

Planck Cosmology Results 2013

1500

1000

l?

500

Planck, Primordial Non-Gaussianity, and Prospects

500

1000

0

Paul Shellard

with James Fergusson & Michele Liguori on behalf of the Planck collaboration (Centre for Theoretical Cosmology, ⁴³ DAMTP, Cambridge University)

XXIV. Constraints on primordial non-Gaussianity (XXV. Searches for cosmic strings & other defects) Implications of Planck Meeting CERN, 28 June 2013

Acknowledgements

Planck power spectrum esa

Planck frequency maps

Foreground-cleaned CMB maps

Union Mask

Union of confidence masks for all four methods (U73), leaving 73% of the sky

Planck SMICA CMB map

Leading method for high-I analysis - min. foreground residuals and preserves non-Gaussianity - the 3% processing mask has been filled in with a constrained realization

Key public data product from the Planck mission, refer to: http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive

WMAP vs Planck

Non-Gaussianity (NG) esa

-500

500 µKom

But there is more information ...

Gaussian distribution

Determined only by mean μ and standard deviation σ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Central limit theorem: any independent random process

Gaussian distribution

Determined only by mean μ and standard deviation σ

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Central limit theorem: any independent random process

WMAP anomalies II

Triangles in the Sky

Triangles in the Sky

Allowed multipoles 11,12,13 for the CMB bispectrum live in the domain

 $\begin{array}{lll} \text{Resolution:} & l_1, l_2, l_3 \leq l_{\max} \,, & l_1, l_2, l_3 \in \mathbb{N} \,, \\ \text{Triangle condition:} & l_1 \leq l_2 + l_3 \ \text{for} \ l_1 \geq l_2, \, l_3, \ + \ \text{cyclic perms.} \\ \text{Parity condition:} & l_1 + l_2 + l_3 = 2n \,, \quad n \in \mathbb{N} \,. \end{array}$

Reduced bispectrum $b_{l_1l_2l_3}$ from primordial bispectrum $B(k_1,k_2,k_3)$ $b_{l_1l_2l_3} = \left(\frac{2}{\pi}\right)^3 \int x^2 dx \int dk_1 dk_2 dk_3 (k_1k_2k_3)^2 B(k_1,k_2,k_3) \Delta_{l_1}(k_1) \Delta_{l_2}(k_2) \Delta_{l_3}(k_3) j_{l_1}(xk_1) j_{l_2}(xk_2) j_{l_3}(xk_3)$

Allowed multipoles 11,12,13 for the CMB bispectrum live in the domain

 $\begin{array}{lll} \text{Resolution:} & l_1, l_2, l_3 \leq l_{\max} \,, & l_1, l_2, l_3 \in \mathbb{N} \,, \\ \text{Triangle condition:} & l_1 \leq l_2 + l_3 \ \text{for} \ l_1 \geq l_2, \, l_3, \ + \ \text{cyclic perms.} \\ \text{Parity condition:} & l_1 + l_2 + l_3 = 2n \,, \quad n \in \mathbb{N} \,. \end{array}$

Reduced bispectrum $b_{11/213}$ from primordial bispectrum $B(k_1,k_2,k_3)$ Primordial bispectrum l_3 (0,L,L)(L,L,L) l_2 Inner product: Defined by estimator sum L $\overline{(L,0,L)}$ $\langle b, b' \rangle \equiv \sum w_{l_1 l_2 l_3} b_{l_1 l_2 l_3} b'_{l_1 l_2 l_3}$ $l_1, l_2, l_3 \in \mathcal{V}_T$ (L, L, 0)with weight $w_{l_1 l_2 l_3} = h_{l_1 l_2 l_3}^2$ ()

Allowed multipoles 11,12,13 for the CMB bispectrum live in the domain

 $\begin{array}{lll} \text{Resolution:} & l_1, l_2, l_3 \leq l_{\max} \,, & l_1, l_2, l_3 \in \mathbb{N} \,, \\ \text{Triangle condition:} & l_1 \leq l_2 + l_3 \ \text{for} \ l_1 \geq l_2, \, l_3, \ + \ \text{cyclic perms.} \\ \text{Parity condition:} & l_1 + l_2 + l_3 = 2n \,, \quad n \in \mathbb{N} \,. \end{array}$

Reduced bispectrum $b_{1/2/3}$ from primordial bispectrum $B(k_1,k_2,k_3)$ $b_{l_1 l_2 l_3} = \left(\frac{2}{\pi}\right)^3 \int x^2 dx \int dk_1 dk_2 dk_3 (k_1 k_2 k_3)^2 B(k_1, k_2, k_3) \Delta_{l_1}(k_1) \Delta_{l_2}(k_2) \Delta_{l_3}(k_3) j_{l_1}(x k_1) j_{l_2}(x k_2) j_{l_3}(x k_3)$ Primordial bispectrum l_3 Transfer functions (0,L,L)(L,L,L) l_{2} Inner product: Defined by estimator sum L $\overline{(L,0,L)}$ $\langle b, b' \rangle \equiv \sum w_{l_1 l_2 l_3} b_{l_1 l_2 l_3} b'_{l_1 l_2 l_3}$ $l_1, l_2, l_3 \in \mathcal{V}_T$ (L, L, 0)with weight $w_{l_1 l_2 l_3} = h_{l_1 l_2 l_3}^2$ ()

Allowed multipoles 11,12,13 for the CMB bispectrum live in the domain

 $\begin{array}{lll} \text{Resolution:} & l_1, l_2, l_3 \leq l_{\max} \,, & l_1, l_2, l_3 \in \mathbb{N} \,, \\ \text{Triangle condition:} & l_1 \leq l_2 + l_3 \ \text{for} \ l_1 \geq l_2, \, l_3, \ + \ \text{cyclic perms.} \\ \text{Parity condition:} & l_1 + l_2 + l_3 = 2n \,, \quad n \in \mathbb{N} \,. \end{array}$

Reduced bispectrum $b_{11/2/3}$ from primordial bispectrum $B(k_1,k_2,k_3)$

Inflation and the bispectrum

Hot plasma oscillations create patterns of acoustic peaks:

Inflation and the bispectrum

Hot plasma oscillations create patterns of acoustic peaks:

Inflation and the bispectrum

Hot plasma oscillations create patterns of acoustic peaks:

No-Go for Inflation esa

Simple inflation models *cannot* generate observable non-Gaussianity:

- single scalar field
- canonical kinetic terms
- always slow roll
- ground state initial vacuum
- standard Einstein gravity

No-Go for Inflation esa

Simple inflation models *cannot* generate observable non-Gaussianity:

- single scalar field
- canonical kinetic terms
- always slow roll
- ground state initial vacuum
- standard Einstein gravity

I.e. simple inflation predicts no (observable) randomness (see DB talk)

 $B \sim P^{3/2} / 1,000,000$

so deviations less than I part in a million!

Non-Gaussianity arguably the most stringent test of standard picture

No-Go for Inflation esa

Simple inflation models *cannot* generate observable non-Gaussianity:

- single scalar field
- canonical kinetic terms
- always slow roll
- ground state initial vacuum
- standard Einstein gravity

I.e. simple inflation predicts no (observable) randomness (see DB talk)

 $B \sim P^{3/2} / I,000,000$

so deviations less than I part in a million!

Non-Gaussianity arguably the most stringent test of standard picture

But simple inflation model-building faces rigorous challenges in fundamental theory (e.g. eta problem and super-Planckian field values). Many fundamental cosmology ideas/solutions violate these conditions!

Multifield inflation

NG from interacting potentials

Significant final f_{NL} ingredients: Rigopoulos, EPS, van Tent 05, 06;

- corner turning nontrivial potential [–] Rigopoulos, EPS, van Tent 05, 06; Vernizzi & Wands 06, and Bernadeau & Uzan 02 etc etc
- or breakout (hybrid models)
- Curvatons post-inflation eqn of state domination

e.g. Linde & Mukhanov 96; Enqvist & Sloth 01; Lyth & Wands 01; Moroi &

End of inflation, reheating and preheating

Modulated reheating_e.g. Kofman et al 05; Dvali et al 06; etc

Nonlinear perturbations from preheating e.g. Chambers & Rajantie 07,08; Bond, Frolov, Huang & Kofman, 09.

- Particle production during inflation (incl. warm inflation) Moss & Xiong, 07; Moss & Graham, 07.
- Scale-dependent bispectra e.g. Byrnes et al, 08; Liguori & Sefusatti et al, 09.

Tał			
•	6		
	† NL		
		Time (e-foldings)	

Multifield inflation

NG from interacting potentials

Significant final f_{NL} ingredients:

- or breakout (hybrid models)

e.g. Linde & Mukhanov 96; Enqvist & Sloth 01; Lyth & Wands 01; Moroi & Tak

End of inflation, reheating and preheating

Modulated reheating_e.g. Kofman et al 05; Dvali et al 06; etc

Nonlinear perturbations from preheating e.g. Chambers & Rajantie 07,08; Bond, Frolov, Huang & Kofman, 09.

- Particle production during inflation (incl. warm inflation) Moss & Xiong, 07; Moss & Graham, 07.
- Scale-dependent bispectra e.g. Byrnes et al, 08; Liguori & Sefusatti et al, 09.

Non-Canonical Inflation

- <u>Single field: K-inflation, DBI inflation</u> modified sound speed e.g. Silverstein & Tong 2003; Alishaha et al 2004; Chen et al 2006, Burrage et al, 2011 etc.
- <u>Multifield DBI inflation</u> e.g. Chen, 10; Renaux-Petel, 10.
- <u>NG effects from Galileons</u> e.g. Renaux-Petel, 10.
- <u>Vector inflation (anisotropy), Modified gravity etc.</u> e.g. Shiraishi et al, 10, Bartolo et al 11 etc..

Excited initial states - non-Bunch-Davies vacuum

e.g. Chen, et al, 2006; Holman & Tolley, 2008; Meerburg et al 2008

Feature and periodic models

e.g. Chen, Easther & Lim, 2005; Meerburg, 2010; Westerval et al 2009 Interesting work on polyspectra correlations - Chen, 2011.

Alternative primordial scenarios -

e.g. cosmic superstrings, textures, ekpyrotic models etc

k₃

 \mathbf{k}_1

 \mathbf{k}_2

Non-Canonical Inflation

- <u>Single field: K-inflation, DBI inflation</u> modified sound speed e.g. Silverstein & Tong 2003; Alishaha et al 2004; Chen et al 2006, Burrage et al, 2011 etc.
- <u>Multifield DBI inflation</u> e.g. Chen, 10; Renaux-Petel, 10.
- <u>NG effects from Galileons</u> e.g. Renaux-Petel, 10.
- <u>Vector inflation (anisotropy), Modified gravity etc.</u> e.g. Shiraishi et al, 10, Bartolo et al 11 etc..

Excited initial states - non-Bunch-Davies vacuum

e.g. Chen, et al, 2006; Holman & Tolley, 2008; Meerburg et al 2008

Feature and periodic models

e.g. Chen, Easther & Lim, 2005; Meerburg, 2010; Westerval et al 2009 Interesting work on polyspectra correlations - Chen, 2011.

Alternative primordial scenarios -

e.g. cosmic superstrings, textures, ekpyrotic models etc

 \mathbf{k}_1

 \mathbf{k}_2

 \mathbf{k}_{3}

k₃

Non-Canonical Inflation

- <u>Single field: K-inflation, DBI inflation</u> modified sound speed e.g. Silverstein & Tong 2003; Alishaha et al 2004; Chen et al 2006, Burrage et al, 2011 etc.
- <u>Multifield DBI inflation</u> e.g. Chen, 10; Renaux-Petel, 10.
- <u>NG effects from Galileons</u> e.g. Renaux-Petel, 10.
- <u>Vector inflation (anisotropy), Modified gravity etc.</u> e.g. Shiraishi et al, 10, Bartolo et al 11 etc..

Excited initial states - non-Bunch-Davies vacuum_k,

e.g. Chen, et al, 2006; Holman & Tolley, 2008; Meerburg et al 2008

Feature and periodic models

e.g. Chen, Easther & Lim, 2005; Meerburg, 2010; Westerval et al 2009 Interesting work on polyspectra correlations - Chen, 2011.

Alternative primordial scenarios -

e.g. cosmic superstrings, textures, ekpyrotic models etc

 \mathbf{k}_1

 \mathbf{k}_2

 \mathbf{k}_{3}

k₃

Non-Canonical Inflation

- <u>Single field: K-inflation, DBI inflation</u> modified sound speed e.g. Silverstein & Tong 2003; Alishaha et al 2004; Chen et al 2006, Burrage et al, 2011 etc.
- <u>Multifield DBI inflation</u> e.g. Chen, 10; Renaux-Petel, 10.
- <u>NG effects from Galileons</u> e.g. Renaux-Petel, 10.
- <u>Vector inflation (anisotropy), Modified gravity etc.</u> e.g. Shiraishi et al, 10, Bartolo et al 11 etc..

Excited initial states - non-Bunch-Davies vacuum_{k2}

e.g. Chen, et al, 2006; Holman & Tolley, 2008; Meerburg et al 2008

Feature and periodic models

e.g. Chen, Easther & Lim, 2005; Meerburg, 2010; Westerval et al 2009 5 Interesting work on polyspectra correlations - Chen, 2011.

Alternative primordial scenarios -

e.g. cosmic superstrings, textures, ekpyrotic models etc.,

Axion Monodromy

<u>Large-field inflation</u> predicts gravitational waves - r \sim 0.05 - but ...

- large excursions with a flat potential not natural (corrections)
- slow-roll inflation requires an effective shift symmetry $\Phi -> \Phi + c$ <u>Ingredients:</u> UV completion - string theory

Shift symmetry - axions $a -> a+2\pi$

Axion potential recycled - monodromy

<u>Predictions:</u>Tensor modes r>0.07 Power spectrum periodicity Bispectrum oscillations

e.g. Silverstein & Westphal 2008 Flauger et al 2009

Cosmic Defects

Cosmic strings and topological defects form at phase transitions Key parameter $G\mu = (\eta/M_{Pl})^2$

Evolve in a scale-invariant manner

Different varieties:

Local Nambu-Goto (super-)strings modelled with line-like simulations

Strings with radiative effects modelled with field theory simulations (Abelian-Higgs or global strings)

esa

Epoch	MS	RSB	BOS	MSM	BHKU
Radiation	11.5	9.5	11.0	5.0	3.8
Matter	3.0	3.2	3.7	1.5	1.3

Bracket uncertainties by constraining both string varieties (& textures)

Cosmic Microwave Sky

Cosmic strings create line-like CMB discontinuities

Cosmic string power spectra CMB power spectra Battye, Kunz & Moss 4000 'Local'-Nambu 3000 $[1(1+1)C_{1}/(2 \pi) [\mu K^{2}]$ 1000 AH 'Field theory' 0 100 1000 10 Reliable power spectra available (within string uncertainties)

Battye & Moss, 2010

Urrestilla, et al, 2011

Cosmic string power spectra

Reliable power spectra available (within string uncertainties)

Battye & Moss, 2010

Urrestilla, et al, 2011

Cosmic string non-Gaussianity

gravitational sources for CMB maps (Green's functions in flat sky approximation)

Extract the CMB string bispectrum from simulations - nearly constant & negative

Whorl

FLAT Excited states LOCAL Multifield DIRECTIONAL LATE-TIME Vector fields Cosmic strings **ISW** lensing

Fergusson and EPS, 2008

NON-SCALING Oscillatory features

Mainly work done in Planck with James Fergusson and Michele Liguori

Purpose: Test a model with predicted theoretical bispectrum

$$b_{l_1 l_2 l_3}^{\mathrm{th}} = \sum_{m_i} \mathcal{G}_{m_1 m_2 m_3}^{\ l_1 \ l_2 \ l_3} \langle a_{l_1 m_1}^{\mathrm{th}} a_{l_2 m_2}^{\mathrm{th}} a_{l_3 m_3}^{\mathrm{th}} \rangle$$

Estimator gives a least squares fit to the data

$$\mathcal{E} = \frac{1}{N^2} \sum_{l_i,m_i} \langle a_{l_1m_1}^{\text{th}} a_{l_2m_2}^{\text{th}} a_{l_3m_3}^{\text{th}} \rangle (C^{-1}a)_{l_1m_1} (C^{-1}a)_{l_2m_2} (C^{-1}a)_{l_3m_3}$$

$$= \frac{1}{N^2} \sum_{l_im_i} \frac{\mathcal{G}_{m_1m_2m_3}^{l_1l_2l_3} b_{l_1l_2l_3}^{\text{th}} a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}}{C_{l_1}C_{l_2}C_{l_3}}$$

with covariance matrix $C_{lm,l'm'} = \langle a_{lm}a_{l'm'} \rangle$

Mainly work done in Planck with James Fergusson and Michele Liguori

Purpose: Test a model with predicted theoretical bispectrum

$$b_{l_1 l_2 l_3}^{\text{th}} = \sum_{m_i} \mathcal{G}_{m_1 m_2 m_3}^{\ l_1 \ l_2 \ l_3} \langle a_{l_1 m_1}^{\text{th}} a_{l_2 m_2}^{\text{th}} a_{l_3 m_3}^{\text{th}} \rangle$$

Estimator gives a least squares fit to the data

$$\mathcal{E} = \frac{1}{N^2} \sum_{l_i,m_i} \langle a_{l_1m_1}^{\text{th}} a_{l_2m_2}^{\text{th}} a_{l_3m_3}^{\text{th}} \rangle (C^{-1}a)_{l_1m_1} (C^{-1}a)_{l_2m_2} (C^{-1}a)_{l_3m_3}$$

$$= \frac{1}{N^2} \sum_{l_im_i} \frac{\mathcal{G}_{m_1m_2m_3}^{l_1l_2l_3} b_{l_1l_2l_3}^{\text{th}} a_{l_1m_1} a_{l_2m_2} a_{l_3m_3}}{C_{l_1}C_{l_2}C_{l_3}}$$

with covariance matrix $C_{lm,l'm'} = \langle a_{lm}a_{l'm'} \rangle$

Babich, 2005; see also KSW etc

Mainly work done in Planck with James Fergusson and Michele Liguori

Purpose: Test a model with predicted theoretical bispectrum

$$b_{l_1 l_2 l_3}^{\mathrm{th}} = \sum_{m_i} \mathcal{G}_{m_1 m_2 m_3}^{\ l_1 \ l_2 \ l_3} \langle a_{l_1 m_1}^{\mathrm{th}} a_{l_2 m_2}^{\mathrm{th}} a_{l_3 m_3}^{\mathrm{th}} \rangle$$

Estimator gives a least squares fit to the data

$$\mathcal{E} = \frac{1}{N^2} \sum_{l_i, m_i} \langle a_{l_1 m_1}^{\text{th}} a_{l_2 m_2}^{\text{th}} a_{l_3 m_3}^{\text{th}} \rangle (C^{-1} a)_{l_1 m_1} (C^{-1} a)_{l_2 m_2} (C^{-1} a)_{l_3 m_3}$$

$$= \frac{1}{N^2} \sum_{l_i m_i} \frac{\mathcal{G}_{m_1 m_2 m_3}^{l_1 l_2 l_3} b_{l_1 l_2 l_3}^{\text{th}} a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{C_{l_1} C_{l_2} C_{l_3}} \mathcal{S}_{l_1 m_1} \mathcal{S}_{l_2 m_2} \mathcal{S}_{l_3 m_3}}$$

with covariance matrix $C_{lm,l'm'} = \langle a_{lm}a_{l'm'} \rangle$ Babich, 2005; see also KSW etc

Mainly work done in Planck with James Fergusson and Michele Liguori

Purpose: Test a model with predicted theoretical bispectrum

$$b_{l_1 l_2 l_3}^{\text{th}} = \sum_{m_i} \mathcal{G}_{m_1 m_2 m_3}^{\ l_1 \ l_2 \ l_3} \langle a_{l_1 m_1}^{\text{th}} a_{l_2 m_2}^{\text{th}} a_{l_3 m_3}^{\text{th}} \rangle$$

Estimator gives a least squares fit to the data

$$\mathcal{E} = \frac{1}{N^2} \sum_{l_i,m_i} \langle a_{l_1m_1}^{\text{th}} a_{l_2m_2}^{\text{th}} a_{l_3m_3}^{\text{th}} \rangle (C^{-1}a)_{l_1m_1} (C^{-1}a)_{l_2m_2} (C^{-1}a)_{l_3m_3}$$

$$= \frac{1}{N^2} \sum_{l_im_i} \frac{\mathcal{G}_{m_1m_2m_3}^{l_1l_2l_3} b_{l_1l_2l_3}^{\text{th}} a_{l_1m_1} a_{l_2m_2} a_{l_3m_3}}{C_{l_1}C_{l_2}C_{l_3}} \underbrace{\text{Noise}}$$

with covariance matrix $C_{lm,l'm'} = \langle a_{lm}a_{l'm'} \rangle$ Babich, 2005; see also KSW etc

CMB modal decomposition

$$\mathcal{E} = \sum_{l_i,m_i} \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\varphi} \bar{q}_{\{p} \bar{q}_r \bar{q}_{s\}} \int d^2 \hat{\mathbf{n}} Y_{l_2m_2}(\hat{\mathbf{n}}) Y_{l_1m_1}(\hat{\mathbf{n}}) Y_{l_3m_3}(\hat{\mathbf{n}}) \frac{a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}}{v_{l_1}v_{l_2}v_{l_3}\sqrt{C_{l_1}C_{l_2}C_{l_3}}}$$
$$= \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\varphi} \int d^2 \hat{\mathbf{n}} \left(\sum_{l_1,m_1} \bar{q}_{\{p} \frac{a_{l_1m_1}Y_{l_1m_1}}{v_{l_1}\sqrt{C_{l_1}}} \right) \left(\sum_{l_2,m_2} \bar{q}_r \frac{a_{l_2m_2}Y_{l_2m_2}}{v_{l_2}\sqrt{C_{l_2}}} \right) \left(\sum_{l_3,m_3} \bar{q}_{s\}} \frac{a_{l_3m_3}Y_{l_3m_3}}{v_{l_3}\sqrt{C_{l_3}}} \right)$$

$$\bar{M}_p(\mathbf{\hat{n}}) = \sum_{lm} q_p(l) \frac{a_{lm}}{v_l \sqrt{C_l}} Y_{lm}(\mathbf{\hat{n}})$$

 $\bar{\mathcal{M}}_n(\mathbf{\hat{n}}) = \bar{M}_p(\mathbf{\hat{n}})\bar{M}_r(\mathbf{\hat{n}})\bar{M}_s(\mathbf{\hat{n}})$

$$\beta_n = \int d^2 \mathbf{\hat{n}} \mathcal{M}_n(\mathbf{\hat{n}})$$

Fergusson, Liguori and EPS, 2009, 2010; see also KSW 38

$$\mathcal{E} = \frac{1}{N} \sum_{n=0}^{n_{\max}} \bar{\alpha}_n^{\mathcal{Q}} \bar{\beta}_n^{\mathcal{Q}}$$

Now the projection is in alpha rather than beta

CMB modal decomposition

$$\begin{aligned} \mathcal{E} &= \sum_{l_i,m_i} \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\mathcal{Q}} \bar{q}_{\{p} \bar{q}_r \bar{q}_{s\}} \int d^2 \hat{\mathbf{n}} \, Y_{l_2 m_2}(\hat{\mathbf{n}}) Y_{l_1 m_1}(\hat{\mathbf{n}}) \, Y_{l_3 m_3}(\hat{\mathbf{n}}) \, \frac{a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{v_{l_1} v_{l_2} v_{l_3} \sqrt{C_{l_1} C_{l_2} C_{l_3}}} \\ &= \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\mathcal{Q}} \int d^2 \hat{\mathbf{n}} \left(\sum_{l_1,m_1} \bar{q}_{\{p} \, \frac{a_{l_1 m_1} Y_{l_1 m_1}}{v_{l_1} \sqrt{C_{l_1}}} \right) \left(\sum_{l_2,m_2} \bar{q}_r \, \frac{a_{l_2 m_2} Y_{l_2 m_2}}{v_{l_2} \sqrt{C_{l_2}}} \right) \left(\sum_{l_3,m_3} \bar{q}_{s\}} \, \frac{a_{l_3 m_3} Y_{l_3 m_3}}{v_{l_3} \sqrt{C_{l_3}}} \right) \end{aligned}$$

$$\bar{M}_p(\mathbf{\hat{n}}) = \sum_{lm} q_p(l) \frac{a_{lm}}{v_l \sqrt{C_l}} Y_{lm}(\mathbf{\hat{n}})$$

$$\bar{\mathcal{M}}_n(\mathbf{\hat{n}}) = \bar{M}_p(\mathbf{\hat{n}})\bar{M}_r(\mathbf{\hat{n}})\bar{M}_s(\mathbf{\hat{n}})$$

$$\beta_n = \int d^2 \mathbf{\hat{n}} \mathcal{M}_n(\mathbf{\hat{n}})$$

Fergusson, Liguori and EPS, 2009, 2010; see also KSW 38

Now the projection is in alpha rather than beta

SEPARABILITY = TRACTABILITY, so create a basis of separable modes $\overline{Q}_n(l_1, l_2, l_3) = \frac{1}{6} [\overline{q}_p(l_1) \, \overline{q}_r(l_2) \, \overline{q}_s(l_3) + \overline{q}_r(l_1) \, \overline{q}_p(l_2) \, \overline{q}_s(l_3) + \text{cyclic perms in } prs]$ $\equiv \overline{q}_{\{p}q_rq_s\} \quad \text{with} \quad n \leftrightarrow \{prs\},$

Cesa

Expand any (nonseparable) bispectrum signal strength in modes as

$$\frac{v_{l_1}v_{l_2}v_{l_3}}{\sqrt{C_{l_1}C_{l_2}C_{l_3}}} b_{l_1l_2l_3} = \sum_n \bar{\alpha}_n^{\mathcal{R}} \overline{\mathcal{R}}_n$$

E.g. Local f_{NI} Model expansion for the a_n coefficients:

Expand <u>any</u> model with primordial modes α_n

primordial modes α_n

Primordial to CMB basis

Use transfer functions <u>once</u> to project forward primordial modes so we calculate

$$\Gamma_{nm} = \left\langle \bar{Q}^n \frac{v v v \tilde{Q}^m}{\sqrt{CCCC}} \right\rangle$$

Then we can transform between the primordial and CMB expansions

$$\bar{\alpha}^Q = \bar{\gamma}^{-1} \Gamma \alpha^Q$$

Primordial to CMB basis

Use transfer functions <u>once</u> to project forward primordial modes so we calculate

$$\Gamma_{nm} = \left\langle \bar{Q}^n \frac{v v v \tilde{Q}^m}{\sqrt{CCCC}} \right\rangle$$

Then we can transform between the primordial and CMB expansions

$$\bar{\alpha}^Q = \bar{\gamma}^{-1} \Gamma \alpha^Q$$

Bispectrum reconstruction modes

Reconstructed β_n modes from filtering Planck data

Mode number n

Planck Bispectrum Reconstruction

WMAP vs Planck

Fergusson, Liguori and EPS, 2010 Paper XXIII. Isotropy and statistics of the CMB

The Planck Bispectrum

Modal reconstruction of the full 3D Planck bispectrum

Modal FLS Bispectrum Reconstruction (Planck Collaboration 2013)

High bispectrum signal

 χ^2 -tests for integrated bispectrum consistent with Gaussianity, but signal always high.

Comparison with 200 lensed CMB Gaussian maps with Planck noise.

10.0

8.0

6.0

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

-10.0 L

20

40

60

80

100

120

140

Mode Number

160

180

200

220

240

DDX9 Mode Coefficieints

Binned slice reconstruction

Binned estimator S/N weighting - comparison of comp-sep maps

1000 1500 2000

 ℓ_1

500

ς

Bispectrum in detail

Bispectrum in detail

Weak detection of Integrated Sachs-Wolfe (ISW) lensing bispectrum, i.e. correlation between CMB and large-scale evolving grav. potential.

Estimator		SMICA		SEVEM		C-R		NILC	
	$\ell \ge 10$	0.68 ± 0.30	2.3	0.58 ± 0.31	1.9	0.52 ± 0.33	1.5	0.72 ± 0.30	2.4
Ιψ	$\ell \geq 2$	0.70 ± 0.28	2.5	0.62 ± 0.29	2.1	0.52 ± 0.32	1.6	0.75 ± 0.28	2.7
KSW		0.81 ± 0.31	2.6	0.68 ± 0.32	2.1	0.75 ± 0.32	2.3	0.85 ± 0.32	2.7
binned		0.91 ± 0.37	2.5	0.83 ± 0.39	2.1	0.80 ± 0.40	2.0	1.03 ± 0.37	2.8
modal		0.77 ± 0.37	2.1	0.60 ± 0.37	1.6	0.68 ± 0.39	1.7	0.93 ± 0.37	2.5

Significance ~ 2.5**σ** weak detection ...

Important as correlated with local model $f_{NL} \sim 7$

Second-order recombination contributions: Total $f_{NL} \sim 3$ Local $f_{NL} \sim 0.88$

ISW-Lensing

Weak detection of Integrated Sachs-Wolfe (ISW) lensing bispectrum, i.e. correlation between CMB and large-scale evolving grav. potential.

Estimator		SMICA	
	$\ell \ge 10$	0.68 ± 0.30	2.3
Ιψ	$\ell \geq 2$	0.70 ± 0.28	2.5
KSW		0.81 ± 0.31	2.6
binned		0.91 ± 0.37	2.5
modal		0.77 ± 0.37	2.1

Significance $\sim 2.5\sigma$ weak detection ...

Important as correlated with local model $f_{NL} \sim 7$

Second-order recombination contributions: Total $f_{NL} \sim 3$ Local $f_{NL} \sim 0.88$

2000

 $f_{\rm NL}^{\rm equil}$ Equilateral bispectra -42 ± 75 Inflation from higher dimensions Single-field - sound speed $c_s << c$

Primordial B(k₁,k₂,k₃) CMB B_{11/2/3} 1600 1200-0.5 800-400 0.6 1600 0.5 0.4 1200 800 -1 Fergusson & EPS, arXiv:1008.1730 1600

Standard Bispectra

Standard Bispectra

"Main Planck NG results"

Achieved forecast local variance $\Delta f_{NL} = 5.8$ (*Planck* nominal mission) Most stringent constraints for the standard separable shapes:

 $f_{\rm NL}^{\rm local} = 2.7 \pm 5.8, f_{\rm NL}^{\rm equil} = -42 \pm 75, \text{ and } f_{\rm NL}^{\rm ortho} = -25 \pm 39$

i.e., no evidence for local, equilateral or orthogonal bispectra

	Independent			ISW-lensing su		acted
	KSW	Binned	Modal	KSW	Binned	Modal
SMICA						
Local	9.8 ± 5.8	9.2 ± 5.9	8.3 ± 5.9	 $\textbf{2.7} \pm \textbf{5.8}$	2.2 ± 5.9	1.6 ± 6.0
Equilateral	-37 ± 75	-20 ± 73	-20 ± 77	 -42 ± 75	-25 ± 73	-20 ± 77
Orthogonal	-46 ± 39	-39 ± 41	-36 ± 41	 -25 ± 39	-17 ± 41	-14 ± 42
NILC						
Local	11.6 ± 5.8	10.5 ± 5.8	9.4 ± 5.9	 4.5 ± 5.8	3.6 ± 5.8	2.7 ± 6.0
Equilateral	-41 ± 76	-31 ± 73	-20 ± 76	 -48 ± 76	-38 ± 73	-20 ± 78
Orthogonal	-74 ± 40	-62 ± 41	-60 ± 40	 -53 ± 40	-41 ± 41	-37 ± 43
SEVEM						
Local	10.5 ± 5.9	10.1 ± 6.2	9.4 ± 6.0	 3.4 ± 5.9	3.2 ± 6.2	2.6 ± 6.0
Equilateral	-32 ± 76	-21 ± 73	-13 ± 77	 -36 ± 76	-25 ± 73	-13 ± 78
Orthogonal	-34 ± 40	-30 ± 42	-24 ± 42	 -14 ± 40	-9 ± 42	-2 ± 42
C-R						
Local	12.4 ± 6.0	11.3 ± 5.9	10.9 ± 5.9	 6.4 ± 6.0	5.5 ± 5.9	5.1 ± 5.9
Equilateral	-60 ± 79	-52 ± 74	-33 ± 78	 -62 ± 79	-55 ± 74	-32 ± 78
Orthogonal	-76 ± 42	-60 ± 42	-63 ± 42	 -57 ± 42	-41 ± 42	-42 ± 42

Quantitative non-Gaussianity - validation

Implications for scale-invariant NG models

Planck Paper XXIV. Constraints on primordial non-Gaussianity Equilateral and orthogonal shapes implications:

 $f_{\rm NL}^{\rm equil} = -42 \pm 75, \qquad f_{\rm NL}^{\rm ortho} = -25 \pm 39$

- Effective field theory sound speed $c_s > 0.02$
- For DBI inflation sound speed $c_s > 0.07$
- Ultraviolet DBI models parameter β < 0.7
- Higher derivative models constrained
- Power law K-inflation ruled out (cf power spectrum)

Local (squeezed) constraints:

 $f_{\rm NL}^{\rm local} = 2.7 \pm 5.8$

- Curvaton model constraint on ''decay fraction'' $r_D > 0.15^{>}$
- Ekpyrotic/cyclic "conversion mechanism" ruled out

Local and equilateral in combination

• Quasi-single-field inflation constrained ...

Quasi-Single field

$$B_{\Phi}^{\text{QSI}}(k_1, k_2, k_3) = \frac{6A^2 f_{\text{NL}}^{\text{QSI}}}{(k_1 k_2 k_3)^{3/2}} \frac{3^{3/2} N_{\nu} [8k_1 k_2 k_3/(k_1 + k_2 + k_3)^3]}{N_{\nu} [8/27](k_1 + k_2 + k_3)^{3/2}}$$

Alpha were calculated for 150 values of ν and the Beta covariance matrix was used to produce 2 billion simulations around the measured value of ν and f_{NL} which were used to produce the likelihood plot

Non-separable bispectra esa

Specific key single-field models constrained DBI inflation, effective field theory and higher derivative models ...

$$f_{\rm NL}^{\rm DBI} = 11 \pm 69$$

$$f_{\rm NL}^{\rm EFT1} = 8 \pm 73$$

$$f_{\rm NL}^{\rm EFT2} = 19 \pm 57$$

$$f_{\rm NL}^{\rm Ghost} = -23 \pm 88$$

Equilateral/orthogonal constraint on sound speed $c_s > 0.02$.

Equilateral shapes

Excited Initial States

Non-Bunch-Davies vacua from trans-Planckian effects or features

Five exemplar flattened models constrained (plus vector models)

Flattened model (Eq. number)	Raw $f_{\rm NL}$	Clean $f_{\rm NL}$	$\Delta f_{ m NL}$	σ	Clean σ
Flat model (13)	70	37	77	0.9	0.5
Non-Bunch-Davies (NBD)	178	155	78	2.2	2.0
Single-field NBD1 flattened (14)	31	19	13	2.4	1.4
Single-field NBD2 squeezed (14)	0.8	0.2	0.4	1.8	0.5
Non-canonical NBD3 (15)	13	9.6	9.7	1.3	1.0
Vector model $L = 1$ (19) $\dots \dots \dots$	-18	-4.6	47	-0.4	-0.1
Vector model $L = 2 (19) \dots \dots \dots$	2.8	-0.4	2.9	1.0	-0.1

Excited Initial States

Non-Bunch-Davies vacua from trans-Planckian effects or features

Five exemplar flattened models constrained (plus vector models)

Flattened model (Eq. number)	Raw $f_{\rm NL}$	Clean $f_{\rm NL}$	$\Delta f_{ m NL}$	σ	Clean σ
Flat model (13)	70	37	77	0.9	0.5
Non-Bunch-Davies (NBD)	178	155	78	2.2	2.0
Single-field NBD1 flattened (14)	31	19	13	2.4	1.4
Single-field NBD2 squeezed (14)	0.8	0.2	0.4	1.8	0.5
Non-canonical NBD3 (15)	13	9.6	9.7	1.3	1.0
Vector model $L = 1$ (19)	-18	-4.6	47	-0.4	-0.1
Vector model $L = 2 (19) \dots \dots \dots$	2.8	-0.4	2.9	1.0	-0.1

Non-Bunch-Davies vs Planck

Comparison/similarities of non-Bunch-Davies and Planck bispectra

Vector Inflation/Warm inflation

Inflation with gauge/vector fields can have non-trivial directional dependencies $B_{\Phi}(k_1, k_2, k_3) = \sum_{L} c_L[P_L(\mu_{12})P_{\Phi}(k_1)P_{\Phi}(k_2) + 2 \text{ perm}],$ (see e.g. Shiraishi et al, 2012)

Similarly 'twisted' bispectrum for warm inflation

No directional evidence but modal correlation could be improved ...

Feature models

Inflaton potential can have a feature which disturbs slow-roll:

$$B_{\Phi}^{\text{feat}}(k_1, k_2, k_3) = \frac{6A^2 f_{\text{NL}}^{\text{feat}}}{(k_1 k_2 k_3)^2} \sin\left[\frac{2\pi(k_1 + k_2 + k_3)}{3k_c} + \phi\right] \tag{6}$$

(Chen et al, 2007)

Can match the observed "oscillatory" signal in the Planck bispectrum (consistent with WMAP results)

Initial two-parameter survey only (k_c, Φ) .

Feature envelope best-fit

Intriguing 'hints' - but single oscillation 'look elsewhere' effect' analysis < 2σ Counterparts in power spectrum (initial Planck analysis absent) - ongoing ...

Feature envelope best-fit

Intriguing 'hints' - but single oscillation 'look elsewhere' effect' analysis < 2σ Counterparts in power spectrum (initial Planck analysis absent) - ongoing ...

Resonance and NBD Features

Table B.1. Results from a limited f_{NL} survey of resonance models of Eq. (17) with $0.25 \le k_c \le 0.5$ using the SMICA component-separated map. These models have a large- ℓ periodicity similar to the feature models in Table 12.

Phase Wavenumber	$\label{eq:phi} \begin{split} \phi &= 0 \\ f_{\rm NL} \pm \Delta f_{\rm NL} \end{split}$	$\label{eq:phi} \begin{split} \phi &= \pi/5 \\ f_{\rm NL} \pm \Delta f_{\rm NL} \end{split}$	$ \phi = 2\pi/5 \\ f_{\rm NL} \pm \Delta f_{\rm NL} $	$ \phi = 3\pi/5 \\ f_{\rm NL} \pm \Delta f_{\rm NL} $	$ \phi = 4\pi/5 \\ f_{\rm NL} \pm \Delta f_{\rm NL} $	$\label{eq:phi} \begin{split} \phi &= \pi \\ f_{\rm NL} \pm \Delta f_{\rm NL} \end{split}$
$k_{c} = 0.25 \dots k_{c} = 0.30 \dots k_{c} = 0.40 \dots k_{c} = 0.45 \dots k_{c} = 0.45 \dots k_{c} = 0.50 \dots k_{c$	-16 ± 57	6 ± 63	19 ± 67	31 ± 69	38 ± 68	-6 ± 60
	-66 ± 73	-57 ± 74	-44 ± 73	-26 ± 72	-7 ± 71	-65 ± 73
	5 ± 57	40 ± 66	55 ± 71	63 ± 73	63 ± 71	22 ± 61
	25 ± 56	34 ± 59	36 ± 62	34 ± 67	27 ± 69	30 ± 56
	-2 ± 65	-13 ± 72	-16 ± 69	-16 ± 60	-14 ± 55	-7 ± 71

Table B.2. Results from a limited f_{NL} survey of non-Bunch-Davies feature models (or enfolded resonance models) of Eq. (18) with $4 \le k_c \le 12$, again overlapping in periodicity with the feature model survey.

Phase Wavenumber	$\label{eq:phi} \begin{split} \phi &= 0 \\ f_{\rm NL} \pm \Delta f_{\rm NL} ~(\sigma) \end{split}$	$ \phi = \pi/4 f_{\rm NL} \pm \Delta f_{\rm NL} \ (\sigma) $	$\begin{split} \phi &= \pi/2 \\ f_{\rm NL} \pm \Delta f_{\rm NL} ~(\sigma) \end{split}$	$ \phi = 3\pi/4 f_{\rm NL} \pm \Delta f_{\rm NL} \ (\sigma) $
$k_{c} = 4 \dots \dots$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} -15 \pm 142 \ (-0.1) \\ 80 \pm 197 \ (\ 0.4) \\ 183 \pm 190 \ (\ 1.0) \\ 248 \pm 243 \ (\ 1.0) \\ 142 \pm 314 \ (\ 0.5) \end{array}$

String Constraints esa

Stringent new constraints on cosmic strings and global textures

Defect type	Pla	anck+WP	Planck+WP+highL		
•••••	f_{10}	$G\mu/c^2$	f_{10}	$G\mu/c^2$	
NAMBU	0.015	1.5×10^{-7}	0.010	1.3×10^{-7}	
AH-mimic	0.033	3.6×10^{-7}	0.034	3.7×10^{-7}	
AH	0.028	3.2×10^{-7}	0.024	3.0×10^{-7}	
SL	0.043	11.0×10^{-7}	0.041	10.7×10^{-7}	
TX	0.055	10.6×10^{-7}	0.054	10.5×10^{-7}	

String Constraints esa

Stringent new constraints on cosmic strings and global textures

NAMBU	0.015	1.5×10^{-7}	0.010	1.3×10^{-7}
AH-mimic	0.033	3.6×10^{-7}	0.034	3.7×10^{-7}
AH	0.028	3.2×10^{-7}	0.024	3.0×10^{-7}
SL	0.043	11.0×10^{-7}	0.041	10.7×10^{-7}
TX	0.055	10.6×10^{-7}	0.054	10.5×10^{-7}

Cosmic string non-Gaussianity

-100.0

Calibration using post-recombination string simulation maps: String bispectrum $G\mu/c^2 < 8.8 \times 10^{-7}$ Minkowski functionals $G\mu/c^2 < 7.8 \times 10^{-7}$

100.0

NG Conclusions

Local, equilateral and orthogonal shapes constrained $f_{\rm NL}^{\rm local} = 2.7 \pm 5.8$

All bispectrum paradigms investigated - squeezed, equil, flat, oscillatory

Some implications for fundamental cosmology:

- Effective field theory sound speed $c_s > 0.02$
- For DBI inflation sound speed $c_s > 0.07$
- Power law K-inflation ruled out (cf power spectrum)
- Curvaton model constraint on ''decay fraction'' $r_{\rm D}$
- Ekpyrotic/cyclic "conversion mechanism" ruled out
- Excited initial states and vector inflation constrained
- Feature model results not significant interesting 'hints'
- Strongest CMB constraints on cosmic defects
- Also first results for trispectrum au_{NL} < 2800

Planck bispectrum reconstruction ''patterns'' appear to have high NG signal

Investigations ongoing ... plus Full Mission data yet to come⁻¹⁰⁰

esa

NG Prospects

esa

I. New quantitative probe for cosmology - precision achieved by Planck

- improving with polarization data (i.e. more data 2014) $f_{\rm NL} \thickapprox 4$
- still early days for the trispectrum, $t_{\rm NL}>>~g_{\rm NL},$ full 5D

2. Most stringent test of inflation - passed scale-invariant NG test

- but what about other shapes? Is any Planck NG signal primordial?

<u>3. Secondary NG signals</u> - weak ISW lensing will become significant

- partial recombination-only corrections $f_{\rm NL}\sim3$
- 2nd-order theoretical analysis beginning e.g. corrections to lensing?

<u>4. Primordial NG</u> - stringent constraints on scale-invariant models

- explore alternative scale-dependent models
- e.g. oscillatory models, flattened NBD shapes

<u>5. Large-scale structure</u> - galaxy surveys, 21 cm

- explore possibilities (look beyond local NG)!

NG Prospects

I. New quantitative probe for cosmology - precision achieved by Planck

- improving with polarization data (i.e. more data 2014) $f_{\rm NL} \thickapprox$ 4
- still early days for the trispectrum, $t_{\rm NL}>>~g_{\rm NL},$ full 5D

2. Most stringent test of inflation - passed scale-invariant NG test

- but what about other shapes? Is any Planck NG signal primordial?

<u>3. Secondary NG signals</u> - weak ISW lensing will become significant

- partial recombination-only corrections $f_{\rm NL}\sim3$
- 2nd-order theoretical analysis beginning e.g. corrections to lensing?

-15 ^L

<u>4. Primordial NG</u> - stringent constraints on scale-invariant models

- explore alternative scale-dependent models
- e.g. oscillatory models, flattened NBD shapes

<u>5. Large-scale structure</u> - galaxy surveys, 21 cm - explore possibilities (look beyond local NG)!