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Introduction

General references

B — Roger Barlow: Statistics (Wiley)

C — Glen Cowan: Statistical Data Analysis (Oxford)

F — Fredrick James: Statistical Methods in Experimental Physics
(World Scientific)

P — Particle Data Group 2012: J Beringer et al, Phys.Rev. D86,
010001 (2012) http://pdg.lbl.gov
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Overview

Why statistics at all ?

Fluctuations due to:

non-deterministic processes

influences not under experimental control

Compare: error bar, uncertainty, systematic error, bias

-

�
?

your system/data mathematical model

physics conclusions deductions

statistics
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Overview

What is special for nuclear physics ?

Often emphasis on count numbers
Frequently multi-parameter problems
Most practitioners meet statistics problems (few specialists)
Still more frequentist than Bayesian (long tradition/prehistory)

Compare to particle physics/astrophysics — statistics as used in

biology/medicin/social science
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Overview

A general overview

Assumptions: some acquaintance with statistics and data analysis

Review of the important concepts

Sketch of possible implementations

Illustration with examples

Excercises

train concepts
turn theory into practice

Aim: make you understand what you do when you fit — and why...

If all you have is a hammer, everything looks like a nail
A Maslow / M Twain/ ...
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Overview

Type of questions you may find answers to...

How do I turn my problem into a model ?

Is my model compatible with the data ?

What is the “measured value of a parameter” ?

What is its error bar ?

And the more tricky ones:

My fit is on top of the data, but χ2 is bad. Why ?

My χ2 is good, but the fit looks funny. . .

One data point is way off the rest. Can I throw it away ?

Are error bars the same from multi-parameter fits as from
single-parameter ?

What to do in between low statistics and no statistics ?
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Overview

The frustration of too many counts
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Describing detector physics rather than “wanted” physics ?!
How detailed do you need to be ?
More statistical tools → easier to focus on the essentials
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Framework

How to avoid learning statistics

build a good model

do Monte Carlo simulations

learn how to interpret them

-

�

?

?

your system/data mathematical model

physics conclusions deductions

simulations
Monte Carlo

statistical analysis

So some statistics, sorry. . .
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Framework

Frequentist or Bayesian statistics ?

Two different approaches/philosophies, in practice often similar
answers.

Bayesian: “not a fit, but update of information”
Prior/posterior distributions, natural to incorporate restrictions and
previous knowledge, testing complicated, decision-making
straightforward.

Frequentist: “estimate general properties from one data set”
Focus on behaviour at maximum, significance test and
goodness-of-fit test natural, hard to include extra information.

Arbitrary prior ↔ arbitrary analysis method

P chap 36, J, F James PHYSTAT2003
http://www.slac.stanford.edu/econf/C030908/papers/THAT002.pdf
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Framework

Basic Bayesian. . .

Bayes theorem: P(a|b) = P(b|a)P(a)/P(b)

Naively: P(theory|result) = P(result|theory)P(theory)/P(result)

With prior (π(θ)) and posterior (p(θ|x)) distributions and the
likelihood L(x |θ) this becomes:

p(θ|x) =
L(x |θ)π(θ)∫

L(x |θ′)π(θ′)dθ′

Bayesian inference in physics, U von Toussaint, Rev.Mod.Phys. 83 (11) 943

Bayesian inference in processing experimental data: principles and basic

applications, G D’Aostini, Rep.Prog.Phys. 66 (03) 1383

Bayesian inference in physics: case studies, V Dose, Rep.Prog.Phys. 66 (03)

1421
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Probability

Ingredients to build a model (1)

Need probability distributions
Gaussian (continuous) and Poisson (discrete) not sufficient
Overview in: B 3, C 2, J 4, P chap 35

Should know about
discrete: binomial, multinomial, Poisson
continuous: Gaussian, chi-square, uniform, exponential,
(Breit-Wigner, Landau)

Central Limit Theorem = “Everything turns Gaussian”
Convergence in distribution (weak !), be careful with tails
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Probability

Example: Poisson process

Def: process with independent increments at constant intensity λ

Time between counts has an exponential distribution.
The number of counts after time t is Poisson distributed with
mean λt.

NB! Counting until a total given number of counts gives a
multinomial distribution !

DAQ/detector deadtime → recorded count number never strictly
Poisson. . .
Dead time: JW Müller, NIM A301 (91) 543 and refs therein
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Errors

Ingredients to build a model (2)

What type of errors / uncertainties ?

error statistical/intrinsic systematic

caused by inate imprecision bias of setup
example count number calibration uncertainty

scales as
√

N const
points uncorrelated correlated

Need to treat correlations → covariance

See also B 4.4 (J Heinrich and L Lyons, Ann.Rev.Nucl.Part.Sci. 57 (07) 145)

Example: figure 21.1 in P (distances to Type 1a supernovae as function

of redshift) – what errors/distribution is relevant here ?

K.Riisager, CERN/ISOLDE March 18–21 2013 Statistical tools for nuclear experiments



Preliminaries

Data summary

How to summarize data/ results/ distributions

Location: mean median mode

Spread: variance/standard deviation MAD IR
why actually (∆x)2 and not |∆x | ?

Higher order moments ? skew curtosis

Much more important: covariance normalized = correlation coef

cov(x , y) = (x − x)(y − y) = xy − x y

NB! “Exploratory data analysis” used in other fields
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Data summary

Example: Landau distribution

One example to show the limitations of the standard concepts
a less extreme example is given in the problems

The Landau distribution
used to describe energy
loss

Mean and variance are undefined (median exists).

C2.9
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Data summary

Covariance matrix

Systematic effects can give covariance:

(
σ2

1 + s2 s2

s2 σ2
2 + s2

)
Data sets can have covariance

Also covariance between derived parameters, including fit
parameters !
MINUIT gives correlations between fit parameters

B2.6+4.4.2, C1.5

Example: 12Be halflife strongly correlated with daughter halflife, see

figure 1 and 2 of U.C. Bergmann et al., Eur. Phys. J. A 11 (01) 279
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Data summary

Propagation of errors

First method: do Taylor expansion to first order and take
expectation values

cov(fk , fl) =
∑

i

∑
j

∂fk
∂xi

∂fl
∂xj

cov(xi , xj)

standard expression for σ(f ) when cov(xi , xj) is “diagonal”

possible covariance between f ’s even with diagonal cov(xi , xj)
trivial example: area and circumference of rectangle

Second method: simulate input parameters, evaluate output
parameters
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Example: 20Na

20Na βα decay, IGISOL at JYFL
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K.L Laursen, O.S. Kirsebom et al., to be submitted
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Example: 20Na

20Na βα decay, IGISOL at JYFL
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Example: 20Na

20Na βα decay: IAS/total α-branch

Four measurements of Iα
IAS/Iα

tot (four detectors):

Detector 1: 13.848± 0.038± 0.018 %
Detector 2: 13.869± 0.033± 0.020 %
Detector 3: 13.824± 0.036± 0.024 %
Detector 4: 13.923± 0.039± 0.020 %

Check consistency, σ statistical, χ2 = 3.72.
Weighted average, simple average, add count numbers ??
Add statistical and systematic errors:
= 13.864± 0.018± 0.024 = 13.864± 0.030.
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