
Wouter Verkerke, NIKHEF

RooFit
A tool kit for data modeling in ROOT

Wouter Verkerke (NIKHEF)

1

Introduction

Wouter Verkerke, NIKHEF

1
What is

RooFit ?

2

Wouter Verkerke, NIKHEF

Focus: coding a probability density function

• Focus on one practical aspect of many data analysis in
HEP: How do you formulate your p.d.f. in ROOT
– For ‘simple’ problems (gauss, polynomial), ROOT built-in models

well sufficient

– But if you want to do unbinned ML fits, use non-trivial functions,
or work with multidimensional functions you are quickly running
into trouble

3

Wouter Verkerke, NIKHEF

Why RooFit was developed

• BaBar experiment at SLAC: Extract sin(2b) from time
dependent CP violation of B decay: e+e-  Y(4s)  BB

– Reconstruct both Bs, measure decay time difference

– Physics of interest is in decay time dependent oscillation

• Many issues arise

– Standard ROOT function framework clearly insufficient to handle such
complicated functions  must develop new framework

– Normalization of p.d.f. not always trivial to calculate  may need numeric
integration techniques

– Unbinned fit, >2 dimensions, many events  computation performance
important  must try optimize code for acceptable performance

– Simultaneous fit to control samples to account for detector performance

  
  );|BkgResol();(BkgDecay);BkgSel()1(

);|SigResol())2sin(,;(SigDecay);SigSel(

bkgbkgbkgsig

sigsigsigsig

rdttqtpmf

rdttqtpmf






 b

4

Wouter Verkerke, NIKHEF

RooFit – a data modeling language for ROOT

C++ command line
interface & macros

Data management &
 histogramming

Graphics interface

I/O support

MINUIT

ToyMC data
Generation

Data/Model
Fitting

Data Modeling

Model
Visualization

Extension to ROOT – (Almost) no overlap with existing functionality

5

Project timeline

• 1999 : Project started

– First application: ‘sin2b’ measurement of BaBar
(model with 5 observables, 37 floating parameters, simultaneous fit to
multiple CP and control channels)

• 2000 : Complete overhaul of design based on
 experience with sin2b fit

– Very useful exercise: new design is still current design

• 2003 : Public release of RooFit with ROOT

• 2004 : Over 50 BaBar physics publications using RooFit

• 2007 : Integration of RooFit in ROOT CVS source

• 2008 : Upgrade in functionality as part of RooStats project

– Improved analytical and
numeric integration handling,
improved toy MC generation,
addition of workspace

• 2009 : Now ~100K lines of code

– (For comparison RooStats
 proper is ~5000 lines of code)

• 2012 : Higgs discovery models
 formulated in RooFit using
 workspace concept

last modification before date

li
n
e
s
 o

f
c
o
d
e

4

6

Wouter Verkerke, NIKHEF

Data modeling - Desired functionality

Building/Adjusting Models

 Easy to write basic PDFs ( normalization)

 Easy to compose complex models (modular design)

 Reuse of existing functions

 Flexibility – No arbitrary implementation-related restrictions

Using Models

 Fitting : Binned/Unbinned (extended) MLL fits, Chi2 fits

 Toy MC generation: Generate MC datasets from any model

 Visualization: Slice/project model & data in any possible way

 Speed – Should be as fast or faster than hand-coded model

A
 n

 a
 l
 y

 s
 i
 s

 w

 o
 r

 k

 c
 y

 c
 l
 e

7

Wouter Verkerke, NIKHEF

• Idea: represent math symbols as C++ objects

– Result: 1 line of code per symbol in a function
(the C++ constructor) rather than 1 line of code per function

Data modeling – OO representation

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit class Mathematical concept

),;(qpxF


px,

x


dxxf

x

x


max

min

)(

)(xf


kx


8

Wouter Verkerke, NIKHEF

Data modeling – Constructing composite objects

• Straightforward correlation between mathematical
representation of formula and RooFit code

RooRealVar x

RooRealVar s

RooFormulaVar sqrts

RooGaussian g

 RooRealVar x(“x”,”x”,-10,10) ;

 RooRealVar m(“m”,”mean”,0) ;

 RooRealVar s(“s”,”sigma”,2,0,10) ;

 RooFormulaVar sqrts(“sqrts”,”sqrt(s)”,s) ;

 RooGaussian g(“g”,”gauss”,x,m,sqrts) ;

Math

RooFit
diagram

RooFit
code

RooRealVar m

),,(smxgauss











9

Wouter Verkerke, NIKHEF

Model building – (Re)using standard components

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…
Chebychev polynomial

Physics inspired
ARGUS,Crystal Ball,
Breit-Wigner, Voigtian,
B/D-Decay,….

Non-parametric
Histogram, KEYS

Easy to extend the library: each p.d.f. is a separate C++ class

10

Wouter Verkerke, NIKHEF

Model building – (Re)using standard components

• Library p.d.f.s can be adjusted on the fly.

– Just plug in any function expression you like as input variable

– Works universally, even for classes you write yourself

• Maximum flexibility of library shapes keeps library small

g(x,y;a0,a1,s)

g(x;m,s) m(y;a0,a1)

RooPolyVar m(“m”,y,RooArgList(a0,a1)) ;
RooGaussian g(“g”,”gauss”,x,m,s) ;

11

Special pdfs – Kernel estimation model

• Kernel estimation model

– Construct smooth pdf from unbinned data,
using kernel estimation technique

• Example

• Also available for n-D data

Sample of events
Gaussian pdf
for each event

Summed pdf
for all events

Adaptive Kernel:
width of Gaussian depends
on local event density

 w.import(myData,Rename(“myData”)) ;

 w.factory(“KeysPdf::k(x,myData)”) ;

38

12

Special pdfs – Morphing interpolation

• Special operator pdfs can interpolate existing pdf shapes

– Ex: interpolation between Gaussian and Polynomial

• Two morphing algorithms available

– IntegralMorph (Alex Read algorithm).
CPU intensive, but good with discontinuities

– MomentMorph (Max Baak).
Fast, can handling multiple observables (and soon multiple
interpolation parameters), but doesn’t work well for all pdfs

w.factory(“Gaussian::g(x[-20,20],-10,2)”) ;

w.factory(“Polynomial::p(x,{-0.03,-0.001})”) ;

w.factory(“IntegralMorph::gp(g,p,x,alpha[0,1])”) ;

Fit to data

a = 0.812 ± 0.008

39

13

Wouter Verkerke, NIKHEF

Handling of p.d.f normalization

• Normalization of (component) p.d.f.s to unity is often a
good part of the work of writing a p.d.f.

• RooFit handles most normalization issues transparently
to the user

– P.d.f can advertise (multiple) analytical expressions for integrals

– When no analytical expression is provided, RooFit will
automatically perform numeric integration to obtain normalization

– More complicated that it seems: even if gauss(x,m,s) can be
integrated analytically over x, gauss(f(x),m,s) cannot. Such use
cases are automatically recognized.

– Multi-dimensional integrals can be combination of numeric and
p.d.f-provided analytical partial integrals

• Variety of numeric integration techniques is interfaced

– Adaptive trapezoid, Gauss-Kronrod, VEGAS MC…

– User can override parameters globally or per p.d.f. as necessary

14

Wouter Verkerke, NIKHEF

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – (Re)using standard components

• Most physics models can be composed from ‘basic’ shapes

RooAddPdf
+

RooGaussian

15

Wouter Verkerke, NIKHEF

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

RooGaussian

Model building – (Re)using standard components

• Most physics models can be composed from ‘basic’ shapes

RooProdPdf *

)()|(),(ygyxfyxk 

RooProdPdf k(“k”,”k”,g,
 Conditional(f,x))

)()(),(ygxfyxh 

RooProdPdf h(“h”,”h”,
 RooArgSet(f,g))

16

(FFT) Convolution – works for all models

• Example

• FFT usually best

– Fast: unbinned ML fit to 10K
events take ~5 seconds

 w.factory(“Landau::L(x[-10,30],5,1)”) :

 w.factory(“Gaussian::G(x,0,2)”) ;

 w::x.setBins(“cache”,10000) ; // FFT sampling density

 w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution

 w.factory(“NCONV::LGb(x,L,G)”) ; // Numeric convolution

30

RooFFTConvPdf

(x)
17

Wouter Verkerke, NIKHEF

Automated vs. hand-coded optimization of p.d.f.

• Automatic pre-fit PDF optimization

– Prior to each fit, the PDF is analyzed for possible optimizations

– Optimization algorithms:

• Detection and precalculation of constant terms in any PDF expression

• Function caching and lazy evaluation

• Factorization of multi-dimensional problems where ever possible

– Optimizations are always tailored to the specific use in each fit.

– Possible because OO structure of p.d.f. allows automated analysis of structure

• No need for users to hard-code optimizations

– Keeps your code understandable, maintainable and flexible
without sacrificing performance

– Optimization concepts implemented by RooFit are applied
consistently and completely to all PDFs

– Speedup of factor 3-10 reported in realistic complex fits

• Fit parallelization on multi-CPU hosts

– Option for automatic parallelization of fit function on multi-CPU hosts
(no explicit or implicit support from user PDFs needed)

18

Introduction

Wouter Verkerke, NIKHEF

2
Sharing

models

19

Wouter Verkerke, NIKHEF

Sharing data and functions

• Sharing data is in HEP is relatively easy – ROOT TTrees, THx
histograms almost universal standard

• Sharing functions (likelihood / probability density) much more
difficult

– No standard protocol for defining p.d.f.s and likelihood functions

– Structurally functions are much more complicated than data

• Essentially all methods start with the basic probability density
function or likelihood function L(x|qr,qs)

– Building a good model is the hard part!

– want to re-use it for multiple methods

– Language to common tools

• Common language for probability density functions and
likelihood functions very desirable for easy exchange of
information  RooFit

20

RooFit core design philosophy - Workspace

• The workspace serves a container class for all
objects created

f(x,y,z)

RooRealVar x RooRealVar y RooRealVar z

RooAbsReal f

RooRealVar x(“x”,”x”,5) ;

RooRealVar y(“y”,”y”,5) ;

RooRealVar z(“z”,”z”,5) ;

RooBogusFunction f(“f”,”f”,x,y,z) ;

RooWorkspace w(“w”) ;

w.import(f) ;

Math

RooFit
diagram

RooFit
code

6

RooWorkspace

21

Using the workspace

• Workspace

– A generic container class for all RooFit objects of your project

– Helps to organize analysis projects

• Creating a workspace

• Putting variables and function into a workspace

– When importing a function or pdf, all its components (variables)
are automatically imported too

RooWorkspace w(“w”) ;

 RooRealVar x(“x”,”x”,-10,10) ;

 RooRealVar mean(“mean”,”mean”,5) ;

 RooRealVar sigma(“sigma”,”sigma”,3) ;

 RooGaussian f(“f”,”f”,x,mean,sigma) ;

 // imports f,x,mean and sigma

 w.import(myFunction) ;
22

Using the workspace

• Looking into a workspace

• Getting variables and functions out of a workspace

 w.Print() ;

 variables

 (mean,sigma,x)

 p.d.f.s

 RooGaussian::f[x=x mean=mean sigma=sigma] = 0.249352

 // Variety of accessors available

 RooPlot* frame = w.var(“x”)->frame() ;

 w.pdf(“f”)->plotOn(frame) ;

23

Persisting workspaces

• Workspaces can be trivially written to file

• And be read back into another ROOT session

Wouter Verkerke, NIKHEF

 // Write workspace contents to file

 w.writeToFile(“myworkspace.root”) ;

// Open ROOT file

TFile* f = TFile::Open(“myworkspace.root”) ;

// Retrieve workspace

RooWorkspace* w = f->Get(“w”) ;

24

Sharing models using RooFit workspaces

• Internal sharing of likelihood models between analysis
groups has been common within Higgs effort

• Aided by RooFit workspace concept

• What you share is not only a description of model, but
an actual implementation (a callable C++ function)

– Virtually zero overhead in getting things to work

• Works for any model

// Setup [4 lines]

TFile* f = TFile::Open(“myfile.root”) ;

RooWorkspace* w = f->Get(“mywspace”) ;

RooAbsPdf* model = w->pdf(“mymodel”) ;

RooAbsData* data = w->data(“obsData”) ;

// Core business

model->fitTo(*data) ;

RooAbsReal* nll = model->createNLL(*data) ;

25

Scalability – an extreme example

Wouter Verkerke, NIKHEF

F(x,p)

x p

A Higgs model (23.000 functions, 1600 parameters)

26

Wouter Verkerke, NIKHEF

A workspace provides you with a model implementation

• All RooFit models provide universal and complete
fitting and Toy Monte Carlo generating functionality

– Model complexity only limited by available memory and CPU power

– Fitting/plotting a 5-D model as easy as using a 1-D model

– Most operations are one-liners

RooAbsPdf

RooDataSet

RooAbsData

gauss.fitTo(data)

data = gauss.generate(x,1000)

Fitting Generating

27

Probability density function  Likelihood

• Easy to create a likelihood from a model and a dataset

• Easy to manipulate with ROOT minimizers

• Can also insert likelihood function in a workspace

 // Create likelihood (calculation parallelized on 8 cores)

 RooAbsReal* nll = w::model.createNLL(data,NumCPU(8)) ;

42

 w.import(*nll) ; // for direct use by others

 RooMinuit m(*nll) ; // Create MINUIT session

 m.migrad() ; // Call MIGRAD

 m.hesse() ; // Call HESSE

 m.minos(w::param) ; // Call MINOS for ‘param’

 RooFitResult* r = m.save() ; // Save status (cov matrix etc)

28

Working with profile likelihood

• A profile likelihood ratio

can be represent by a regular RooFit function
(albeit an expensive one to evaluate)

)ˆ,ˆ(

)ˆ̂,(
)(

qpL

qpL
p 

RooAbsReal* ll = model.createNLL(data,NumCPU(8)) ;

RooAbsReal* pll = ll->createProfile(params) ;

RooPlot* frame = w::frac.frame() ;

nll->plotOn(frame,ShiftToZero()) ;

pll->plotOn(frame,LineColor(kRed)) ;

47

Best L for given p

Best L

29

(Not) sharing the (unbinned) data

• Potential discussion item when sharing workspaces is
that you share not only the model, but also the
(unbinned) data – which a collaboration for various
reason may not want to make public

• No easy iron-clad solutions to this issue – likelihood
must have access to the data

• One simple solution currently provided are ‘sealed’
likelihood functions in workspace  These refuse access
to internal data.

– Not iron-clad since a good programmer with a debugger can still
extract this

– But sealed likelihoods also offer opportunity to include ‘copyright’
message – printed whenever workspace with sealed likelihoods is
loaded into memory

Wouter Verkerke, NIKHEF

 nll->seal(“your copyright message goes here”) ;

 w->import(*nll) ;

30

Interfacing RooFit functions to other code

• Binding exist to represent RooFit likelihood and
probability density functions as ‘simple’ C++ functions

Wouter Verkerke, NIKHEF

// RooFit pdf object

RooAbsPdf* pdf ;

// Binding object

RooFunctor lfunc(*pdf,observables,parameters) ;

// Evaluate pdf through binding

// takes variables as array of doubles

double obs[n] ;

double par[m] ;

double val = lfunc.eval(obs,par) ;

31

Summary

• RooFit is a object-oriented data modeling language for
HEP, part of ROOT distribution

– Key concept is representing mathematical entities as C++ objects

• Extensively used since nearly 13 years, highly scalable
with good performance

• Ability to persist these models
into ‘workspaces’ in ROOT files
allows to trivially share
implementations of models

– You read and use parametric
likelihoods from other scientists
with almost zero effort

– Very effectively used in Higgs
discovery effort

• Long-term retention ability of workspaces explicit goal

– ROOT schema evolution framework provides tools to guarantee
backward compatibility for reading existing workspaces

Wouter Verkerke, NIKHEF 32

