perturbations (Okamoto & Hu 2002).
The primordial trispectrum is usually characterised by two am-
plitudes ⌧NL and gNL: ⌧NL is most often related to f 2

NL-type con-
tributions, while gNL is the amplitude of intrinsic cubic nonlin-
earities in the primordial gravitational potential (corresponding,
in terms of field interactions, to a scalar-exchange and to a con-
tact interaction term, respectively). They correspond to ’soft’
limits of the full four-point function, with respectively the di-
agonal and one side of the general wavevector trapezoid being
much smaller than the others. In the CMB maps they appear re-
spectively approximately as a spatial variation in amplitude of
the small-scale fluctuations, and a spatial variations in the value
of fNL correlated with the large-scale temperature. In addition to
possible primordial signals that are the focus of this paper there
is also expected to be a large lensing trispectrum (of very dif-
ferent shape), discussed in detail in Planck Collaboration XVII
(2013).

The simplest local trispectrum is given by

h�(k1)�(k2)�(k3)�(k4)i = (2⇡)3�(3)(k1 + k2 + k3 + k4)

⇥
(

25
9
⌧NL
⇥

P�(k1)P�(k2)P�(k13) + (11 perm.)
⇤

+6gNL
⇥

P�(k1)P�(k2)P�(k3) + (3 perm.)
⇤

)

, (21)

where ki j ⌘ |ki + k j|. Previous constraints on ⌧NL and gNLs
have been derived, e.g., by Smidt et al. (2010) who obtained
�7.4 ⇥ 105 < gNL < 8.2 ⇥ 105 and �0.6 ⇥ 104 < ⌧NL < 3.3 ⇥ 104

(at 95% CL) analysing WMAP-5 data; for the same datasets
Fergusson et al. (2010b) obtained �5.4 ⇥ 105 < gNL < 8.6 ⇥ 105

(68% CL). This kind of trispectrum typically arises in multi-field
inflationary models where large NG arise from the conversion of
isocurvature perturbations on superhorizon scales. If the curva-
ture perturbation is the standard local form, in real space one has
�(x) = �L(x) + f local

NL (�2
L(x) � h�2

Li) + gNL�
3
L(x). In this case,

⌧NL = (6 f local
NL /5)2; however, in general the trispectrum ampli-

tude can be larger.
The trispectrum is a complementary observable to the CMB

bispectrum as it can further distinguish di↵erent inflationary sce-
narios. This is because the same interactions that lead to the bis-
pectrum might be responsible also for a large trispectrum, so
that the di↵erent NG parameters can be related to each other in
a well-defined way within specific models. If there is a non-zero
squeezed-shape bispectrum there must necessarily be a trispec-
trum, with ⌧NL � (6 f local

NL /5)2 (Suyama & Yamaguchi 2008;
Sugiyama et al. 2011; Sugiyama 2012; Lewis 2011; Smith et al.
2011; Assassi et al. 2012; Kehagias & Riotto 2012). In the sim-
plest inflationary scenarios the prediction would be ⌧NL =
(6 f local

NL /5)2, but larger values would indicate more complicated
dynamics. Several inflationary scenarios have been found in
which the bispectrum is suppressed, thus leaving the trispec-
trum as the largest higher-order correlator in the data. A detec-
tion of a large trispectrum and a negligible bispectrum would
be a smoking gun for these models. This is the case, for ex-
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Inflation with gauge/vector fields can have non-trivial directional 
dependencies

Similarly ‘twisted’ bispectrum for warm inflation 
No directional evidence but modal correlation could be improved ...

L=1

L=2

(see e.g. Shiraishi et al, 2012)
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and thus fNL ⇠ O(ns � 1) in the squeezed limit, in a model-
independent sense (i.e., not only for standard single-field mod-
els). This means that a significant detection of local NG (in the
squeezed limit) would rule out a very large class of single-field
models of inflation (not just the simplest ones). Although based
on very general conditions, the consistency condition of Eq. (11)
can be violated in some well-motivated inflationary settings (we
refer the reader to Chen (2010b); Chen et al. (2013) and refer-
ences therein for more details).

Quasi-single field inflation: Quasi-single field inflation has an
extra field (or fields) with mass m close to the Hubble parame-
ter H during inflation; these models evolve quiescently, produc-
ing a calculable non-Gaussian signature (Chen & Wang 2010b).
The resulting one-parameter bispectrum smoothly interpolates
between local and equilateral models, though in a non-trivial
manner:

BQSI
�

(k1, k2, k3) =
6A2 f QSI

NL

(k1k2k3)3/2
33/2N⌫[8k1k2k3/(k1 + k2 + k3)3]

N⌫[8/27](k1 + k2 + k3)3/2 ,(12)

where ⌫ = (9/4 � m2/H2)1/2 and N⌫ is the Neumann function
of order ⌫. Quasi-single field models can also produce an es-
sentially “constant” bispectrum defined by Bconst(k1, k2, k3) =
6A2 f const

NL /(k1k2k3)2. The constant model is the simplest possible
non-zero primordial shape, with all its late-time CMB structure
simply reflecting the behaviour of the transfer functions.

Alternatives to inflation: Local NG can also be generated
in some alternative scenarios to inflation, for instance in
cyclic/ekpyrotic models (for a review, see Lehners 2010), due
to the same basic curvaton mechanism described above. In this
case, typical values of the nonlinearity parameter can easily
reach | f local

NL | > 10.

2.3. Non-standard models giving rise to alternative specific
forms of NG

Non-Bunch-Davies vacuum and higher-derivative interactions:
Another interesting bispectrum shape is the folded one, which
peaks in flattened configurations. To facilitate data analyses,
the flat shape has been usually parametrized by the tem-
plate (Meerburg et al. 2009)

Bflat
� (k1, k2, k3) = 6A2 f flat

NL

⇥
8

>

>

<

>

>

:

1
k4�ns

1 k4�ns
2

+
1

k4�ns
2 k4�ns

3

+
1

k4�ns
3 k4�ns

1

+
3

(k1k2k3)2(4�ns)/3
�

2

6

6

6

6

6

4

1
k(4�ns)/3

1 k2(4�ns)/3
2 k4�ns

3

+(5 perm.)
⇤ 

. (13)

The initial quantum state of the inflaton is usually specified
by requiring that, at asymptotically early times and short dis-
tances, its fluctuations behave as in flat space. Deviations from
this standard “Bunch-Davies” vacuum can result in interesting
features in the bispectrum. Models with an initial non-Bunch-
Davies vacuum state (Chen et al. 2007b; Holman & Tolley
2008; Meerburg et al. 2009) can generate sizeable NG similar
to this type. NG highly correlated with such a template can
be produced in single-field models of inflation from higher-
derivative interactions (Bartolo et al. 2010a), and in models
where a “Galilean” symmetry is imposed (Creminelli et al.
2011a). In both cases, cubic inflaton interactions with two

derivatives of the inflaton field arise. Single-field inflation
models with a small sound speed, studied in Senatore et al.
(2010), can generate the flat shape, as a result of a linear
combination of the orthogonal and equilateral shapes. In fact,
from a simple parametrization point of view, the flat shape
can be always written as Fflat(k1, k2, k3) = [Fequil(k1, k2, k3) �
Fortho(k1, k2, k3)]/2 (Senatore et al. 2010). Despite this, we pro-
vide constraints also on the amplitude of the flat bispectrum
shape of Eq. (13).

For models with excited (i.e., non-Bunch-Davies) initial
states, the resulting NG shapes are model-dependent, but they
are usually characterized by the importance of flattened or
collinear triangles, with k3 ⇡ k1 + k2 along the edges of the
tetrapyd. We will denote the original flattened bispectrum shape,
given in Eq. (3.62) of Chen et al. (2007b), by BNBD

� ; it is gener-
ically much more flattened than the “flat” model of Eq. (13).
Although this shape was derived specifically for power-law k-
inflation, it encapsulates several di↵erent shapes, with ampli-
tudes which can vary between di↵erent phenomenological mod-
els. These shapes are also typically oscillatory, being regular-
ized by a cuto↵ scale kc giving the oscillation period; this cuto↵
kc ⇡ (cs⌧c)�1 is determined by the (finite) time ⌧c in the past
when the non-Bunch-Davies component was initially excited.
For excited canonical single-field inflation, the two leading order
shapes can be described (Agullo & Parker 2011) by the ansatz

BNBDi
� =

2A2 f NBDi
NL

(k1k2k3)3

(

fi(k1, k2, k3) ⇥ (14)

1 � cos[(k2 + k3 � k1)/kc]
k2 + k3 � k1

+ 2 perm.
)

,

where f1(k1, k2, k3) = k2
1(k2

2 + k2
3)/2 is dominated by squeezed

configurations, f2(k1, k2, k3) = k2
2k2

3 has a flattened shape, and i =
1, 2. Note that for all oscillatory shapes, the relevant bispectrum
equation defines the normalisation of fNL. The flattened signal
is most easily enhanced in the limit of small sound speed cs, for
which a regularized ansatz is given by (Chen et al. 2007b)

BNBD3
� =

2A2 f NBD3
NL

k1k2k3

"

k1 + k2 � k3

(kc + k1 + k2 � k3)4 + 2 perm.
#

. (15)

Scale-dependent feature and resonant models: Oscillating bis-
pectra can be generated from violation of a smooth slow-roll
evolution (“feature” or “resonant” NG). These models have the
distinctive property of a strong running NG, which breaks ap-
proximate scale-invariance. A sharp feature in the inflaton po-
tential forces the inflaton field away from the attractor solu-
tion, and causes oscillations as it relaxes back; these oscillations
can appear in the bispectrum (Wang & Kamionkowski 2000;
Chen et al. 2007a, 2008), as well as the power spectrum and
other correlators. An analytic form for the oscillatory bispectrum
for these feature models is (Chen et al. 2007a)

Bfeat
� (k1, k2, k3) =

6A2 f feat
NL

(k1k2k3)2 sin
"

2⇡(k1 + k2 + k3)
3kc

+ �

#

, (16)

where � is a phase factor and kc is a scale associated with the
feature, which is linked in turn to an e↵ective multipole period-
icity `c of the CMB bispectrum. Typically, these oscillations will
decay with an envelope of the form exp[�(k1 + k2 + k3)/mkc] for
a model-dependent parameter m.

Closely related “resonant” bispectra can be created by pe-
riodic features superimposed on a smooth inflation potential

7

(Chen et al, 2007)
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Table 13. Feature model results with an envelope decay function. Results are only presented for feature models with better than
95% CL result on the full domain (see Table 12).

Width �k = 0.015 �k = 0.03 �k = 0.045 Full
Model fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�)

kc = 0.01125; � = 0 . 765 ± 275 ( 2.8) 703 ± 241 ( 2.9) 648 ± 218 ( 3.0) 434 ± 170 ( 2.6)
kc = 0.01750; � = 0 . �661 ± 234 (�2.8) �494 ± 192 (�2.6) �425 ± 171 (�2.5) �335 ± 137 (�2.4)
kc = 0.01750; � = 3⇡/4 399 ± 207 ( 1.9) 438 ± 183 ( 2.4) 442 ± 165 ( 2.7) 366 ± 126 ( 2.9)
kc = 0.01875; � = 0 . �562 ± 211 (�2.7) �559 ± 180 (�3.1) �515 ± 159 (�3.2) �348 ± 118 (�3.0)
kc = 0.01875; � = ⇡/4 �646 ± 240 (�2.7) �525 ± 189 (�2.8) �468 ± 164 (�2.9) �323 ± 120 (�2.7)
kc = 0.02000; � = ⇡/4 �665 ± 229 (�2.9) �593 ± 185 (�3.2) �500 ± 160 (�3.1) �298 ± 119 (�2.5)

the significance rises to 3.23�, together with a second model
k = 0.02 (`c = 285) � = ⇡/4. However the caveats about blind
survey statistics previously noted also do not allow a claim of
any detection in this case. A plot of the best-fit feature model
with a decay envelope is shown in Fig. 12, for which the main
features should be compared with those in Fig. 7. Non-Gaussian
bispectrum signals from feature models typically produce coun-
terparts in the power spectrum as will be described in Sect. 9. An
improved statistical interpretation of the results presented in this
Section will be possible when this additional investigation will
be completed.

We have also undertaken a survey of resonant models and
the non-Bunch-Davies resonant models (or enfolded resonance
models). With the modal estimator, we can achieve high ac-
curacy for the predicted bispectrum for kc > 0.001 (note that
this has a di↵erent logarithmic dependence to feature models
and a varying e↵ective `c). For the resonance model shape of
Eq. (18), we have not undertaken an extensive survey, except
selecting a likely range for a high signal with periodicity com-
parable to the feature model, that is, with 0.25 < kc < 0.5
and phases � = 0, ⇡/4, ⇡/2, 3⇡/4, ⇡. However, no signif-
icant signal was found (all below 1�), as can be verified in
Table B.1 in Appendix B. For the enfolded resonance model
shape of Eq. (18) , we have undertaken a preliminary search in
the range 4 < kc < 12 with the same phases. Again, no signifi-
cant signal emerges from the Planck data, as shown in Table B.2
in Appendix B.

7.3.4. Directional dependence motivated by gauge fields

We have investigated whether there is significant NG from
bispectrum shapes with non-trivial directional dependence
(Eq. (19)), which are motivated by inflationary models with vec-
tor fields. Using the primordial modal estimator we obtained a
good correlation with the L = 1 flattened type model, but the
squeezed L = 2 model produced a relatively poor correlation
of only 60%, given the complexity of the dominant squeezed
limit. Preliminary constraints on these models are given in the
Table 11, showing no evidence of a significant signal.

7.3.5. Warm inflation

Warm inflation produces a related shape with a sign change
in the squeezed limit. This also had a poor correlation, until
smoothing (WarmS) was applied as described in Fergusson et al.
(2012). The resulting bispectrum shows no evidence for signifi-
cant correlation with Planck data (SMICA),

f WarmS
NL = 4 ± 33 . (87)

The full list of constraints for SMICA, NILC and SEVEM models
can be found for warm inflation and vector models in Table B.3
in Appendix B.

7.3.6. Quasi-single-field inflation

Finally, quasi-single-field inflation has been analysed constrain-
ing the bispectrum shape of Q (Eq. (12)), that depends on two
parameters, ⌫ and f QSI

NL . In order to constrain this model we have
calculated modal coe�cients for 0  ⌫  1.5 in steps of 0.01
(so 151 models in total). These were then applied to the data
and the one with the greatest significance was selected. Results
are shown in Fig. 24. The maximum signal occurred at ⌫ = 1.5,
f QSI
NL = 4.79 (0.31�). To obtain error curves we performed a

full likelihood using 2 billion simulations following the method
described in Sefusatti et al. (2012). Such a large number of sim-
ulations was possible as they were generated from the modal �-
covariance matrix which is calculated once from the 200 Planck
realistic CMB simulations, rather than repeatedly from the CMB
simulations themselves. The procedure is to take the 151 ⇥ 151
correlation matrix for the models (this is just the normalized dot
product of the modal coe�cients). This is then diagonalised us-
ing PCA, after which only the first 5 eigenvalues are kept as the
remaining eigenvalues are < 10�10. The �-covariance matrix is
projected into the same sub-basis where it is also diagonalised
via PCA into 5 orthonormal modes, with the two leading modes
closely correlated with local and equilateral. The procedure by
which to produce a simulation is to generate five Gaussian ran-
dom numbers and add the mean values obtained from the Planck
data, rotating them to the sub-basis where we determine the ⌫
with the greatest significance. The result is then projected back
to the original space to determine the related fNL. The two billion
results from this MC analysis are then converted into confidence
curves plotted in Fig. 24. The curve shows that there is no pre-
ferred value for ⌫ with all values allowed at 3�. This reflects the
results obtained from data previously, where we found the least
preferred value of ⌫ = 0.86 had only a marginally lower signif-
icance of 0.28� (Sefusatti et al. 2012). Of course, these conclu-
sions are directly related to the null results for both local and
equilateral templates.

7.4. Constraints on local non-Gaussianity with Minkowski
Functionals

In this Subsection, we present constraints on local NG ob-
tained with Minkowski Functionals (MFs). MFs describe the
morphological properties of the CMB field and can be used as
generic estimators of NG (Komatsu et al. 2003; Eriksen et al.
2004; De Troia et al. 2007; Hikage et al. 2008; Curto et al. 2008;
Natoli et al. 2010; Hikage & Matsubara 2012; Modest et al.
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Table 13. Feature model results with an envelope decay function. Results are only presented for feature models with better than
95% CL result on the full domain (see Table 12).

Width �k = 0.015 �k = 0.03 �k = 0.045 Full
Model fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�) fNL ± � fNL (�)

kc = 0.01125; � = 0 . 765 ± 275 ( 2.8) 703 ± 241 ( 2.9) 648 ± 218 ( 3.0) 434 ± 170 ( 2.6)
kc = 0.01750; � = 0 . �661 ± 234 (�2.8) �494 ± 192 (�2.6) �425 ± 171 (�2.5) �335 ± 137 (�2.4)
kc = 0.01750; � = 3⇡/4 399 ± 207 ( 1.9) 438 ± 183 ( 2.4) 442 ± 165 ( 2.7) 366 ± 126 ( 2.9)
kc = 0.01875; � = 0 . �562 ± 211 (�2.7) �559 ± 180 (�3.1) �515 ± 159 (�3.2) �348 ± 118 (�3.0)
kc = 0.01875; � = ⇡/4 �646 ± 240 (�2.7) �525 ± 189 (�2.8) �468 ± 164 (�2.9) �323 ± 120 (�2.7)
kc = 0.02000; � = ⇡/4 �665 ± 229 (�2.9) �593 ± 185 (�3.2) �500 ± 160 (�3.1) �298 ± 119 (�2.5)

the significance rises to 3.23�, together with a second model
k = 0.02 (`c = 285) � = ⇡/4. However the caveats about blind
survey statistics previously noted also do not allow a claim of
any detection in this case. A plot of the best-fit feature model
with a decay envelope is shown in Fig. 12, for which the main
features should be compared with those in Fig. 7. Non-Gaussian
bispectrum signals from feature models typically produce coun-
terparts in the power spectrum as will be described in Sect. 9. An
improved statistical interpretation of the results presented in this
Section will be possible when this additional investigation will
be completed.

We have also undertaken a survey of resonant models and
the non-Bunch-Davies resonant models (or enfolded resonance
models). With the modal estimator, we can achieve high ac-
curacy for the predicted bispectrum for kc > 0.001 (note that
this has a di↵erent logarithmic dependence to feature models
and a varying e↵ective `c). For the resonance model shape of
Eq. (18), we have not undertaken an extensive survey, except
selecting a likely range for a high signal with periodicity com-
parable to the feature model, that is, with 0.25 < kc < 0.5
and phases � = 0, ⇡/4, ⇡/2, 3⇡/4, ⇡. However, no signif-
icant signal was found (all below 1�), as can be verified in
Table B.1 in Appendix B. For the enfolded resonance model
shape of Eq. (18) , we have undertaken a preliminary search in
the range 4 < kc < 12 with the same phases. Again, no signifi-
cant signal emerges from the Planck data, as shown in Table B.2
in Appendix B.

7.3.4. Directional dependence motivated by gauge fields

We have investigated whether there is significant NG from
bispectrum shapes with non-trivial directional dependence
(Eq. (19)), which are motivated by inflationary models with vec-
tor fields. Using the primordial modal estimator we obtained a
good correlation with the L = 1 flattened type model, but the
squeezed L = 2 model produced a relatively poor correlation
of only 60%, given the complexity of the dominant squeezed
limit. Preliminary constraints on these models are given in the
Table 11, showing no evidence of a significant signal.

7.3.5. Warm inflation

Warm inflation produces a related shape with a sign change
in the squeezed limit. This also had a poor correlation, until
smoothing (WarmS) was applied as described in Fergusson et al.
(2012). The resulting bispectrum shows no evidence for signifi-
cant correlation with Planck data (SMICA),

f WarmS
NL = 4 ± 33 . (87)

The full list of constraints for SMICA, NILC and SEVEM models
can be found for warm inflation and vector models in Table B.3
in Appendix B.

7.3.6. Quasi-single-field inflation

Finally, quasi-single-field inflation has been analysed constrain-
ing the bispectrum shape of Q (Eq. (12)), that depends on two
parameters, ⌫ and f QSI

NL . In order to constrain this model we have
calculated modal coe�cients for 0  ⌫  1.5 in steps of 0.01
(so 151 models in total). These were then applied to the data
and the one with the greatest significance was selected. Results
are shown in Fig. 24. The maximum signal occurred at ⌫ = 1.5,
f QSI
NL = 4.79 (0.31�). To obtain error curves we performed a

full likelihood using 2 billion simulations following the method
described in Sefusatti et al. (2012). Such a large number of sim-
ulations was possible as they were generated from the modal �-
covariance matrix which is calculated once from the 200 Planck
realistic CMB simulations, rather than repeatedly from the CMB
simulations themselves. The procedure is to take the 151 ⇥ 151
correlation matrix for the models (this is just the normalized dot
product of the modal coe�cients). This is then diagonalised us-
ing PCA, after which only the first 5 eigenvalues are kept as the
remaining eigenvalues are < 10�10. The �-covariance matrix is
projected into the same sub-basis where it is also diagonalised
via PCA into 5 orthonormal modes, with the two leading modes
closely correlated with local and equilateral. The procedure by
which to produce a simulation is to generate five Gaussian ran-
dom numbers and add the mean values obtained from the Planck
data, rotating them to the sub-basis where we determine the ⌫
with the greatest significance. The result is then projected back
to the original space to determine the related fNL. The two billion
results from this MC analysis are then converted into confidence
curves plotted in Fig. 24. The curve shows that there is no pre-
ferred value for ⌫ with all values allowed at 3�. This reflects the
results obtained from data previously, where we found the least
preferred value of ⌫ = 0.86 had only a marginally lower signif-
icance of 0.28� (Sefusatti et al. 2012). Of course, these conclu-
sions are directly related to the null results for both local and
equilateral templates.

7.4. Constraints on local non-Gaussianity with Minkowski
Functionals

In this Subsection, we present constraints on local NG ob-
tained with Minkowski Functionals (MFs). MFs describe the
morphological properties of the CMB field and can be used as
generic estimators of NG (Komatsu et al. 2003; Eriksen et al.
2004; De Troia et al. 2007; Hikage et al. 2008; Curto et al. 2008;
Natoli et al. 2010; Hikage & Matsubara 2012; Modest et al.
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(Chen et al. 2008; Flauger & Pajer 2011); these induce small
periodic features in the background evolution, with which the
quantum inflaton fluctuations can resonate while still inside
the horizon. Resonant models are particularly relevant in the
context of axion inflation models (e.g., Flauger et al. 2010;
Flauger & Pajer 2011; Barnaby et al. 2012b). These mecha-
nisms also create oscillatory behaviour in the bispectrum, but
with a more constant amplitude and a wavelength that becomes
logarithmically stretched. Here, the resonant oscillations for
most models can be represented in the form

Bres
� (k1, k2, k3) =

6A2 f res
NL

(k1k2k3)2 sin
⇥

C ln(k1 + k2 + k3) + �
⇤

, (17)

where the constant C = 1/ ln(3kc) and � is a phase.
Finally, we note that periodic features in the inflationary po-

tential can excite the vacuum state, as well as perturbing the
background inflation trajectory (Chen 2010a). Such models o↵er
the intriguing possibility of combining the flattened non-Bunch-
Davies shape with periodic oscillations:

BresNBD
� (k1, k2, k3) =

2A2 f resNBD
NL

(k1k2k3)2

n

exp(�k3/5
c (k2 + k3 � k1)/2k1)

⇥ sin[kc((k2 + k3 � k1)/2k1 + ln k1) + �] + 2 perm.
o

. (18)

This ansatz represents the dominant folded resonant contribution
in inflationary models with non-canonical kinetic terms, which
competes with resonant (Eq. (17)) and equilateral (Eq. (3)) con-
tributions; however, for slow-roll single-field inflation, there are
additional terms.
Directional dependence motivated by gauge fields: Additional
variations of the bispectrum shape have been proposed for mod-
els with vector fields, which can have an additional direc-
tional dependence through the parameter µ12 = k̂1 · k̂2 where
k̂ = k/k. For example, primordial magnetic fields sourcing
curvature perturbations can cause a dependence on both µ and
µ2 (Shiraishi et al. 2012), and a coupling between the inflaton
� and the gauge field strength F2 can yield a µ2 dependence
(Barnaby et al. 2012a; Bartolo et al. 2013). We can parameter-
ize these shapes as variations on the local shape, following
Shiraishi et al. (2013), as

B�(k1, k2, k3) =
X

L

cL[PL(µ12)P�(k1)P�(k2) + 2 perm], (19)

where PL(µ) is the Legendre polynomial with P0 = 1, P1 = µ
and P2 =

1
2 (µ2 � 1). For example, for L = 1 we have the shape

BL=1
� (k1, k2, k3) =

2A2 f L=1
NL

(k1k2k3)2

2

6

6

6

6

4

k2
3

k2
1k2

2
(k2

1 + k2
2 � k2

3) + 2 perm.
3

7

7

7

7

5

,(20)

Also the recently introduced “solid inflation”
model (Endlich et al. 2012) generates bispectra similar to
Eq. (19). Here and in the following the nonlinearity parameters
f L
NL are related to the cL coe�cients by c0 = 2 f L=0

NL , c1 = �4 f L=1
NL ,

and c1 = �16 f L=2
NL . The L = 1, 2 shapes exhibit sharp variations

in the flattened limit for e.g., k1 + k2 ⇡ k3, while in the squeezed
limit, L = 1 is suppressed whereas L = 2 grows like the local
bispectrum shape (i.e., the L = 0 case). Whether or not the
underlying gauge field models prove robust, this directional
dependence on the wave vectors is a generic feature which
yields distinct bispectrum families, deserving closer study.
Warm inflation: In warm inflation (Berera 1995), where dissipa-
tive e↵ects are important, a non-Gaussian signal can be gener-
ated (e.g., Moss & Xiong 2007) that peaks in the squeezed limit

– but with a more complex shape than the local one – and ex-
hibiting a low cross-correlation with the other shapes (see refer-
ences in Liguori et al. 2010).

2.4. Higher-order non-Gaussianity: the trispectrum

The connected four-point functions of CMB anisotropies (or the
harmonic counterpart, the so-called trispectrum) can also pro-
vide crucial information about the mechanism that gave rise to
the primordial curvature perturbations (Okamoto & Hu 2002).
The primordial trispectrum is usually characterised by two am-
plitudes ⌧NL and gNL: ⌧NL is most often related to f 2

NL-type con-
tributions, while gNL is the amplitude of intrinsic cubic nonlin-
earities in the primordial gravitational potential (corresponding,
in terms of field interactions, to a scalar-exchange and to a con-
tact interaction term, respectively). They correspond to ’soft’
limits of the full four-point function, with respectively the di-
agonal and one side of the general wavevector trapezoid being
much smaller than the others. In the CMB maps they appear re-
spectively approximately as a spatial variation in amplitude of
the small-scale fluctuations, and a spatial variations in the value
of fNL correlated with the large-scale temperature. In addition to
possible primordial signals that are the focus of this paper there
is also expected to be a large lensing trispectrum (of very dif-
ferent shape), discussed in detail in Planck Collaboration XVII
(2013).

The simplest local trispectrum is given by

h�(k1)�(k2)�(k3)�(k4)i = (2⇡)3�(3)(k1 + k2 + k3 + k4)

⇥
(

25
9
⌧NL
⇥

P�(k1)P�(k2)P�(k13) + (11 perm.)
⇤

+6gNL
⇥

P�(k1)P�(k2)P�(k3) + (3 perm.)
⇤

)

, (21)

where ki j ⌘ |ki + k j|. Previous constraints on ⌧NL and gNLs
have been derived, e.g., by Smidt et al. (2010) who obtained
�7.4 ⇥ 105 < gNL < 8.2 ⇥ 105 and �0.6 ⇥ 104 < ⌧NL < 3.3 ⇥ 104

(at 95% CL) analysing WMAP-5 data; for the same datasets
Fergusson et al. (2010b) obtained �5.4 ⇥ 105 < gNL < 8.6 ⇥ 105

(68% CL). This kind of trispectrum typically arises in multi-field
inflationary models where large NG arise from the conversion of
isocurvature perturbations on superhorizon scales. If the curva-
ture perturbation is the standard local form, in real space one has
�(x) = �L(x) + f local

NL (�2
L(x) � h�2

Li) + gNL�
3
L(x). In this case,

⌧NL = (6 f local
NL /5)2; however, in general the trispectrum ampli-

tude can be larger.
The trispectrum is a complementary observable to the CMB

bispectrum as it can further distinguish di↵erent inflationary sce-
narios. This is because the same interactions that lead to the bis-
pectrum might be responsible also for a large trispectrum, so
that the di↵erent NG parameters can be related to each other in
a well-defined way within specific models. If there is a non-zero
squeezed-shape bispectrum there must necessarily be a trispec-
trum, with ⌧NL � (6 f local

NL /5)2 (Suyama & Yamaguchi 2008;
Sugiyama et al. 2011; Sugiyama 2012; Lewis 2011; Smith et al.
2011; Assassi et al. 2012; Kehagias & Riotto 2012). In the sim-
plest inflationary scenarios the prediction would be ⌧NL =
(6 f local

NL /5)2, but larger values would indicate more complicated
dynamics. Several inflationary scenarios have been found in
which the bispectrum is suppressed, thus leaving the trispec-
trum as the largest higher-order correlator in the data. A detec-
tion of a large trispectrum and a negligible bispectrum would
be a smoking gun for these models. This is the case, for ex-
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(Chen et al. 2008; Flauger & Pajer 2011); these induce small
periodic features in the background evolution, with which the
quantum inflaton fluctuations can resonate while still inside
the horizon. Resonant models are particularly relevant in the
context of axion inflation models (e.g., Flauger et al. 2010;
Flauger & Pajer 2011; Barnaby et al. 2012b). These mecha-
nisms also create oscillatory behaviour in the bispectrum, but
with a more constant amplitude and a wavelength that becomes
logarithmically stretched. Here, the resonant oscillations for
most models can be represented in the form

Bres
� (k1, k2, k3) =

6A2 f res
NL

(k1k2k3)2 sin
⇥

C ln(k1 + k2 + k3) + �
⇤

, (17)

where the constant C = 1/ ln(3kc) and � is a phase.
Finally, we note that periodic features in the inflationary po-

tential can excite the vacuum state, as well as perturbing the
background inflation trajectory (Chen 2010a). Such models o↵er
the intriguing possibility of combining the flattened non-Bunch-
Davies shape with periodic oscillations:

BresNBD
� (k1, k2, k3) =

2A2 f resNBD
NL

(k1k2k3)2

n

exp(�k3/5
c (k2 + k3 � k1)/2k1)

⇥ sin[kc((k2 + k3 � k1)/2k1 + ln k1) + �] + 2 perm.
o

. (18)

This ansatz represents the dominant folded resonant contribution
in inflationary models with non-canonical kinetic terms, which
competes with resonant (Eq. (17)) and equilateral (Eq. (3)) con-
tributions; however, for slow-roll single-field inflation, there are
additional terms.
Directional dependence motivated by gauge fields: Additional
variations of the bispectrum shape have been proposed for mod-
els with vector fields, which can have an additional direc-
tional dependence through the parameter µ12 = k̂1 · k̂2 where
k̂ = k/k. For example, primordial magnetic fields sourcing
curvature perturbations can cause a dependence on both µ and
µ2 (Shiraishi et al. 2012), and a coupling between the inflaton
� and the gauge field strength F2 can yield a µ2 dependence
(Barnaby et al. 2012a; Bartolo et al. 2013). We can parameter-
ize these shapes as variations on the local shape, following
Shiraishi et al. (2013), as

B�(k1, k2, k3) =
X

L

cL[PL(µ12)P�(k1)P�(k2) + 2 perm], (19)

where PL(µ) is the Legendre polynomial with P0 = 1, P1 = µ
and P2 =

1
2 (µ2 � 1). For example, for L = 1 we have the shape

BL=1
� (k1, k2, k3) =

2A2 f L=1
NL

(k1k2k3)2
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,(20)

Also the recently introduced “solid inflation”
model (Endlich et al. 2012) generates bispectra similar to
Eq. (19). Here and in the following the nonlinearity parameters
f L
NL are related to the cL coe�cients by c0 = 2 f L=0

NL , c1 = �4 f L=1
NL ,

and c1 = �16 f L=2
NL . The L = 1, 2 shapes exhibit sharp variations

in the flattened limit for e.g., k1 + k2 ⇡ k3, while in the squeezed
limit, L = 1 is suppressed whereas L = 2 grows like the local
bispectrum shape (i.e., the L = 0 case). Whether or not the
underlying gauge field models prove robust, this directional
dependence on the wave vectors is a generic feature which
yields distinct bispectrum families, deserving closer study.
Warm inflation: In warm inflation (Berera 1995), where dissipa-
tive e↵ects are important, a non-Gaussian signal can be gener-
ated (e.g., Moss & Xiong 2007) that peaks in the squeezed limit

– but with a more complex shape than the local one – and ex-
hibiting a low cross-correlation with the other shapes (see refer-
ences in Liguori et al. 2010).

2.4. Higher-order non-Gaussianity: the trispectrum

The connected four-point functions of CMB anisotropies (or the
harmonic counterpart, the so-called trispectrum) can also pro-
vide crucial information about the mechanism that gave rise to
the primordial curvature perturbations (Okamoto & Hu 2002).
The primordial trispectrum is usually characterised by two am-
plitudes ⌧NL and gNL: ⌧NL is most often related to f 2

NL-type con-
tributions, while gNL is the amplitude of intrinsic cubic nonlin-
earities in the primordial gravitational potential (corresponding,
in terms of field interactions, to a scalar-exchange and to a con-
tact interaction term, respectively). They correspond to ’soft’
limits of the full four-point function, with respectively the di-
agonal and one side of the general wavevector trapezoid being
much smaller than the others. In the CMB maps they appear re-
spectively approximately as a spatial variation in amplitude of
the small-scale fluctuations, and a spatial variations in the value
of fNL correlated with the large-scale temperature. In addition to
possible primordial signals that are the focus of this paper there
is also expected to be a large lensing trispectrum (of very dif-
ferent shape), discussed in detail in Planck Collaboration XVII
(2013).

The simplest local trispectrum is given by

h�(k1)�(k2)�(k3)�(k4)i = (2⇡)3�(3)(k1 + k2 + k3 + k4)

⇥
(

25
9
⌧NL
⇥

P�(k1)P�(k2)P�(k13) + (11 perm.)
⇤

+6gNL
⇥

P�(k1)P�(k2)P�(k3) + (3 perm.)
⇤

)

, (21)

where ki j ⌘ |ki + k j|. Previous constraints on ⌧NL and gNLs
have been derived, e.g., by Smidt et al. (2010) who obtained
�7.4 ⇥ 105 < gNL < 8.2 ⇥ 105 and �0.6 ⇥ 104 < ⌧NL < 3.3 ⇥ 104

(at 95% CL) analysing WMAP-5 data; for the same datasets
Fergusson et al. (2010b) obtained �5.4 ⇥ 105 < gNL < 8.6 ⇥ 105

(68% CL). This kind of trispectrum typically arises in multi-field
inflationary models where large NG arise from the conversion of
isocurvature perturbations on superhorizon scales. If the curva-
ture perturbation is the standard local form, in real space one has
�(x) = �L(x) + f local

NL (�2
L(x) � h�2

Li) + gNL�
3
L(x). In this case,

⌧NL = (6 f local
NL /5)2; however, in general the trispectrum ampli-

tude can be larger.
The trispectrum is a complementary observable to the CMB

bispectrum as it can further distinguish di↵erent inflationary sce-
narios. This is because the same interactions that lead to the bis-
pectrum might be responsible also for a large trispectrum, so
that the di↵erent NG parameters can be related to each other in
a well-defined way within specific models. If there is a non-zero
squeezed-shape bispectrum there must necessarily be a trispec-
trum, with ⌧NL � (6 f local

NL /5)2 (Suyama & Yamaguchi 2008;
Sugiyama et al. 2011; Sugiyama 2012; Lewis 2011; Smith et al.
2011; Assassi et al. 2012; Kehagias & Riotto 2012). In the sim-
plest inflationary scenarios the prediction would be ⌧NL =
(6 f local

NL /5)2, but larger values would indicate more complicated
dynamics. Several inflationary scenarios have been found in
which the bispectrum is suppressed, thus leaving the trispec-
trum as the largest higher-order correlator in the data. A detec-
tion of a large trispectrum and a negligible bispectrum would
be a smoking gun for these models. This is the case, for ex-
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and thus fNL ⇠ O(ns � 1) in the squeezed limit, in a model-
independent sense (i.e., not only for standard single-field mod-
els). This means that a significant detection of local NG (in the
squeezed limit) would rule out a very large class of single-field
models of inflation (not just the simplest ones). Although based
on very general conditions, the consistency condition of Eq. (11)
can be violated in some well-motivated inflationary settings (we
refer the reader to Chen (2010b); Chen et al. (2013) and refer-
ences therein for more details).

Quasi-single field inflation: Quasi-single field inflation has an
extra field (or fields) with mass m close to the Hubble parame-
ter H during inflation; these models evolve quiescently, produc-
ing a calculable non-Gaussian signature (Chen & Wang 2010b).
The resulting one-parameter bispectrum smoothly interpolates
between local and equilateral models, though in a non-trivial
manner:

BQSI
�

(k1, k2, k3) =
6A2 f QSI

NL

(k1k2k3)3/2
33/2N⌫[8k1k2k3/(k1 + k2 + k3)3]

N⌫[8/27](k1 + k2 + k3)3/2 ,(12)

where ⌫ = (9/4 � m2/H2)1/2 and N⌫ is the Neumann function
of order ⌫. Quasi-single field models can also produce an es-
sentially “constant” bispectrum defined by Bconst(k1, k2, k3) =
6A2 f const

NL /(k1k2k3)2. The constant model is the simplest possible
non-zero primordial shape, with all its late-time CMB structure
simply reflecting the behaviour of the transfer functions.

Alternatives to inflation: Local NG can also be generated
in some alternative scenarios to inflation, for instance in
cyclic/ekpyrotic models (for a review, see Lehners 2010), due
to the same basic curvaton mechanism described above. In this
case, typical values of the nonlinearity parameter can easily
reach | f local

NL | > 10.

2.3. Non-standard models giving rise to alternative specific
forms of NG

Non-Bunch-Davies vacuum and higher-derivative interactions:
Another interesting bispectrum shape is the folded one, which
peaks in flattened configurations. To facilitate data analyses,
the flat shape has been usually parametrized by the tem-
plate (Meerburg et al. 2009)

Bflat
� (k1, k2, k3) = 6A2 f flat

NL

⇥
8
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3

+(5 perm.)
⇤ 

. (13)

The initial quantum state of the inflaton is usually specified
by requiring that, at asymptotically early times and short dis-
tances, its fluctuations behave as in flat space. Deviations from
this standard “Bunch-Davies” vacuum can result in interesting
features in the bispectrum. Models with an initial non-Bunch-
Davies vacuum state (Chen et al. 2007b; Holman & Tolley
2008; Meerburg et al. 2009) can generate sizeable NG similar
to this type. NG highly correlated with such a template can
be produced in single-field models of inflation from higher-
derivative interactions (Bartolo et al. 2010a), and in models
where a “Galilean” symmetry is imposed (Creminelli et al.
2011a). In both cases, cubic inflaton interactions with two

derivatives of the inflaton field arise. Single-field inflation
models with a small sound speed, studied in Senatore et al.
(2010), can generate the flat shape, as a result of a linear
combination of the orthogonal and equilateral shapes. In fact,
from a simple parametrization point of view, the flat shape
can be always written as Fflat(k1, k2, k3) = [Fequil(k1, k2, k3) �
Fortho(k1, k2, k3)]/2 (Senatore et al. 2010). Despite this, we pro-
vide constraints also on the amplitude of the flat bispectrum
shape of Eq. (13).

For models with excited (i.e., non-Bunch-Davies) initial
states, the resulting NG shapes are model-dependent, but they
are usually characterized by the importance of flattened or
collinear triangles, with k3 ⇡ k1 + k2 along the edges of the
tetrapyd. We will denote the original flattened bispectrum shape,
given in Eq. (3.62) of Chen et al. (2007b), by BNBD

� ; it is gener-
ically much more flattened than the “flat” model of Eq. (13).
Although this shape was derived specifically for power-law k-
inflation, it encapsulates several di↵erent shapes, with ampli-
tudes which can vary between di↵erent phenomenological mod-
els. These shapes are also typically oscillatory, being regular-
ized by a cuto↵ scale kc giving the oscillation period; this cuto↵
kc ⇡ (cs⌧c)�1 is determined by the (finite) time ⌧c in the past
when the non-Bunch-Davies component was initially excited.
For excited canonical single-field inflation, the two leading order
shapes can be described (Agullo & Parker 2011) by the ansatz

BNBDi
� =

2A2 f NBDi
NL

(k1k2k3)3

(

fi(k1, k2, k3) ⇥ (14)

1 � cos[(k2 + k3 � k1)/kc]
k2 + k3 � k1

+ 2 perm.
)

,

where f1(k1, k2, k3) = k2
1(k2

2 + k2
3)/2 is dominated by squeezed

configurations, f2(k1, k2, k3) = k2
2k2

3 has a flattened shape, and i =
1, 2. Note that for all oscillatory shapes, the relevant bispectrum
equation defines the normalisation of fNL. The flattened signal
is most easily enhanced in the limit of small sound speed cs, for
which a regularized ansatz is given by (Chen et al. 2007b)

BNBD3
� =

2A2 f NBD3
NL

k1k2k3

"

k1 + k2 � k3

(kc + k1 + k2 � k3)4 + 2 perm.
#

. (15)

Scale-dependent feature and resonant models: Oscillating bis-
pectra can be generated from violation of a smooth slow-roll
evolution (“feature” or “resonant” NG). These models have the
distinctive property of a strong running NG, which breaks ap-
proximate scale-invariance. A sharp feature in the inflaton po-
tential forces the inflaton field away from the attractor solu-
tion, and causes oscillations as it relaxes back; these oscillations
can appear in the bispectrum (Wang & Kamionkowski 2000;
Chen et al. 2007a, 2008), as well as the power spectrum and
other correlators. An analytic form for the oscillatory bispectrum
for these feature models is (Chen et al. 2007a)

Bfeat
� (k1, k2, k3) =

6A2 f feat
NL

(k1k2k3)2 sin
"

2⇡(k1 + k2 + k3)
3kc

+ �

#

, (16)

where � is a phase factor and kc is a scale associated with the
feature, which is linked in turn to an e↵ective multipole period-
icity `c of the CMB bispectrum. Typically, these oscillations will
decay with an envelope of the form exp[�(k1 + k2 + k3)/mkc] for
a model-dependent parameter m.

Closely related “resonant” bispectra can be created by pe-
riodic features superimposed on a smooth inflation potential

7

Feature models

Resonance models (e.g. axion monodromy)

Enfolded resonance models

(Chen et al, 2008,

Flauger & Pajer 2011)

(Chen et al, 2011)
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aliasing contribution. In order to validate the procedure, we have
checked that the power spectrum of each of the filtered maps
matches the one associated of the raw Nside = 4096 map, the lat-
ter being also being a↵ected but at half the scale. In Fig. 5, we
have plotted the power spectra of one of the Nside = 2048 maps
before and after convolution with our anti-aliasing filter. As ex-
pected, it matches with the one extracted from the Nside = 4096
map (here truncated at ` = 4096). Finally, in order to include
the e↵ects associated with the HEALPix pixelization scheme, the
anti-aliased maps have been convolved with the HEALPix pixel
window function before being used for further processing.

In total, this method has provided four theoretical full sky
string maps that have been used in the string searches we will
discuss in Sect. 4. As an illustration, we have represented in
Fig. 6, one of the filtered string map after convolution by a
Gaussian beam of FWHM = 50. The color scale traces the rel-
ative temperature anisotropies �T/T , divided by the string ten-
sion Gµ/c2. The anisotropy patterns may look Gaussian at first
because most of the string signatures show up on the smallest
length scales. In Fig. 7, we have plotted a gnomic projection rep-
resenting a field of view of 20�, in which the temperature steps
are now clearly apparent. The right panel of Fig. 7 represents the
magnitude of the spherical gradient, which enhances the steps.

Finally, in order to provide a much larger statistical sample
beyond only four string realisations, we have also produced a
collection of 1000 small angle patches (7.20) of the CMB sky de-
rived in the flat sky approximation (Stebbins 1988; Hindmarsh
1994; Stebbins & Veeraraghavan 1995; Bouchet et al. 1988;
Fraisse et al. 2008). Although the large-scale correlations are
lost, these maps have been shown to accurately reproduce var-
ious analytically expected non-Gaussian string e↵ects such as
the one-point and higher n-points functions by Takahashi et al.
(2009); Hindmarsh et al. (2009, 2010); Regan & Shellard (2010);
Yamauchi et al. (2010b,a); Ringeval (2010).

3. Power spectrum constraints on cosmic strings

and other topological defects

In order to compute constraints on cosmic string scenarios we
just add the angular power spectrum to that for an simple adia-
batic model—which assumes that they are uncorrelated— with
the fraction of the spectrum contributed by cosmic strings be-
ing f10 at ` = 10. This parameter is then added as an ex-
tra parameter to the standard six parameter fit using COSMOMC
and the Planck likelihood described in Planck Collaboration XV
(2013). We use a Flat ⇤CDM cosmology defined through the
physical densities of baryons, ⌦bh2, and cold dark matter, ⌦ch2,
the acoustic scale, ✓MC , the amplitude, As and spectral index,
ns of density fluctuations and the optical depth to reionization
⌧. The Hubble constant is a derived parameter and is given by
H0 = 100 h km sec�1 Mpc�1. We use the same priors on the
cosmological and nuisance parameters as are used in Planck
Collaboration XVI (2013) and use WMAP polarization data to
help fix ⌧. In addition to just using the Planck data, we have also
added high-` CMB data from SPT and ACT to obtain stronger
constraint(Sievers et al. 2013; Hou et al. 2012).

For the USM-based models we use the approach used in
Battye et al. (2006) and Battye & Moss (2010). We find that
the constraints on the standard six parameters are not signif-
icantly a↵ected by the inclusion of the extra string parameter
and that there are no significant correlations with other param-
eters (see Table 3). For the case of Planck data only and us-
ing the NAMBU model we find that Gµ/c2 < 1.5 ⇥ 10�7 and

Table 2. 95% upper limits on the constrained parameter f10 and the
derived parameter Gµ/c2 for the five defect models discussed in the
text. We present limits using Planck and polarization information from
WMAP (Planck +WP), and from also including high ` CMB informa-
tion from ACT and SPT (Planck +WP+highL).

Defect type . . . Planck+WP Planck+WP+highL
. . . . . . . . . . . . . . . . f10 Gµ/c2 f10 Gµ/c2

NAMBU . . . . . . . . 0.015 1.5 ⇥ 10�7 0.010 1.3 ⇥ 10�7

AH-mimic . . . . . . . 0.033 3.6 ⇥ 10�7 0.034 3.7 ⇥ 10�7

AH . . . . . . . . . . . . . 0.028 3.2 ⇥ 10�7 0.024 3.0 ⇥ 10�7

SL . . . . . . . . . . . . . 0.043 11.0 ⇥ 10�7 0.041 10.7 ⇥ 10�7

TX . . . . . . . . . . . . . 0.055 10.6 ⇥ 10�7 0.054 10.5 ⇥ 10�7

f10 < 0.015, whereas for the AH-mimic model we find that
Gµ/c2 < 3.6 ⇥ 10�7 and f10 < 0.033, with all the upper lim-
its being at 95% confidence level. The 1D marginalized likeli-
hoods for f10 are presented in the upper panels of Fig. 8. The
di↵erences between the upper limits for the NAMBU and AH-
mimic models is compatible with those seen previously using
WMAP 7-year and SDSS data (Battye & Moss 2010). The upper
limits from this version of the Planck likelihood are better than
those computed from WMAP7+SPT (Dvorkin et al. 2011) and
WMAP7+ACT (Dunkley et al. 2011) and are significantly better
than those from WMAP7+SDSS (Battye & Moss 2010). Based
on the Planck “Blue Book” values for noise levels we predicted
(Battye et al. 2008) a limit of Gµ/c2 < 6⇥10�8, while the present
limit is about a factor of two worse than this. The main reason
for this is that the projected limit ignored the need for nuisance
parameters to model high ` foregrounds and that not all the fre-
quency channels have been used. The corresponding limits for
the AH model are f10 < 0.028 and Gµ/c2 < 3.2 ⇥ 10�7.

There is now very little degeneracy between the f10 and nS
parameters, something that was not the case for WMAP alone
(Battye et al. 2006; Bevis et al. 2008; Urrestilla et al. 2011).
This has implication for supersymmetric hybrid inflation mod-
els as discussed in Battye et al. (2010) that typically require
nS > 0.98. The simplest versions of these models appear to be
ruled out. The strongest correlation using the NAMBU and AH
mimic models is between f10 and ⌦bh2 as illustrated in Fig. 10.
In addition, we find agreement with Lizarraga et al. (2012), that
there are significant correlations between the amount of strings
f10 in the AH model and the number of relativistic degrees of
freedom Ne↵ as well as between f10 and the primordial helium
abundance YHe. We leave a detailed study of these correlations
to later work.

In Fig. 8 we also present the 1D marginalized likelihoods
for the texture and semilocal string models (compared to the
AH field theory strings). The resulting constraints on the f10
parameter are given in Table 2 as well. For the conversion
into constraints on Gµ/c2 we have that for semilocal strings
Gµ10/c2 = 5.3⇥10�6 and for global texture Gµ10/c2 = 4.5⇥10�6,
cf Urrestilla et al. (2008). We notice that, as expected for a fixed
Gµ, semilocal strings lead to significantly less anisotropies than
cosmic strings (a factor of about 8 in the C`), and texture are sim-
ilar to the semilocal strings. We thus expect significantly weaker
constraints on Gµ for the SL and TX models, especially since
in addition the constraints on f10 for these models are weaker.
Indeed we find a 95% limit of Gµ/c2 < 1.10 ⇥ 10�6 for semilo-
cal strings and Gµ/c2 < 1.06 ⇥ 10�6 for global textures.
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aliasing contribution. In order to validate the procedure, we have
checked that the power spectrum of each of the filtered maps
matches the one associated of the raw Nside = 4096 map, the lat-
ter being also being a↵ected but at half the scale. In Fig. 5, we
have plotted the power spectra of one of the Nside = 2048 maps
before and after convolution with our anti-aliasing filter. As ex-
pected, it matches with the one extracted from the Nside = 4096
map (here truncated at ` = 4096). Finally, in order to include
the e↵ects associated with the HEALPix pixelization scheme, the
anti-aliased maps have been convolved with the HEALPix pixel
window function before being used for further processing.

In total, this method has provided four theoretical full sky
string maps that have been used in the string searches we will
discuss in Sect. 4. As an illustration, we have represented in
Fig. 6, one of the filtered string map after convolution by a
Gaussian beam of FWHM = 50. The color scale traces the rel-
ative temperature anisotropies �T/T , divided by the string ten-
sion Gµ/c2. The anisotropy patterns may look Gaussian at first
because most of the string signatures show up on the smallest
length scales. In Fig. 7, we have plotted a gnomic projection rep-
resenting a field of view of 20�, in which the temperature steps
are now clearly apparent. The right panel of Fig. 7 represents the
magnitude of the spherical gradient, which enhances the steps.

Finally, in order to provide a much larger statistical sample
beyond only four string realisations, we have also produced a
collection of 1000 small angle patches (7.20) of the CMB sky de-
rived in the flat sky approximation (Stebbins 1988; Hindmarsh
1994; Stebbins & Veeraraghavan 1995; Bouchet et al. 1988;
Fraisse et al. 2008). Although the large-scale correlations are
lost, these maps have been shown to accurately reproduce var-
ious analytically expected non-Gaussian string e↵ects such as
the one-point and higher n-points functions by Takahashi et al.
(2009); Hindmarsh et al. (2009, 2010); Regan & Shellard (2010);
Yamauchi et al. (2010b,a); Ringeval (2010).

3. Power spectrum constraints on cosmic strings

and other topological defects

In order to compute constraints on cosmic string scenarios we
just add the angular power spectrum to that for an simple adia-
batic model—which assumes that they are uncorrelated— with
the fraction of the spectrum contributed by cosmic strings be-
ing f10 at ` = 10. This parameter is then added as an ex-
tra parameter to the standard six parameter fit using COSMOMC
and the Planck likelihood described in Planck Collaboration XV
(2013). We use a Flat ⇤CDM cosmology defined through the
physical densities of baryons, ⌦bh2, and cold dark matter, ⌦ch2,
the acoustic scale, ✓MC , the amplitude, As and spectral index,
ns of density fluctuations and the optical depth to reionization
⌧. The Hubble constant is a derived parameter and is given by
H0 = 100 h km sec�1 Mpc�1. We use the same priors on the
cosmological and nuisance parameters as are used in Planck
Collaboration XVI (2013) and use WMAP polarization data to
help fix ⌧. In addition to just using the Planck data, we have also
added high-` CMB data from SPT and ACT to obtain stronger
constraint(Sievers et al. 2013; Hou et al. 2012).

For the USM-based models we use the approach used in
Battye et al. (2006) and Battye & Moss (2010). We find that
the constraints on the standard six parameters are not signif-
icantly a↵ected by the inclusion of the extra string parameter
and that there are no significant correlations with other param-
eters (see Table 3). For the case of Planck data only and us-
ing the NAMBU model we find that Gµ/c2 < 1.5 ⇥ 10�7 and

Table 2. 95% upper limits on the constrained parameter f10 and the
derived parameter Gµ/c2 for the five defect models discussed in the
text. We present limits using Planck and polarization information from
WMAP (Planck +WP), and from also including high ` CMB informa-
tion from ACT and SPT (Planck +WP+highL).

Defect type . . . Planck+WP Planck+WP+highL
. . . . . . . . . . . . . . . . f10 Gµ/c2 f10 Gµ/c2

NAMBU . . . . . . . . 0.015 1.5 ⇥ 10�7 0.010 1.3 ⇥ 10�7

AH-mimic . . . . . . . 0.033 3.6 ⇥ 10�7 0.034 3.7 ⇥ 10�7

AH . . . . . . . . . . . . . 0.028 3.2 ⇥ 10�7 0.024 3.0 ⇥ 10�7

SL . . . . . . . . . . . . . 0.043 11.0 ⇥ 10�7 0.041 10.7 ⇥ 10�7

TX . . . . . . . . . . . . . 0.055 10.6 ⇥ 10�7 0.054 10.5 ⇥ 10�7

f10 < 0.015, whereas for the AH-mimic model we find that
Gµ/c2 < 3.6 ⇥ 10�7 and f10 < 0.033, with all the upper lim-
its being at 95% confidence level. The 1D marginalized likeli-
hoods for f10 are presented in the upper panels of Fig. 8. The
di↵erences between the upper limits for the NAMBU and AH-
mimic models is compatible with those seen previously using
WMAP 7-year and SDSS data (Battye & Moss 2010). The upper
limits from this version of the Planck likelihood are better than
those computed from WMAP7+SPT (Dvorkin et al. 2011) and
WMAP7+ACT (Dunkley et al. 2011) and are significantly better
than those from WMAP7+SDSS (Battye & Moss 2010). Based
on the Planck “Blue Book” values for noise levels we predicted
(Battye et al. 2008) a limit of Gµ/c2 < 6⇥10�8, while the present
limit is about a factor of two worse than this. The main reason
for this is that the projected limit ignored the need for nuisance
parameters to model high ` foregrounds and that not all the fre-
quency channels have been used. The corresponding limits for
the AH model are f10 < 0.028 and Gµ/c2 < 3.2 ⇥ 10�7.

There is now very little degeneracy between the f10 and nS
parameters, something that was not the case for WMAP alone
(Battye et al. 2006; Bevis et al. 2008; Urrestilla et al. 2011).
This has implication for supersymmetric hybrid inflation mod-
els as discussed in Battye et al. (2010) that typically require
nS > 0.98. The simplest versions of these models appear to be
ruled out. The strongest correlation using the NAMBU and AH
mimic models is between f10 and ⌦bh2 as illustrated in Fig. 10.
In addition, we find agreement with Lizarraga et al. (2012), that
there are significant correlations between the amount of strings
f10 in the AH model and the number of relativistic degrees of
freedom Ne↵ as well as between f10 and the primordial helium
abundance YHe. We leave a detailed study of these correlations
to later work.

In Fig. 8 we also present the 1D marginalized likelihoods
for the texture and semilocal string models (compared to the
AH field theory strings). The resulting constraints on the f10
parameter are given in Table 2 as well. For the conversion
into constraints on Gµ/c2 we have that for semilocal strings
Gµ10/c2 = 5.3⇥10�6 and for global texture Gµ10/c2 = 4.5⇥10�6,
cf Urrestilla et al. (2008). We notice that, as expected for a fixed
Gµ, semilocal strings lead to significantly less anisotropies than
cosmic strings (a factor of about 8 in the C`), and texture are sim-
ilar to the semilocal strings. We thus expect significantly weaker
constraints on Gµ for the SL and TX models, especially since
in addition the constraints on f10 for these models are weaker.
Indeed we find a 95% limit of Gµ/c2 < 1.10 ⇥ 10�6 for semilo-
cal strings and Gµ/c2 < 1.06 ⇥ 10�6 for global textures.
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Table 4. Modal bispectrum analysis of foreground-separated SMICA,
NILC and SEVEM maps showing fNL from strings, ISW-lensing and dif-
fuse point sources. Three values for fNL are given from independent
analysis, joint point source/string analysis after ISW-lensing subtrac-
tion, and joint analysis after both ISW-lensing and foreground residual
subtraction. Resulting 95% confidence limits for Gµ/c2 are also given.

Bispectrum Independent ISW subtract ISW/FG res.
Method signal type analysis fNL Joint fNL Joint fNL

SMICA Lensing ISW 0.75 ± 0.37 – –
Di↵. PS⇥1028 1.05 ± 0.32 1.35 ± 0.34 1.40 ± 0.34
Cosmic strings 0.19 ± 0.20 0.50 ± 0.21 0.37 ± 0.21
Gµ/c2 (95%) 8.4 ⇥ 10�7 9.7 ⇥ 10�7 9.3 ⇥ 10�7

NILC Lensing ISW 0.91 ± 0.36 – –
Di↵. PS⇥1028 1.16 ± 0.32 1.44 ± 0.34 1.44 ± 0.34
Cosmic strings 0.13 ± 0.20 0.46 ± 0.21 0.23 ± 0.21
Gµ/c2 (95%) 8.1 ⇥ 10�7 9.6 ⇥ 10�7 8.7 ⇥ 10�7

SEVEM Lensing ISW 0.6 ± 0.36 – –
Di↵. PS⇥1028 1.07 ± 0.35 1.33 ± 0.38 –
Cosmic strings 0.10 ± 0.20 0.38 ± 0.21 –
Gµ/c2 (95%) 7.9 ⇥ 10�7 9.3 ⇥ 10�7 –

ter ISW subtraction), meaning a joint analysis obtained fNL =
0.23 ± 0.21 (see Table 4).

We conclude, given our present understanding of point
sources and foregrounds, that there does not appear to be signif-
icant evidence for a string bispectrum signal in the Planck nom-
inal mission maps, so we infer the following post-recombination
bispectrum constraint on strings (from fNL = 0.30 ± 0.21):

Gµ/c2 < 8.8 ⇥ 10�7 (95% confidence) . (17)

The susceptibility of the string bispectrum to point source and
other foreground contamination deserves further investigation
and will require improved characterisation of the di↵use point
source bispectrum (beyond the simple Poisson model), as well
as identification of other foreground residuals generating a small
string bias.

The string bispectrum constraint Eq. (17) is a conservative
upper limit on the string tension Gµ/c2 because we have not in-
cluded recombination contributions. Although this constraint is
weaker than that from the power spectrum, it is an independent
test for strings and the first quantitative string bispectrum limit
to date. This should be considerably improved in future by in-
clusion of recombination physics and more precise foreground
analysis. A comparison with the power spectrum amplitude indi-
cates the string bispectrum should rise by (2)3/2, which, together
with the full mission data, would see the sensitivity improve by
a factor of two (allowing constraints around Gµ/c2 < 4 ⇥ 10�7).
We note that the bispectrum is not the optimal non-Gaussian test
for strings, because the string signal is somewhat suppressed by
symmetry (the bispectrum cancels for straight strings). This fact
motivates further study of the trispectrum, for which the Planck
sensitivity is forecast to be �Gµ/c2 ⇡ 1 ⇥ 10�7 (Fergusson et al.
2010b), as well as joint analysis of polyspectra.

4.3. Steerable wavelet searches for cosmic strings

Wavelets o↵er a powerful signal analysis tool due to their abil-
ity to localise signal content in scale (cf. frequency) and posi-
tion simultaneously. Consequently, wavelets are well-suited for
detecting potential CMB temperature contributions due to cos-

mic strings, which exhibit spatially localised signatures with dis-
tinct frequency content. Wavelets defined on the sphere are re-
quired to analyse full-sky Planck observations (see, for exam-
ple, Freeden & Windheuser 1997; Wiaux et al. 2005; Sanz et al.
2006; McEwen et al. 2006; Starck et al. 2006; Marinucci et al.
2008; Wiaux et al. 2008).

We perform an analysis using the steerable wavelets on the
sphere constructed by Wiaux et al. (2005). Here we exploit steer-
ability to dynamically adapt the orientations analysed to the un-
derlying data, performing frequentist hypothesis testing. We ap-
ply the first (1GD) and second (2GD) Gaussian derivative steer-
able wavelets, defined on the sphere through a stereographic
projection, in order to search for cosmic strings in the Planck
data. A steerable wavelet is a directional filter whose rotation by
� 2 [0, 2⇡) about itself can be expressed in terms of a finite lin-
ear combination of non-rotated basis filters. Thus, the analysis
of a signal with a given steerable wavelet  naturally identifies a
set of wavelet coe�cients, W (!0, �,R), which describe the lo-
cal features of the signal at each position !0 on the sphere, for
each orientation � and for each physical scale R. Several local
morphological properties can be defined in terms of the wavelet
coe�cients (Wiaux et al. 2008), including the signed-intensity,

I (!0,R) ⌘ W (!0, �0,R) . (18)

This quantity represents the value of the wavelet coe�cient at
the local orientation �0 (!0,R) that maximizes the absolute value
of the wavelet coe�cient itself.

The presence of a cosmic string signal in the CMB is ex-
pected to leave a non-Gaussian signature that induces a modifi-
cation in the distribution of I(!0,R) with respect to the lensed
Gaussian case. We calibrated the dependence of these signatures
on the string tension using four simulations of the cosmic string
contribution (Ringeval & Bouchet 2012) combined with a large
set of lensed Gaussian CMB realizations, along with a realistic
description of the Planck instrumental properties (refer to Planck
Collaboration XII (2013)).

A wide range of string tension values were explored,
Gµ/c2 2 [2.0 ⇥ 10�7, 1.0 ⇥ 10�6], considering several wavelet
scales, R = [4.0, 4.5, 5.0, 6.0, 8.0, 10.0] arcmin. We choose the
wavelet scale range as a trade o↵ between the signal-to-noise
ratio of the string contribution and the small scale foreground
contamination. In fact, the wavelet for the smallest scale con-
sidered in this analysis peaks at ` = 1300, while extending at
higher multipoles with a broad distribution. We use maps at an
HEALPix resolution of Nside = 2048, including multipoles till
`max = 2500. We analyse the simulations with the same U73
mask on the Planck CMB map (refer to Planck Collaboration
XII 2013), which masks both di↵use and compact foregrounds,
leaving 73% of the sky remaining for further analysis (refer to
discussion in Sect. 4.2.3).

The string non-Gaussian signatures are characterized in
terms of the kurtosis of the signed-intensity I(!0,R) in Eq. (18)
at the di↵erent scales R and for both the 1GD and 2GD wavelets.
The averaged results from the non-Gaussian simulations were
used to model the distribution of the kurtosis as functions of
Gµ/c2, i.e., K(R,Gµ/c2). Other statistics, such as the skewness
and the Higher-Criticism, have also been explored. We found
that the kurtosis sensitivity to the string tension is higher than
the alternative measures. In Fig. 13, we show the di↵erence be-
tween the average kurtosis at several Gµ/c2 values and the av-
erage kurtosis for Gµ/c2 = 0, normalized to the standard devi-
ation of the simulations. On the given range of scales, the 2GD
wavelet appears to be more sensitive to the string signal. The
final sensitivity of the method in recovering the string tension
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The covariance matrix C is computed from 104 Gaussian simu-
lations3 because, given the existing stringent constraints on cos-
mic strings, this should be accurate without biasing results. The
cosmic string MF curve ȳ(Gµ/c2) is calibrated on 103 realistic
lensed Planck simulations, to which we have added a string com-
ponent at a specified level. These simulations take into account
the asymmetry of beams and the component separation process
(FFP6 simulations, see Planck Collaboration ES (2013) for a
detailed description). For the string component, we had at our
disposal only two high resolution string simulations (Ringeval
& Bouchet 2012), so our model is the averaged curve obtained
from this combination of Planck and string simulations.

Due to the nonlinear dependence of MFs on Gµ/c2 and the
small number of string simulations, the posterior distribution is
quite complex and noisy. For this reason, we evaluated the pos-
terior at nNL = 51 values of Gµ/c2, between 0 and 10 ⇥ 10�7, to
obtain our Planck estimate for Gµ/c2. This estimate is stable and
has been validated in realistic conditions with the Planck String
Challenges described above, and for which we found consistent
results with the underlying (unknown) Gµ/c2.

4.4.2. Minkowski functionals results

For the constraint on Gµ/c2, we analysed the foregrounds sepa-
rated SMICA map at Nside = 2048 and `max = 2000, using the
U73 mask ( fsky = 73% of the sky is unmasked). The small-
est point sources holes were inpainted. We applied two specific
Wiener filters to the map, designed to enhance the information
from the map itself (WM) and from the gradients of the map
(WD1 =

p
`(` + 1)WM). The filters are shown in Fig. 14.

Additionally, we estimated the average impact of some resid-
ual foregrounds and secondaries (FG) on Gµ/c2, using the linear
properties of MFs and foregrounds models processed through
the Planck simulation pipeline (FFP6 simulations, see Planck
Collaboration ES (2013)). Uncorrelated (Poissonian) unresolved
point sources (PS), Cosmic Infrared Background (CIB) and
Sunyaev-Zeldovich cluster4 (SZ) signals can be introduced as
a simple additive bias �ȳPS,... on MF curves following:

ŷ = ŷFGsubtracted + �ȳPS + �ȳCIB + �ȳSZ. (21)

These biases are obtained as an average from 100 simulations,
however, these do not comprehensively cover all the di↵erent
component contributions in the actual Planck data.

We eventually obtain the posterior distribution of Gµ/c2, and
we integrate it to report confidence intervals. Results are summa-
rized in Table 5, for raw data (lensing subtracted) and foreground
subtracted data (PS, CIB and SZ subtracted). The discrepancy
between the two filters can be explained because the derivative
filter WD1 scans smaller scales than WM so it is more easily bi-
ased by foreground residuals. Given the remaining foreground
uncertainties, we take the most conservative MF constraint for
the cosmic string contribution to the Planck data to be

Gµ/c2 < 7.8 ⇥ 10�7 at 95% C.L.

The corresponding posterior is presented in Fig. 15.
Some caveats need to be mentioned that may influence these

results. First, for the MF method itself, an important limitation
is the small number of string simulations used to calibrate the

3 The Gaussian simulations endeavour to incorporate realistic noise
from the Planck data, but only the e↵ective isotropic beam of the com-
ponent separation method.

4 The SZ signal does not include the SZ-lensing NG contribution.

      
 

 

 

 

 

 

 

 
0.

00
0.

04
0.

08

0 2 4 6 8 10
Gµ/c2 (⇥10�7)

P
(G

µ
/c

2
)

SMICA, WM +WD1

Fig. 15. Posterior distribution of the parameter Gµ/c2 obtained with
Minkowski functionals. This estimate takes into account the lensing of
the data, but not the e↵ects of foreground residuals.

Table 5. MFs constraints obtained on Gµ/c2, at the 95% C.L. These
results are obtained on the SMICAmap with the U73 mask ( fsky = 0.73).
The “Raw map” result includes only the lensing contribution to the data,
while the “Foreground subtracted map” includes the lensing, Poissonian
point sources, CIB and SZ clusters contributions.

Gµ/c2 WM WM +WD1

Raw map < 6.8 ⇥10�7 < 7.8 ⇥10�7

FG subtracted map < 6.0 ⇥10�7 < 3.6 ⇥10�7

estimator. The estimator appears to be mostly sensitive to low-
redshift strings (infinite strings, with redshifts between 0 and
30), and this is a↵ected by cosmic variance. As low-redshift
string simulations are much faster to produce than complete
simulations back to recombination, it should be possible to im-
prove the robustness of the constraint using these relatively soon.
Secondly, the impacts of the di↵erent point-source foreground
components (here, PS, CIB and SZ) have been evaluated by av-
eraging over 100 Planck simulation maps for which the mod-
elling is only partial. The precise contributions of these di↵er-
ent components needs to be investigated in more detail for the
Planck data. Fortunately, using the linearity of MFs for these
contributions it will be possible to jointly estimate these as their
characterisation improves in future studies. Finally, the impact of
Galactic residuals should also be assessed in further detail, espe-
cially for the filter WD1 that we have observed to be less robust
against residuals than the WM filter.

With advances in studying these experimental e↵ects there
are good prospects for the full mission data, the sensitivity
of the MFs estimator should improve substantially, with sim-
ulations forecasting possible MF cosmic string constraints of
Gµ/c2 < 3 ⇥ 10�7 at the 95% C.L. We note that further real
space analysis of string map simulations has been undertaken
with scaling indices of the pixel temperature distribution (see,
e.g., Räth et al. 2011). Extensions calculating a set of anisotropic
scaling indices along predefined directions appear to o↵er good
prospects fro string detection.
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NG Conclusions
Local, equilateral and orthogonal shapes constrained

All bispectrum paradigms investigated - squeezed, equil, flat, oscillatory

Some implications for fundamental cosmology:
• Effective field theory sound speed cs > 0.02 
• For DBI inflation sound speed cs > 0.07
• Power law K-inflation ruled out (cf power spectrum)
• Curvaton model constraint on “decay fraction” rD 
• Ekpyrotic/cyclic “conversion mechanism” ruled out 
• Excited initial states and vector inflation constrained 
• Feature model results not significant - interesting ‘hints’
• Strongest CMB constraints on cosmic defects
• Also first results for trispectrum τNL < 2800

Planck bispectrum reconstruction “patterns” appear to 
     have high NG signal
Investigations ongoing ... plus Full Mission data yet to come   
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ABSTRACT

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).
Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.

Key words. cosmology: cosmic background radiation – cosmology: observations – cosmology: theory – cosmology: early Universe – cosmology:
inflation
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NG Prospects
1. New quantitative probe for cosmology - precision achieved by Planck
   - improving with polarization data (i.e. more data 2014) fNL≈ 4
   - still early days for the trispectrum, tNL >>  gNL, full 5D 

2. Most stringent test of inflation - passed scale-invariant NG test
   - but what about other shapes?  Is any Planck NG signal primordial?

3. Secondary NG signals - weak ISW lensing will become significant 
   - partial recombination-only corrections fNL ~ 3
   - 2nd-order theoretical analysis beginning - e.g. corrections to lensing?

 4. Primordial NG - stringent constraints on scale-invariant models
   - explore alternative scale-dependent models
   - e.g. oscillatory models, flattened NBD shapes

5. Large-scale structure - galaxy surveys, 21cm
   - explore possibilities (look beyond local NG)!
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