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The simplest inflationary models have 
passed their most stringent test yet!

What is the physical origin of all the 
structure in the Universe?

Cosmic Microwave Background 
image:  Planck

Large Scale Structure 
image: SDSS
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Inflationary models in a post-Planck world
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•Exact scale invariance (ns=1) ruled out at >5σ by a single experiment

•While convex potentials are still allowed, Planck hints that flattened 
potentials are preferred  
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Inflationary models in a post-Planck world
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•Planck does not exclude or suggest many active fields during inflation

•However, single-field models are arguably “simplest” allowed by data
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Inflationary models in a post-Planck world

•Bispectrum now a routine observable, like the spectral index

• Standard bispectrum configurations not detected by Planck; stringent 
constraints on local/equilateral/orthogonal etc shapes 

Shape ISW-lensing subtracted KSW

Local 2.7 ± 5.8

Equilateral -42 ± 75

Orthogonal -25 ± 39

DBI 11 ± 69

EFT1 8 ± 73

EFT2 19 ± 57

Ghost -23 ± 88
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Inflationary models in a post-Planck world

•No NG detection: stalls progress via “bottom up” approach (e.g. 
reconstruction via measuring EFT observables...).

• “Top down” approach (model-building first) looks more promising.

•Non-generic correlations between 2pt+3pt+... observables provide 
powerful constraints on such models

+
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Outline

•Testing inflation with the Planck power spectrum and 
bispectrum 

•A case study of the “top down” approach with multiple 
non-generic observables: constraining monodromy inflation 
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What is the physics of inflation?

“Inflation consists of taking 
a few numbers that we don’t 
understand and replacing it 
with a function that we 
don’t understand”

David Schramm  1945 -1997

Why is the 
potential so 
flat?

Why did the field start here?

Where did 
this function 
come from?

How do we convert the 
field energy completely 
into particles?

V (φ)

φ
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Testing a subset of the inflationary zoo: 
priors

•Potential parameters are mass scales in particle physics; leads to 
logarithmic priors

•Evaluate models on equal footing by requiring amplitude of primordial 
fluctuations within 2 orders of mag of observations.

•Reheating: uniform prior on number of e-folds; accept models that 
achieve thermalisation by a given energy scale, plus effective post-
inflationary equation of state within specified range.
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Constraints on post-inflationary epoch
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Constraints on specific models: examples I

natural units in reduced Planck mass
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Constraints on specific models: examples II

instant / restrictive / permissive entropy generation
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Reminder: 
parameter estimation vs model comparison

P (✓|D) =
P (D|✓)P (✓)R
P (D|✓)P (✓)d✓

posterior: 
probability of 

the model 
given the data

probability of 
the data given 

the model

prior 
probability

Evidence: 
normalizing 

factor

Evidence: model-averaged likelihood
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Model comparison
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Parametric searches for features in 
the primordial spectrum
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Parametric searches for features in 
the primordial spectrum

•higher frequencies?

•complementary signals 
in polarization and NG?
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Joint constraints from 2-pt and 3-pt

•Consider general class of inflationary models where Lagrangian is 
general function of the scalar inflaton field and its first derivative.

•Inflationary sound speed can be cs < 1 (canonical case: cs=1).

• Full parameter set (As,  ϵ1, ϵ2, cs) assuming constant sound speed 
degenerate without NG info.

Hubble Flow Functions
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canonical case including cs >0.02 (95% 
CL) constraint from NG
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Joint constraints from 2-pt and 3-pt: 
some other examples

•IR DBI:  DBI model where inflaton moves from IR to DBI side, with 
potential

where 0.1 < β < 109. Planck ns + fNL(DBI) constrains β < 0.7 (95% CL).
  
•k-inflation: One class depends on a single parameter γ (Amendariz-
Picon et al, 99). 

Planck ns: 0.01 < γ < 0.02 (95% CL); 
Planck fNL(equil): γ > 0.05 (95% CL). 

Inconsistent! 
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A “top down” case study*: 
Constraining monodromy inflation

arXiv:1303.2616 (JCAP in press)

with Richard Easther (Auckland) & 
Raphael Flauger (IAS Princeton/NYU)

*pre-Planck
Thursday, 20 June 13
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Flattened potentials

• “Technical naturalness” ('tHooft & Wilson): theory considered untuned 

-if its small numbers are generated dynamically 

-if quantum corrections are suppressed by symmetry principle.

• flattened potentials included in Wilsonian-natural subset of inflationary 
models. 

• The approximate shift symmetry involved can arise from pseudo-
Nambu goldstone bosons (axions).
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Theoretical Background and Motivation

Monodromy inflation

• Silverstein and Westphal: arXiv:0803.3085

• Flauger, McAllister, Pajer, Westphal and Xu: arXiv:0803.3085

• Flauger and Pajer: arXiv:1002.0833

Key features

• Large field range, wrapped around a compact direction

• High scalar, detectable tensors, theoretical “control”

• Wrapping provides extra scale: modulated spectrum?
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Approximation to the potential...

•Amplitude of perturbations set by μ

•Axion decay constant f: sub-Planckian, f > few x 10-4 

•Modulations: 0 ≤ b < 1 to prevent trapping

V (�) = µ3


�� bf

✓
cos

✓
�

f
+  

◆
� c

◆�

Thursday, 20 June 13



Analysis

• Uses MODECODE (Peiris, Easther & others) 

- Directly solves perturbation equations

- There is also a good approximate solution

• CAMB slowed down by oscillatory spectrum

- Uses interpolation when it can; not safe here

- Boosted accuracy settings in CAMB (checked convergence)

• Sampling done by MultiNest

- Massively parallel; samples prior not posterior
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Priors

Inflation

Mass scale �3.615 < log10(µ/MPl) < �3.015
Axion coupling �3.4 < log10(f/MPl) < �2.0
Oscillation amplitude 0 < b < 0.9
Phase �⇡ <  < ⇡

Matching

e-foldings N = 55

Astrophysics

Baryon fraction 0.0218859 < ⌦bh2 < 0.02378859
Dark matter ⌦dmh2 = 0.1145
Reionization ⌧ = 0.0874
Projected acoustic scale ✓ = 1.040
Sunyaev-Zel’dovich Amplitude ASZ = 0.10078
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Marginalised posterior
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Marginalised posterior
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Marginalised posterior
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Effect on power spectrum
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Significance

• Bayesian evidence: 0.6 in favor of modulated model 
(not significant)

• Maximum likelihood:  -2 Δ ln L ~ 19 for high peak; 
12 for low peak

- Relative to both b=0 and ΛCDM

- Significant improvement, but not compelling

- Both peaks: -2 Δ ln L ~ 11 with μ fixed
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Locating the improvement...
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Non-Gaussianity

Resonant non-Gaussianity 

• Chen, Easther and Lim − arXiv:0801.3295

• Generated inside the horizon

• Considered generic interaction terms for 3-point function

Monodromy

• Flauger, McAllister, Pajer, Westphal & Xu

• Detailed look at non-Gaussianity (also Flauger & Pajer)

• Little “overlap” with standard shapes; not constrained
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Non-Gaussianity
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Post-Planck update

• Large, high frequency oscillation seen in WMAP9

• Similar analysis by Planck; but not at this frequency

• WMAP and Planck appear different in several relevant 
aspects

• Larger than most “anomalies” 

• But not compelling

• And even if it is “real”, it could be a systematic 

• Interesting model, eminently testable through predictions 
for scalar/tensor spectra + bispectrum...
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What is the physics of inflation?

“Inflation consists of taking 
a few numbers that we don’t 
understand and replacing it 
with a function that we 
don’t understand”

David Schramm  1945 -1997

Why is the 
potential so 
flat?

Why did the field start here?

Where did 
this function 
come from?

How do we convert the 
field energy completely 
into particles?

V (φ)

φ
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We see a model working in practice. 
How does it work in principle?

What is the physical origin of all the 
structure in the Universe?

Cosmic Microwave Background 
image:  Planck

Large Scale Structure 
image: SDSS
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Does inflation work in principle?

What is the physical origin of all the 
structure in the Universe?

Cosmic Microwave Background 
image:  Planck

Large Scale Structure 
image: SDSS
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