Statistical tools for nuclear experiments, 3

Karsten Riisager

Aarhus University

March 20, 2013

K.Riisager, CERN/ISOLDE March 18–21 2013 Statistical tools for nuclear experiments, 3

- 🔹 🖻

Introduction

Contents

Main topics

- Preliminaries
- Fitting
- Testing
- Other topics

Subtopics

- Hypothesis test
- Goodness-of-fit
- Significance level
- Specific tests:
 - χ²
 - likelihood ratio

→ 同 → → 目 → → 目 →

2

EDF tests

General test theory

Hypothesis test

Examples:

- is the detected particle a pion or a kaon ?
- is my level scheme regular or chaotic ?
- does my data support model A or model B ?

The dilemma: exclude correct results vs. include wrong ones two types of error (probability α and β), need to optimize...

Significance level (α) = probability of excluding correct result Power ($1 - \beta$) = probability of excluding wrong result

Tests should be powerful, consistent (and without bias).

B8.1, **C**4.1, **J**10, **P**36.2

- 4 同 6 4 日 6 4 日 6

General test theory

Neyman-Pearson test

A test consists (for our purpose) of two things:

- an algorithm giving a number x
- specification of which region of x is accepted, which rejected

Let our hypothesis give distribution $P_H(x)$ and the alternative hypothesis $P_A(x)$.

The **Neyman-Pearson test** uses the likelihood ratio $P_A(x)/P_H(x)$ to rank the *x*-regions; low values accepted, high ones rejected.

There is the "best test" for cases without fit parameters ("simple hypotheses").

General test theory

Likelihood ratio test

If your hypothesis/model has parameters one may often rephrase into a likelihood ratio test using the standard likelihood L(x; a). This is the case when you wish to test that the parameters abelong to a subset Ω_0 of the total parameter-space Ω_{tot} .

The maximum likelihood ratio is:

$$\lambda = \max_{\pmb{a}\in\Omega_0} L(x;\pmb{a})/\max_{\pmb{a}\in\Omega_{tot}} L(x;\pmb{a}) \ , \quad 0\leq\lambda\leq 1$$

Asymptotically $-2 \ln \lambda$ has a χ^2 -distribution (number of dof = difference in number of parameters in Ω_0 and Ω_{tot}). Example: Poisson likelihood χ^2_{λ} , $n_i = y_i$ versus n_i free. Dof = N- number of parameters in y.

J10.5

Question: does the model fit my data ?

- a subset of testing, but only one "hypothesis" specified.

Most often no unique best procedure !

Two things to consider:

- Do you really want the answer ??
- If yes, do you care sufficiently to go beyond χ^2 ?

Tests can be combined...

(4 同) (4 回) (4 回)

The chi-square test

All time favourite: (Pearson's) chi-square test for histograms.

$$X^2 = \sum_{i=1}^{M} \frac{(n_i - Np_i)^2}{Np_i} , \quad p_i = \int_i y \mathrm{d}x$$

Neyman modification: $Np_i \rightarrow n_i$ in denominator. Asymptotically a χ^2 -distribution, works better when bins are chosen so that p_i about equal.

"Too nice to be true": # dof = # points - # parameters

Very general method — therefore often not powerful.

B8.3.1, **C**7.5, **J**11.2

Testing ○○○○○●○○○○○○○

Goodness-of-fit tests

Example: Halflife of ⁶⁴Cu

・ロン ・回 と ・ 回 と ・ 回

Testing

Goodness-of-fit tests

Example: ²⁰Na $\beta \alpha$ decay

 $\chi^2/\nu = 2.21, \ \nu = 800$

● ▶ < ミ ▶

< ≣⇒

Problems with chi-square

A technical problem: is the χ^2 value acceptable ? Can use that $\sqrt{2\chi^2}$ is, for $\nu > 30$, Gaussian with mean $\sqrt{2\nu - 1}$ and standard deviation 1.

I.e. $\sqrt{2\chi^2} - \sqrt{2\nu - 1}$ gives the number of σ 's.

The deeper problems:

- $\bullet\,$ Finite sample $\rightarrow\,$ when does the asymptotic behaviour set in ?
- Throws away much information
 - insensitive to sign of deviation
 - cannot see systematic trends (correlated deviations)
- Sensitive to "outliers" (deviation squared !)

May combine with complimentary test, e.g. run test.

Compare **Empirical Distribution Function** (EDF) with cumulative distribution.

 $EDF(x) = (number of data points \le x)/N$ Kolmogorov(-Smirnov), Cramér-von Mises, Anderson-Darling...

Pros Easy to interpret for parameter-free distributions. Distribution-free. *Cons* Need Monte-Carlo when parameters are fitted. Mainly for 1-D data.

イロト イポト イヨト イヨト

B8.3.3, **J**11.4

(Illustrated with figure 4 + table 1 from H. Jeppesen et al., Nucl. Phys. A709 (02) 119)

P-values etc

Prove a new effect vs. disprove "null hypothesis" ??

P-value = probability of observed data (or more extreme departures) *if* the null hypothesis is true.

If $P < \alpha$ (significance level), null hypothesis is rejected. Typically use $\alpha = 0.05$. Particle physics want positive 5σ signal.

[Are most published research findings in medicin "false positives" ? J.P.A. Ioannidis, PLoS Medicine vol 2, issue 8 (2005) e124]

P is *not* the probability of data arising by chance. *P* is *not* the probability of the null hypothesis, need Bayesian methods/decision theory to decide on models

Example: χ^2 per dof and P-values

As figure 36.2 in **P**, that gives "reduced" χ^2 with corresponding P-values, shows explicitly:

Alway quote χ^2 and n, never just χ^2/n ! or use the $\sqrt{2\chi^2}$ -rule...

Illustrated with figure in W review, P p 470: χ^2 and dof for two sets of W boson mass measurements.

(4月) (1日) (日)

In principle: reject model, incompatible with data !

In practice: find out where the large χ^2 comes from (plot of residuals).

If from a specific feature, it may not affect physics results (parameter errors etc).

If no obvious cause (and you insist in using the model):

enlarge error bars by $\sqrt{\chi^2/\nu}$

a PDG recipe — always think before use...

A (10) A (10)

Monte Carlo simulations !

Many other tests available: Shapiro-Wilk test, run test, ranking tests . . .

Neural networks.

Bayesians employ "Bayes factor" for testing (ratio of posterior probability of two models — related to likelihood ratio).

(4 同) (4 回) (4 回)