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Quick review of probablility 
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations. 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’. 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Bayesian use of the term ‘likelihood’ 

We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 
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Quick review of frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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Ingredients for ML 
To find the ML estimate itself one only needs the likelihood L(θ) . 

In principle to find the covariance of the estimators, one requires 
the full model L(x|θ).  E.g., simulate many times independent data  
sets and look at distribution of the resulting estimates: 
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Ingredients for ML (2) 
Often (e.g., large sample case) one can 
approximate the covariances using only 
the likelihood L(θ): 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

This translates into a simple 
graphical recipe: 
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A quick review of frequentist statistical tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	



But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant which  
determines  the power. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

Likelihood Workshop, CERN, 21-23 Jan 2013 

We can define the critical region of a test of H0 with size α as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 



G. Cowan  Likelihood Workshop, CERN, 21-23 Jan 2013 18 

Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ α  
 for a prespecified α, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size α  (confidence level is 1 - α ). 

The interval will cover the true value of θ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α. 
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Ingredients for a frequentist test 
In general to carry out a test we need to know the distribution of  
the test statistic t(x), and this means we need the full model P(x|H). 

Often one can construct a test statistic whose distribution  
approaches a well-defined form (almost) independent of the  
distribution of the data, e.g., likelihood ratio to test a value of θ: 

In the large sample limit tθ follows a chi-square distribution with 
number of degrees of freedom = number of components in θ 
(Wilks’ theorem). 

So here one doesn’t need the full model P(x|θ), only the observed  
value of tθ. 
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Statistical vs. systematic errors  
Statistical errors:   

 How much would the result fluctuate upon repetition of  
 the measurement? 

 Implies some set of assumptions to define probability of 
 outcome of the measurement. 

Systematic errors: 

 What is the uncertainty in my result due to  
 uncertainty in my assumptions, e.g., 

  model (theoretical) uncertainty; 
  modelling of measurement apparatus. 

 Usually taken to mean the sources of error do not vary 
 upon repetition of the  measurement.  Often result from 
 uncertain value of calibration constants, efficiencies, etc. 
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Nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Frequentist treatment of nuisance parameters 
Suppose model is L(x|θ,ν), but we are only interested in θ. 

where 

We can form the profile likelihood: 

For parameter estimation, use Lp(θ) as with L(θ) before; 
equivalent to “tangent plane” method for errors 

(Example later) 
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Frequentist treatment of nuisance 
parameters in a test 

Suppose we test a value of θ  
with the profile likelihood ratio: 

We want a p-value of θ:  

Wilks’ theorem says in the large sample limit (and under some 
additional conditions) f(tθ|θ,ν) is a chi-square distribution with 
number of degrees of freedom equal to number of parameters of 
interest (number of components in θ). 

Simple recipe for p-value; holds regardless of the values of  
the nuisance parameters!  
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Frequentist treatment of nuisance 
parameters in a test (2) 

But for a finite data sample, f(tθ|θ,ν) still depends on ν. 

So what is the rule for saying whether we reject θ? 

Exact approach is to reject θ only if pθ < α (5%) for all possible ν. 

This can make it very hard to reject some values of θ; they might 
not be excluded for value of ν known to be highly disfavoured. 

Resulting confidence level too large (“over-coverage”). 
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Profile construction (“hybrid resampling”) 

Compromise procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ (the profiled 
values): 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!))

. Elsewhere it may under- or over-cover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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Bayesian treatment of nuisance parameters 
Conceptually straightforward:  all parameters have a prior: 

Often  

Often  “non-informative” (broad compared to likelihood). 

Usually  “informative”, reflects best available info. on ν. 

Use with likelihood in Bayes’ theorem: 

To find p(θ|x), marginalize (integrate) over nuisance param.: 
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Marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than naive √n . 

Basic idea:  sample full multidimensional parameter space; 
look, e.g., only at distribution of parameters of interest.  
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The marginal (integrated) likelihood 

If the prior factorizes: 

then one can compute the marginal likelihood as: 

This represents an average of models with respect to πν(ν) 
(also called “prior predictive” distribution). 

 Does not represent a realistic model for the data; 
 ν would not vary upon repetition of the experiment. 

Leads to same posterior for θ as before: 
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The “ur-prior” 
But where did πν(ν) come frome?  Presumably at an earlier 
point there was a measurement of some data y with 
likelihood L(y|ν), which was used in Bayes’theorem, 

and this “posterior” was subsequently used for πν (ν) for the 
next part of the analysis. 

But it depends on an “ur-prior” π0(ν), which still has to be 
chosen somehow (perhaps “flat-ish”). 

But once this is combined to form the marginal likelihood, the 
origin of the knowledge of ν may be forgotten, and the model 
is regarded as only describing the data outcome x. 
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The (pure) frequentist equivalent 
In a purely frequentist analysis, one would regard both 
x and y as part of the data, and write down the full likelihood: 

“Repetition of the experiment” here means generating both 
x and y according to the distribution above. 

So we could either say that πν(ν) encapsulates all of our prior  
knowledge about ν and forget that it came from a measurement, 

or regard both x and y as measurements, 

In the Bayesian approach both give the same result. 
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Frequentist use of Bayesian ingredients 
For subjective Bayesian, end result is the posterior p(θ|x). 

Use this, e.g., to compute an upper limit at 95% “credibility level”: 

→ Degree of belief that θ < θup is 95%. 

But θup is θup (x), a function of the data.  So we can also ask  

(a frequentist question) 

Here we are using a Bayesian result in a frequentist construct  
by studying the coverage probability, which may be greater or 
less than the nominal credibility level of 95%. 
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More Bayesian ingredients in frequentist tests 
Another way to use Bayesian ingredients to obtain a frequentist 
result is to construct a test based on a ratio of marginal likelihoods: 

Except in simple cases this will be difficult to compute; often use 
instead ratio of profile likelihoods, 

or in some cases one may just use the ratio of likelihoods for 
some chosen values of the nuisance parameters.   

Here the choice of statistic influences the optimality of the 
test, not its “correctness”. 
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Prior predictive distribution for statistical test 
The more important use of a Bayesian ingredient is in computing 
the distribution of the statistic.  One can take this to be the Bayesian 
averaged model (prior predictive distribution), i.e., 

 Generate x ~ Lm(x|s) to determine f(t(x)|s), 

 Generate x ~ Lm (x|b) to determine f(t(x)|b). 

Use of the marginal likelihood results in a broadening of the 
distributions of t(x) and effectively builds in the systematic 
uncertainty on the nuisance parameter into the test. 

(Example to follow.) 
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Prior predictive distribution for statistical test 
Note the important difference between two approaches: 

1)  Pure frequentist:  find “correct” model (enough nuisance  
parameters) and construct a test statistic whose distribution is  
almost independent of the nuisance parameters (and/or use profile  
construction). 

2)  Hybrid frequentist/Bayesian:  construct an averaged model  
by integrating over a prior for the nuisance parameters; use this to  
find sampling distribution of test statistic (which itself may be 
based on a ratio of marginal or profile likelihoods). 

Both answer well-defined questions, but the first approach  
(in my view) has important advantages: 

 Computationally very easy if large sample formulae valid; 
 Model corresponds to “real” repetition of the experiment. 
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Search for a signal process 
Suppose a signal process is not known to exist and we want 
to search for it.    

We observe n events and for each measure a set of numbers x.  
The relevant hypotheses are: 

 H0:  all events are of the background type 
 H1:  the events are a mixture of signal and background 

Rejecting H0  constitutes “discovering” new physics. 

Suppose that for a given integrated luminosity, the expected number 
of signal events is s, and for background b. 

The observed number of events n will follow a Poisson distribution: 



G. Cowan  Likelihood Workshop, CERN, 21-23 Jan 2013 36 

Likelihoods for full experiment 
We observe n events, and thus measure n instances of x.  
The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 
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Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 

Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 

Suppose in real experiment 
Q is observed here. 
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Systematic uncertainties 
Up to now we assumed all parameters were known exactly. 

 In practice they have some (systematic) uncertainty. 

Suppose e.g. uncertainty in expected number of background events 
b is characterized by a (Bayesian) pdf π(b). 

Maybe take a Gaussian, i.e., 

where b0 is the nominal (measured) value and σb is the estimated 
uncertainty. 

 In fact for many systematics a Gaussian pdf is hard to  
 defend – more on this later. 
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Distribution of Q with systematics 
To get the desired p-values we need the pdf f (Q), but 
this depends on b, which we don’t know exactly.   

But we can obtain the prior predictive (marginal) model: 

With Monte Carlo, sample b from π(b), then use this to generate  
Q from f (Q|b), i.e., a new value of b is used to generate the data 
for every simulation of the experiment. 

This broadens the distributions of Q and thus increases the  
p-value (decreases significance Z) for a given Qobs. 
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Distribution of Q with systematics (2) 
For s = 20, b0 = 100, σb = 20 this gives 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  



G. Cowan  Likelihood Workshop, CERN, 21-23 Jan 2013 45 

Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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Covariance, correlation, etc. 
For a pair of random variables x and y, the covariance and 
correlation are 

One only talks about the correlation of two quantities to which one 
assigns probability (i.e., random variables).   

So in frequentist statistics, estimators for parameters can be 
correlated, but not the parameters themselves. 

In Bayesian statistics it does make sense to say that two parameters 
are correlated, e.g.,   
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Example of “correlated systematics” 
Suppose we carry out two independent measurements of the  
length of an object using two rulers with diferent thermal 
expansion properties. 

Suppose the temperature is not known exactly but must 
be measured (but lengths measured together so T same for both), 

and the (uncorrected) length measurements are modeled as 

The expectation value of the measured length Li (i = 1, 2)  
is related to true length λ at a reference temperature τ0 by 
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Two rulers (2) 
The model thus treats the measurements T, L1, L2 as uncorrelated 
with standard deviations σT, σ1, σ2, respectively: 

Alternatively we could correct each raw measurement:  

which introduces a correlation between y1, y2 and T 

But the likelihood function (multivariate Gauss in T, y1, y2)  
is the same function of τ and λ as before. 

     Language of y1, y2:  temperature gives correlated systematic. 
     Language of L1, L2:  temperature gives “coherent” systematic. 
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Two rulers (3) 

Outcome has some surprises: 

Estimate of λ does not lie 
between y1 and y2. 
 
Stat. error on new estimate 
of temperature substantially 
smaller than initial σT. 
 
These are features, not bugs, 
that result from our model 
assumptions. 
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Two rulers (4) 
We may re-examine the assumptions of our model and  
conclude that, say, the parameters α1, α2 and τ0 were also 
uncertain. 

We may treat their nominal values as measurements (need a model; 
Gaussian?) and regard α1, α2 and τ0  as as nuisance parameters. 
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Two rulers (5) 
The outcome changes; some surprises may be “reduced”. 
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A more general fit (symbolic) 
Given measurements:  

and (usually) covariances: 

Predicted value: 

control variable parameters bias 

Often take: 

Minimize 

Equivalent to maximizing L(θ) » e-χ2/2, i.e., least squares same  
as maximum likelihood using a Gaussian likelihood function.  

expectation value 
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Its Bayesian equivalent 

and use Bayes’ theorem: 

To get desired probability for θ, integrate (marginalize) over b: 

→ Posterior is Gaussian with mode same as least squares estimator,  
     σθ  same as from χ2 = χ2

min + 1.  (Back where we started!) 

Take 

Joint probability 
for all parameters 
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Alternative priors for systematic errors 
Gaussian prior for the bias b often not realistic, especially if one 
considers the "error on the error".  Incorporating this can give 
a prior with longer tails: 

π b
(b

) 	



Represents ‘error 
on the error’;  
standard deviation  
of πs(s) is σs. 

b 
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A simple test 
Suppose a fit effectively averages four measurements. 

 Take σsys = σstat = 0.1, uncorrelated. 

Case #1: data appear compatible Posterior p(µ|y): 

Usually summarize posterior p(µ|y)  
with mode and standard deviation: 

experiment 
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Simple test with inconsistent data 
Case #2: there is an outlier 

→ Bayesian fit less sensitive to outlier. 

Posterior p(µ|y): 

experiment 

m
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µ	



p(
µ|
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(See also D'Agostini 1999; Dose & von der Linden 1999) 
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Examples with counting experiments 
Suppose we measure n ~ Poisson(s+b), goal is to make inference 
about s. 

Suppose b is not known exactly but we have an estimate bmeas 
with uncertainty σb. 

For Bayesian analysis, first reflex may be to write down a  
Gaussian prior for b, 

But a Gaussian could be problematic because e.g. 
 b ≥ 0, so need to truncate and renormalize; 
 tails fall off very quickly, may not reflect true uncertainty. 
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Bayesian limits on s with uncertainty on b 
Consider n ~ Poisson(s+b) and take e.g. as prior probabilities 

Put this into Bayes’ theorem, 

Marginalize over the nuisance parameter b,  

Then use p(s|n) to find intervals for s with any desired  
probability content. 
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Gamma prior for b 
What is in fact our prior information about b?  It may be that  
we estimated b using a separate measurement (e.g., background  
control sample) with 

        m ~ Poisson(τb)              (τ = scale factor, here assume known) 

Having made the control measurement we can use Bayes’ theorem 
to get the probability for b given m, 

If we take the ur-prior π0(b) to be to be constant for b ≥ 0, 
then the posterior π(b|m), which becomes the subsequent prior  
when we measure n and infer s, is a Gamma distribution with: 

 mean =  (m + 1) /τ	


 standard dev. = √(m + 1) /τ 
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Gamma distribution 
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Frequentist test with Bayesian treatment of b 

Distribution of n based on marginal likelihood (gamma prior for b): 

and use this as the basis of 
a test statistic: 

p-values from distributions of qm 
under background-only (0) or  
signal plus background (1)  
hypotheses: 
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Frequentist approach to same problem 

In the frequentist approach we would regard both variables 

 n ~ Poisson(s+b) 
 m ~ Poisson(τb) 

as constituting the data, and thus the full likelihood function is 

Use this to construct test of s with e.g. profile likelihood ratio 

Note here that the likelihood refers to both n and m, whereas 
the likelihood used in the Bayesian calculation only modeled n. 
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Test based on fully frequentist treatment 
Data consist of both n and m, with distribution 

Use this as the basis of a test 
statistic based on ratio of  
profile likelihoods: 

Here combination of two discrete 
variables (n and m) results in an 
approximately continuous  
distribution for qp. 
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Log-normal prior for systematics 
In some cases one may want a log-normal prior for a nuisance 
parameter (e.g., background rate b).   

This would emerge from the Central Limit Theorem, e.g., 
if the true parameter value is uncertain due to a large number 
of multiplicative changes, and it corresponds to having a 
Gaussian prior for β = ln b. 

where β0 = ln b0 and in the following we write σ as σβ. 
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The log-normal distribution 
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Frequentist-Bayes correspondence for log-normal 
The corresponding frequentist treatment regards the best estimate 
of b as a measured value bmeas that is log-normally distributed, or  
equivalently has a Gaussian distribution for βmeas = ln bmeas: 

To use this to motivate a Bayesian prior, one would use 
Bayes’ theorem to find the posterior for β, 

If we take the ur-prior π0, β(β) constant, this implies an 
ur-prior for b of 
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Example of tests based on log-normal 
Bayesian treatment of b: Frequentist treatment of bmeas: 

Final result similar but note in Bayesian treatment, marginal model 
is only for n, which is discrete, whereas in frequentist model both  
n and continuous bmeas are treated as measurements. 
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Summary (1) 
There are several related quantities often called “the likelihood”; 
important to specify which you mean. 

In a problem with data x and parameter θ: 

  the “likelihood”, evaluated with specific data x. 

  the “model”, specifies dependence on both x and θ. 
 
In a problem with parameter of interest µ and nuisance param. θ: 

     profile likelihood 

     marginal likelihood 

Necessary to specify what one is treating as a measurement 
(main measurement, control measurement, “MC” measurement, 
best guess of a numerical constant,...)   
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Summary (2) 
Frequentist use of likelihoods (in general requires full model) 

 parameter estimation 

 tests, p-values 

Operations involve maximization of L (minuit, etc.) 

Bayesian use of likelihoods (requires only L for the real data) 

 Bayes’ theorem → posterior probability 

 marginalize over nuisance parameters 

Operations involve integration (MCMC, nested sampling,...) 

For both Bayesian and frequentist approaches, crucial point is to 
find an accurate model, i.e., it must be “correct” for some point  
in its parameter space.  
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Extra slides 
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Metropolis-Hastings caveats 
Actually one can only prove that the sequence of points follows 
the desired pdf in the limit where it runs forever. 

There may be a “burn-in” period where the sequence does 
not initially follow 

Unfortunately there are few useful theorems to tell us when the 
sequence has converged. 

Look at trace plots, autocorrelation. 

Check result with different proposal density. 

If you think it’s converged, try starting from a different 
point and see if the result is similar. 
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Dealing with systematics 

Suppose one needs to know the shape of a distribution. 
Initial model (e.g. MC) is available, but known to be imperfect. 

Q:  How can one incorporate the systematic error arising from 
use of the incorrect model? 

A:  Improve the model. 

That is, introduce more adjustable parameters into the model 
so that for some point in the enlarged parameter space it  
is very close to the truth. 

Then use profile the likelihood with respect to the additional 
(nuisance) parameters.  The correlations with the nuisance  
parameters will inflate the errors in the parameters of interest. 

Difficulty is deciding how to introduce the additional parameters. 

S. Caron, G. Cowan, S. Horner, J. Sundermann, E. Gross, 2009 JINST 4 P10009 



page 80 

Example of inserting nuisance parameters 
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Fit of hadronic mass distribution from a specific τ decay mode.   

Important uncertainty in background from non-signal τ  modes. 
 
 
        Background rate from other  
        measurements, shape from MC. 
 

Want to include uncertainty in rate, mean, width of background 
component in a parametric fit of the mass distribution. 

fit from MC 
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Step 1:  uncertainty in rate 
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Scale the predicted background by a factor r:  bi → rbi 

Uncertainty in r is σr 

Regard r0 = 1 (“best guess”) as Gaussian (or not, as appropriate) 
distributed measurement centred about the true value r, which  
becomes a new “nuisance” parameter in the fit.   

New likelihood function is: 

For a least-squares fit, equivalent to 
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Dealing with nuisance parameters  
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Ways to eliminate the nuisance parameter r from likelihood. 

 1) Profile likelihood: 

2) Bayesian marginal likelihood: 

(prior) 

Profile and marginal likelihoods usually very similar.   

Both are broadened relative to original, reflecting the uncertainty  
connected with the nuisance parameter. 
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Step 2:  uncertainty in shape 
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Key is to insert additional nuisance parameters into the model. 

E.g. consider a distribution g(y) .  Let y → x(y),  
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More uncertainty in shape 
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The transformation can be applied to a spline of original MC 
histogram (which has shape uncertainty). 

Continuous parameter α shifts distribution right/left. 

Can play similar game with width (or higher moments), e.g., 
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A sample fit (no systematic error) 
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Consider a Gaussian signal, polynomial background, and 
also a peaking background whose form is take from MC: 

Template  
from MC 

True mean/width of signal: 

True mean/width of back- 
ground from MC: 

Fit result: 
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Sample fit with systematic error 
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Suppose now the MC template for the peaking background was 
systematically wrong, having 

Now fitted values of signal parameters wrong,  
poor goodness-of-fit: 
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Sample fit with adjustable mean/width 
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Suppose one regards peak position and width of MC template 
to have systematic uncertainties: 

Incorporate this by regarding the nominal mean/width of the 
MC template as measurements, so in LS fit add to χ2 a term: 

orignal mean  
of MC template 

altered mean  
of MC template 
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Sample fit with adjustable mean/width (II) 
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Result of fit is now “good”: 

In principle, continue to add nuisance parameters until  
data are well described by the model. 
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Systematic error converted to statistical 
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One can regard the quadratic difference between the statistical 
errors with and without the additional nuisance parameters as 
the contribution from the systematic uncertainty in the MC template:  

Formally this part of error has been converted to part of statistical 
error (because the extended model is ~correct!). 
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Systematic error from “shift method” 
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Note that the systematic error regarded as part of the new statistical  
error (previous slide) is much smaller than the change one would  
find by simply “shifting” the templates plus/minus one standard  
deviation, holding them constant, and redoing the fit.  This gives: 

This is not necessarily “wrong”, since here we are not improving 
the model by including new parameters. 

But in any case it’s best to improve the model! 
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Issues with finding an improved model 
Sometimes, e.g., if the data set is very large, the total χ2 can 
be very high (bad), even though the absolute deviation between 
model and data may be small. 

It may be that including additional parameters "spoils" the 
parameter of interest and/or leads to an unphysical fit result 
well before it succeeds in improving the overall goodness-of-fit. 

 Include new parameters in a clever (physically motivated, 
 local) way, so that it affects only the required regions. 

 Use Bayesian approach -- assign priors to the new nuisance 
 parameters that constrain them from moving too far (or use  
 equivalent frequentist penalty terms in likelihood). 

Unfortunately these solutions may not be practical and one may 
be forced to use ad hoc recipes (last resort). 
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Bayesian model selection (‘discovery’) 

no Higgs 

Higgs 

The probability of hypothesis H0 relative to its complementary 
alternative H1 is often given by the posterior odds: 

Bayes factor B01 prior odds 

The Bayes factor is regarded as measuring the weight of  
evidence of the data in support of H0 over H1. 

Interchangeably use B10 = 1/B01 
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Assessing Bayes factors 
One can use the Bayes factor much like a p-value (or Z value). 

There is an “established” scale, analogous to HEP's 5σ rule: 
 
B10   Evidence against H0 
-------------------------------------------- 
1 to 3   Not worth more than a bare mention 
3 to 20  Positive 
20 to 150  Strong 
> 150   Very strong 

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773. 
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Rewriting the Bayes factor 
Suppose we have models Hi, i = 0, 1, ..., 

each with a likelihood 

and a prior pdf for its internal parameters  

so that the full prior is 

where                         is the overall prior probability for Hi.  

The Bayes factor comparing Hi and Hj can be written  
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Bayes factors independent of P(Hi) 

For Bij we need the posterior probabilities marginalized over 
all of the internal parameters of the models: 

Use Bayes 
theorem 

So therefore the Bayes factor is 

The prior probabilities pi = P(Hi) cancel. 

Ratio of  marginal 
likelihoods 
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Numerical determination of Bayes factors 
Both numerator and denominator of Bij are of the form 

‘marginal likelihood’ 

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC). 

 Harmonic Mean (and improvements) 
 Importance sampling 
 Parallel tempering (~thermodynamic integration) 
 ... 

See e.g.  
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Harmonic mean estimator 
E.g., consider only one model and write Bayes theorem as: 

π(θ) is normalized to unity so integrate both sides, 

Therefore sample θ from the posterior via MCMC and estimate m  
with one over the average of 1/L (the harmonic mean of L). 

posterior 
expectation 
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Improvements to harmonic mean estimator 
The harmonic mean estimator is numerically very unstable; 
formally infinite variance (!).  Gelfand & Dey propose variant: 

Rearrange Bayes thm; multiply  
both sides by arbitrary pdf f(θ): 

Integrate over θ : 

Improved convergence if tails of f(θ) fall off faster than L(x|θ)π(θ) 

Note harmonic mean estimator is special case f(θ) = π(θ). 
. 
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Importance sampling 
Need pdf f(θ) which we can evaluate at arbitrary θ and also 
sample with MC. 

The marginal likelihood can be written 

Best convergence when f(θ) approximates shape of L(x|θ)π(θ). 

Use for f(θ) e.g. multivariate Gaussian with mean and covariance 
estimated from posterior (e.g. with MINUIT). 
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Bayes factor computation discussion 
Also tried method of parallel tempering; see note on course web 
page and also 

 

 

Harmonic mean OK for very rough estimate. 

I had trouble with all of the methods based on posterior sampling. 

Importance sampling worked best, but may not scale well to 
higher dimensions.  

Lots of discussion of this problem in the literature, e.g., 
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