RooFit
A tool kit for data modeling in ROOT

0 s,
20 15 A0 5 o 5 10 15 ‘EI

Wouter Verkerke (NIKHEF)

1 | — 1
06 08 1 12 14 16 I.S
tau

Wouter Verkerke, NIKHEF 1

E

Introduction

What is
RooFit ?

Focus: coding a probability density function

e Focus on one practical aspect of many data analysis in
HEP: How do you formulate your p.d.f. in ROOT

— For ‘simple’ problems (gauss, polynomial), ROOT built-in models
well sufficient

g

Events /(0.2)
g

300

200

100

M ol Nl T T T T T T T T T T T T T T T T T T O N
% 8 ® 4 =2 0 2 4 6 8 10

— But if you want to do unbinned ML fits, use non-trivial functions,
or work with multidimensional functions you are quickly running
into trouble

Wouter Verkerke, NIKHEF

E

Why RooFit was developed

e BaBar experiment at SLAC: Extract sin(2p3) from time_
dependent CP violation of B decay: ete” 2 Y(4s) > BB

— Reconstruct both Bs, measure decay time difference
— Physics of interest is in decay time dependent oscillation

fq, - [SigSel(m; Py,) - (SigDecay(t; dy, ,sin(23)) ® SigResol(t | dt; T,))|+
(1- f,,)[BKgSel(m; B,,,) -(BkgDecay(t; y,,) ® BkgResol(t | dt;) |

e Many issues arise

— Standard ROOT function framework clearly insufficient to handle such
complicated functions 2 must develop new framework

- Normalization of p.d.f. not always trivial to calculate > may need numeric
integration techniques

- Unbinned fit, >2 dimensions, many events > computation performance
important > must try optimize code for acceptable performance

— Simultaneous fit to control samples to account for detector performan
Wouter Verkerke, NIKHEF 4

E

RooFit — a data modeling language for ROOT

Extension to ROOT - (Almost) no overlap with existing functionality

Data Modelin

:| ToyMC data

Data/Model
Fitting

C++ command line
interface & macros

Model
Generation Visualization

.............................

histogramming

Data management &

\/

MINUIT

I/O support

Graphics interface

Wouter Verkerke, NIKHEF

5

Project timeline

e 1999 : Project started

- First application: 'sin2b’” measurement of BaBar
(model with 5 observables, 37 floating parameters, simultaneous fit to
multiple CP and control channels)

e 2000 : Complete overhaul of design based on
experience with sin2b fit

- Very useful exercise: new design is still current design
e 2003 : Public release of RooFit with ROOT
e 2004 : Over 50 BaBar physics publications using RooFit
e 2007 : Integration of RooFit in ROOT CVS source

e 2008 : Upgrade in functionality as part of RooStats project
- Improved analytical and

numeric integration handling,
improved toy MC generation,
addition of workspace 80000

e 2009 : Now ~100K lines of code Zﬂﬂﬂﬂ

— (For comparison RooStats 50000
proper is ~5000 lines of code) 40000

e 2012 : Higgs discovery models 30000
formulated in RooFit using 2o
workspace concept 10000

ﬂhﬂ1 2002 2003 2004 2005 2006 2007 2008 2009 2

90000

last modification before date

lines of code

6

E

Data modeling - Desired functionality

Building/Adjusting Models

v’ Easy to write basic PDFs (= normalization)

v’ Easy to compose complex models (modular design)
v Reuse of existing functions

v Flexibility — No arbitrary implementation-related restrictions

Using Models
v’ Fitting : Binned/Unbinned (extended) MLL fits, Chi? fits

v Toy MC generation: Generate MC datasets from any model

Analysis work cycle

v Visualization: Slice/project model & data in any possible way

v’ Speed - Should be as fast or faster than hand-coded model

Wouter Verkerke, NIKHEF 7

Data modeling — OO representation

e Idea: represent math symbols as C++ objects

Mathematical concept RooFit class
variable X, p RooRealVar
function f (X) RooAbsReal
roF F (X; P, Q) RooAbsPdf
space point X RooArgSet
Xmax
integral j f (X)dx RooReallIntegral
) Xmin . =
list of space points X, RooAbsData

— Result: 1 line of code per symbol in a function
(the C++ constructor) rather than 1 line of code per function

Wouter Verkerke, NIKHEF

E

Data modeling — Constructing composite objects

e Straightforward correlation between mathematical
representation of formula and RooFit code

gauss(x,m,/s)

Math

® RooGaussian g

RooFit //// ‘ \\\\

diagram @ RooRealVar x RooRealVar m RooFormulaVar sqrts @

® AN

3 RooRealVar s

RooFit
code

“ » » »

RooRealVvVar x(x , x ,-10,10) ;

RooRealVar m(“m”,”mean”,0) ;

RooRealVar s(“s”,”sigma”,2,0,10) ;
RooFormulaVar sqrts(“sqrts”,”’sqrt(s)”,s) ;
RooGaussian g(“g”,”gauss”,x,m,sqrts) ;

OE®OEO

Wouter Verkerke, NIKHEF 9

E

Model building = (Re)using standard components

e RooOFit provides a collection of compiled standard PDF classes

<1 Physics inspired
ARGUS, Crystal Ball,

RooPolYnomialE Breit-Wigner, Voigtian,
/ B/D-Decay,....
i A B

RooBMixDecay E

RooHistPdfif |—|

| Non-parametric

RooArgusBG |
g Histogram, KEYS

RooGaussian 4 6 8 20

| Basic
7 8 9 « Gaussian, Exponential, Polynomial,...
Chebychev polynomial

|
T~

pp——"

Lovealie i b
275.28 5.29 51.:

Easy to extend the library: each p.d.f. is a separate C++ class

E

Model building = (Re)using standard components

e Library p.d.f.s can be adjusted on the fly.
— Just plug in you like as input variable

- Works universally, even for classes you write yourself

W

]

B.04
5

=
035
=

z i
b ‘?‘;}Miﬂifm'ﬂﬂff'\“\\

s
i”&ﬂf"iff’@%

:@?!

o
0.015

J @%

0.01

”'aﬁﬁb
=

*ﬂf#¢f
éMr f’

0.005

n.‘.hul ce b b by leaa Loy
-0 8 6 4 2 0 2 4

g(x;m,s)

RooPolyVar (“m”,y,Ro0ArgList(a0,al)) ;
RooGaussian g(“g”,”gauss , X,M,S) ;

e Maximum flexibility of library shapes keeps library small

Wouter Verkerke, NIKHEF 1 1

@ : _ _ 38

Special pdfs — Kernel estimation model

e Kernel estimation model

— Construct smooth pdf from unbinned data,

using kernel estimation technique _
Adaptive Kernel:

Gaussian pdf Summed pdf width of Gaussian depends
Sample of events for each event for all events on local event density

e Example

@
L3 INTTI R RN AR RN FRNEE SRREE NEEE
lvmmcﬁonnm
e o
= i N N in w
T T T T T
| | | | |

Events /(1)

w.factory ("KeysPdf: :k (x,myData)”) ;

w.import (myData, Rename (“myData”)) ; |

e Also available for n-D data

s

:III 111 1 1 111 III|III|III 111
2 4 6 8 1n12141s1szu 12

L | . | 39

Special pdfs — Morphing interpolation

e Special operator pdfs can interpolate existing pdf shapes
- EX: interpolation between Gaussian and Polynomial

w.factory(“Gaussian::g(x[-20,20],-10,2)") ;
w.factory (“Polynomial: :p(x,{-0.03,-0.001})") ;
w.factory (“IntegralMorph: :gp(g,p,x,alpha[0,1])"”) ;

A RooPlot of "x" [Histogram of hh__x_alpha | A RooPlot of "x"

-

,'g' o.ns;

= E
S 0.07]

2 = 0.008

(=]

5

(=]

(5
Events {0.4)

' 0.06]
i F

vents / (1 x 0.025)
(=]
(=]
b3

e 2 ¢
o o
S S
L))

0.04f
F w
0.03f 0.001

0.01

e Two morphing algorithms available

— IntegralMorph (Alex Read algorithm).
CPU intensive, but good with discontinuities

- MomentMorph (Max Baak).
Fast, can handling multiple observables (and soon multiple 13
interpolation parameters), but doesn’t work well for all pdfs

Handling of p.d.f normalization

e Normalization of (component) p.d.f.s to unity is often a
good part of the work of writing a p.d.f.

e RooFit handles most normalization issues transparently
to the user

P.d.f can advertise (multiple) analytical expressions for integrals

When no analytical expression is provided, RooFit will
automatically perform numeric integration to obtain normalization

More complicated that it seems: even if gauss(x,m,s) can be
integrated analytically over x, gauss(f(x),m,s) cannot. Such use
cases are automatically recognized.

Multi-dimensional integrals can be combination of numeric and
p.d.f-provided analytical partial integrals

e Variety of numeric integration techniques is interfaced
— Adaptive trapezoid, Gauss-Kronrod, VEGAS MC...
— User can override parameters globally or per p.d.f. as necessary

Wouter Verkerke, NIKHEF

14

E

Model building = (Re)using standard components

e Most physics models can be composed from ‘basic’ shapes

RooArgusBG |

RooGaussian

Lovealie i b
275.28 5.29 51.:

RooAddPdf

Model building = (Re)using standard components

e Most physics models can be composed from ‘basic’ shapes

/'\ RooProdPdf h(“h”,”h”,
RooArgSet(f,qg))

E h(x,y)=f(x)-g(y)

RooArgusBG [RooProdPdf k(“k”,”k”,g,
Conditional (f,x))
RooGaussian _ k(X, y) = f (Xl y) . g(y)
biskiits
2 RooProdPdf
I B B S T Lo
1.0006

AR
e

L 30

(FFT) Convolution — works for all models

e Example

w.factory(“Landau::L(x[-10,30],5,1)")
w.factory (“Gaussian::G6(x,0,2)") ;

w::x.setBins (“cache”,10000) ; // FFT sampling density
w.factory ("FCONV: :LGf (x,L,G)”) ; // FFT convolution

w.factory ("NCONV: :LGb (x,L,G)”) ; // Numeric convolution

| landau (x) gauss convolution |

e FFT usually best S 700"
— Fast: unbinned ML fit to 10K £ soo
events take ~5 seconds i ol
400
X) :
zooi
100F
RooFFTConvPdf -
: 17

E

Automated vs. hand-coded optimization of p.d.f.

Automatic pre-fit PDF optimization
- Prior to each fit, the PDF is analyzed for possible optimizations
- Optimization algorithms:
e Detection and precalculation of constant terms in any PDF expression
e Function caching and lazy evaluation
o Factorization of multi-dimensional problems where ever possible
- Optimizations are always tailored to the specific use in each fit.
Possible because OO structure of p.d.f. allows automated analysis of structure

No need for users to hard-code optimizations

- Keeps your code understandable, maintainable and flexible
without sacrificing performance

- Optimization concepts implemented by RooFit are applied
consistently and completely to all PDFs

— Speedup of factor 3-10 reported in realistic complex fits

Fit parallelization on multi-CPU hosts

— Option for automatic parallelization of fit function on multi-CPU hosts
(no explicit or implicit support from user PDFs needed)

Wouter Verkerke, NIKHEF

18

E

Introduction

Sharing
models

, NIKHEF 19

E

Sharing data and functions

e Sharing data is in HEP is relatively easy — ROOT TTrees, THx
histograms almost universal standard

e Sharing functions (likelihood / probability density) much more
difficult

- No standard protocol for defining p.d.f.s and likelihood functions
- Structurally functions are much more complicated than data

e Essentially all methods start with the basic probability density
function or likelihood function L(x|6,,6.)

— Building a good model is the hard part!
— want to re-use it for multiple methods
- Language to common tools

e Common language for probability density functions and
likelihood functions very desirable for easy exchange of
information - RooFit

Wouter Verkerke, NIKHEF 20

E

RooFit core design philosophy - Workspace

e The workspace serves a container class for all
objects created

Math

RooFit
diagram

RooFit
code

RooWorkspace

f(x,y,2)

RooAbsReal £

SN

RooRealVar x

RooRealVar vy RooRealVar z

RooRealVar
RooRealVar
RooRealVar

x(\\x//’/lells) ;
y (\\yll , Ily// ’5) ;
Z(“Z”,”Z”,S) ;

RooBogusFunction f£(“f”,”"f" ,x,y,2z) ;
RooWorkspace w(“w”) ;

w.import (£)

.
4

21

E

Using the workspace

e Workspace
— A generic container class for all RooFit objects of your project

— Helps to organize analysis projects

e Creating a workspace

RooWorkspace w(“w”) ;

e Putting variables and function into a workspace

- When importing a function or pdf, all its components (variables)
are automatically imported too

RooRealvVar x(“x”,”x”,-10,10) ;
RooRealVar mean (“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”,3) ;

RooGaussian f£(“f”,”f” ,x,mean,sigma) ;

// imports f,x,mean and sigma

w.import (myFunction) ;

22

Using the workspace

e Looking into a workspace

w.Print () ;

variables

RooGaussian: :f[x=x mean=mean sigma=sigma] = 0.249352

e Getting variables and functions out of a workspace

// Variety of accessors available
RooPlot* frame = w.var(“x”)->frame () ;

w.pdf (“£”) ->plotOn (frame) ;

23

Persisting workspaces

e Workspaces can be trivially written to file

// Write workspace contents to file

w.writeToFile (“myworkspace.root”) ;

e And be read back into another ROOT session

// Open ROOT file

TFile* £ = TFile: :Open (“myworkspace.root”) ;

// Retrieve workspace

RooWorkspace* w = f£->Get (“w”) ;

Wouter Verkerke, NIKHEF 24

E

Sharing models using RooFit workspaces

e Internal sharing of likelihood models between analysis
groups has been common within Higgs effort

e Aided by RooFit workspace concept

e What you share is not only a description of model, but
an actual implementation (a callable C++ function)

— Virtually zero overhead in getting things to work
// Setup [4 lines]
TFile* £ = TFile: :Open(“myfile.root”) ;

RooWorkspace* w = f->Get (“mywspace”) ;
RooAbsPdf* model = w->pdf (“mymodel”) ;

RooAbsData* data = w->data(“obsData”) ;

// Core business
model->fitTo (*data) ;
RooAbsReal* nll = model->createNLL (*data) ;

e Works for any model 25

E

Scalability — an extreme example

A Higgs model (23.000 functions, 1600 parameters)

Wouter Verkerke, NIKHEF

26

E

A workspace provides you with a model implementation

» All RooFit models provide universal and complete
fitting and Toy Monte Carlo generating functionality

— Model complexity only limited by available memory and CPU power
— Fitting/plotting a 5-D model as easy as using a 1-D model
— Most operations are one-liners

Fitting Generating

data = gauss.generate(x,1000)

T 4

RooAbsPdf : ﬁ%
gauss.fitTo (data) [ﬁ %
: kY
A, £
N L
ﬁ* % RooDataSet
] %&*ﬁ %
o s,
RooAbsData

Wouter Verkerke, NIKHEF 2 7

E

42

Probability density function - Likelihood

Easy to create a likelihood from a model and a dataset

// Create likelihood (calculation parallelized on 8 cores)
RooAbsReal* nll = w::model.createNLL (data,NumCPU(8))

Easy to manipulate with ROOT minimizers

RooMinuit m(*nll) ; // Create MINUIT session

m.migrad() ; // Call MIGRAD

m.hesse () ; // Call HESSE

m.minos (w: :param) ; // Call MINOS for ‘param’

RooFitResult* r = m.save() ; // Save status (cov matrix etc)

Can also insert likelihood function in a workspace

w.import(*nll) ; // for direct use by others

28

E

47

Working with profile likelihood

e A profile likelihood ratio A(P) =

Events /(1)

|_(D, é)(— Best L for given p

|_(I’j, Q)<— Best L

can be represent by a regular RooFit function
(albeit an expensive one to evaluate)

RooAbsReal* 11 = model.createNLL(data,NumCPU(8)) ;
RooAbsReal* pll = ll->createProfile (params) ;

RooPlot* frame = w::frac.frame() ;
nll->plotOn (frame,ShiftToZero()) |__ARooPlot of "frac” _|
pll->plotOn (frame,LineColor (kRed))

0 01 0.2 03 04 05 06 0.7 0.8 09 29
frac

E

(Not) sharing the (unbinned) data

Potential discussion item when sharing workspaces is
that you share not only the model, but also the
(unbinned) data — which a collaboration for various
reason may not want to make public

No easy iron-clad solutions to this issue - likelihood
must have access to the data

One simple solution currently provided are ‘sealed’
likelihood functions in workspace - These refuse access
to internal data.

— Not iron-clad since a good programmer with a debugger can still
extract this

— But sealed likelihoods also offer opportunity to include ‘copyright’
message - printed whenever workspace with sealed likelihoods is
loaded into memory

nll->seal (“your copyright message goes here”) ;
w->import (*nll) ;

Wouter Verkerke, NIKHEF

30

E

Interfacing RooFit functions to other code

e Binding exist to represent RooFit likelihood and
probability density functions as ‘simple’ C++ functions

// RooFit pdf object
RooAbsPdf* pdf ;

// Binding object
RooFunctor lfunc (*pdf,observables,parameters) ;

// Evaluate pdf through binding

// takes variables as array of doubles
double obs[n] ;

double par[m] ;

double val = 1lfunc.eval (obs,par) ;

Wouter Verkerke, NIKHEF 3 1

E

Summary

RooFit is a object-oriented data modeling language for
HEP, part of ROOT distribution

— Key concept is representing mathematical entities as C++ objects

Extensively used since nearly 13 years, highly scalable
with good performance

Ability to persist these models
into ‘workspaces’ in ROOT files

allows to trivially share
implementations of models
— You read and use parametric

likelihoods from other scientists
with almost zero effort

//7//
om

— Very effectively used in Higgs L Uy
discovery effort “Ii

Long-term retention ability of workspaces explicit goal

— ROOT schema evolution framework provides tools to guarantee
backward compatibility for reading existing workspaces

Wouter Verkerke, NIKHEF 3 2

