CMS in the Cloud

GridPP Cloud Meeting 30 November 2012

Andrew Lahiff, Chris Brew

Why clouds?

- An interesting way to get additional resources when we need them
- An opportunity to develop components and services that we can float onto generic infrastructure
- The images required for the cloud are the same as we could be developing for easy deployment of things
- Being compliant with clouds may make our framework more modular/flexible/extendable...
- We may contribute to the development of cloud technologies so that they don't diverge too much from our needs
- A good way to stay relevant in high exposure development areas

What's the end result?

- The high level goal is to make use of additional resources from the cloud at a level that is noticeable to the experiment
- Doesn't make sense to get 10% additional resources for a month. It's a lot of work, maybe some money, and in the end no one will notice
- Goal should be an infrastructure that could double the simulation capacity of CMS for a month
- This would be gaining 25-30k cores for a month
- Enable high priority samples to be completed a month early

Requirements to run a CMS job

- CMS software framework (CMSSW)
- CVMFS
- Frontier
- Squid server in the cloud?
- Data (read access)
- xrootd + sufficient WAN
- Data (write access)
- SRM, or xrootd?
- Resource provisioning
- glideinWMS starts VMs with pilots which register with central queue
- Eliminates the need for a CE

Activities

- StratusLab
- LxCloud
- Amazon spot instances
- HLT cloud

StratusLab

- First tests carried out by CERN IT-ES
- Dedicated Condor manager setup in the cloud; CRAB2 configured to submit to this
- Software via CVMFS
- Input data via xrootd
- External Frontier squids
- Jobs ran successfully
- MC
- Analysis

Trial of Amazon spot instances

- Spot instances
- EC2 opportunistic access
- Low-cost (~10x less than on-demand instances)
- Actual cost variable via spot market (bid x dollars per hour)
- Trial runs
- Attached EC2 VMs to T2_US_Wisconsin
- 3 cores for 1 month, 100 cores for 1 week
- 55% of cost was for data transfer
- Ideal use case
- Low output to CPU ratio
- Short jobs (less work lost due to instance termination)
- Distant deadline (more flexibility to use cheaper options)

HLT cloud

- The CMS High Level Trigger:
- 13312 cores, 211280 HS06 \rightarrow large resource
- No storage, some computers have small disks
- Why not use these computers during the shutdown?
- Actually, why not use them whenever they're not in use?
- Conceived as an Overlay Infrastructure
- Try to minimize the impact on the existing production HLT cluster configuration (software \& networking)
- Technology used:
- Openvswitch
- OpenStack (with as KVM underlying hypervisor)

HLT cloud: status

- Work is ongoing
- Will be first major production use of cloud infrastructure by CMS
- The exercise of deploying an overlay cloud on the CMS online cluster is fruitful for the future
- Can share knowledge of how to deploy such an overlay layer to existing sites that may transition this way to a cloud infrastructure while keeping existing services running
- Gaining experience on how to contextualize and deploy VMs on the cloud infrastructures that are becoming commonplace

Storage

- All tests have used storage outside the cloud
- Alternatives?
- Setup a virtualized SE in the cloud
- Cloud storage

Looking forward

- Cloud provided computing tends to be factors more expensive than providing the resources in house for resources that are heavily used
- Costs for commercial facilities is coming down
- Interesting to cover peak periods
- Need to prepare for a time when this could be the norm
- Even if we never use large scale commercial resources there could be a benefit to making the infrastructure work
- Simplify the packing and deployment of infrastructure and services
- May increase ability to share resources across disciplines

