

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

A. Adelmann (PSI-AMAS)

Cockcroft Institute - January 16 - 2013

Outline

Context of this Talk

2 Why not (yet) using a GPU?

Inside the Boxes

- OPAL
- FEMAXX
- Parallel I/O (H5hut) & Postprocessing (H5Root)

Plans for the Future

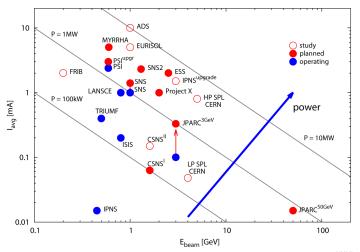
Outline

Context of this Talk

- 2 Why not (yet) using a GPU?
- Inside the Boxes
- Plans for the Future

$\mathsf{Developer}/\mathsf{User}$ Model of OPAL and FEMAXX

- OPAL (Object Oriented Parallel Accelerator Library)
 - particle tracking with 3D space charge
 - linear and circular machines
 - MAD based input language
- FEMAXX (Finite Element Eigenmode Solver)
 - real and complex solver
 - large structures


The Common Theme of the Codes

- Open Source Codes
- Heavily student & user based development
- \bullet MPI based, weak scaling up to $\approx 10k$ cores on relevant & challeging problems

How can we make use of the new technologies (crazy concurrency, memory hierarchies) in a "community code"?

Why Precise Beam Dynamics Simulations?

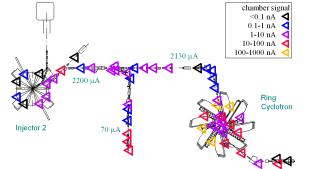
○ NUMI Cockcroft Institute - January 16 - 2013 Page 5 / 54

Why Precise Beam Dynamics Simulations?

Consider a 0.59 GeV, 2.3 mA (CW) Proton Cyclotron facility.

- uncontrolled & controlled beam loss $\mathcal{O}(2\mu A = const)$ in large and complex structures
- PSI Ring: 99.98% transmission $\rightarrow \mathcal{O}(10^{-4}) \rightarrow 4\sigma$

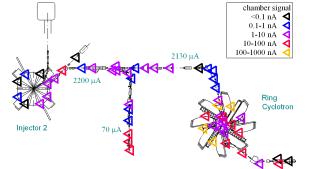
• small changes at injection affects extraction



Why Precise Beam Dynamics Simulations?

Consider a 0.59 GeV, 2.3 mA (CW) Proton Cyclotron facility.

- uncontrolled & controlled beam loss $\mathcal{O}(2\mu A = const)$ in large and complex structures
- PSI Ring: 99.98% transmission $\rightarrow \mathcal{O}(10^{-4}) \rightarrow 4\sigma$
- small changes at injection affects extraction



Why Precise Beam Dynamics Simulations?

Consider a 0.59 GeV, 2.3 mA (CW) Proton Cyclotron facility.

- uncontrolled & controlled beam loss $\mathcal{O}(2\mu A = const)$ in large and complex structures
- PSI Ring: 99.98% transmission $\rightarrow \mathcal{O}(10^{-4}) \rightarrow 4\sigma$
- small changes at injection affects extraction

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 7 / 54

Consequences for a Beam Dynamics Model

- Multiscale / Multiresolution
 - Maxwell's equations or reduced set combined with particles
 - N-body problem $n \sim 10^9$ per bunch in case of PSI
 - Spatial scales: $10^{-4} \dots 10^4$ (m) $\rightarrow O(1e5)$ integration steps
 - $v \ll c \dots v \sim c$
 - Large (complicated structures)
 - Neighboring bunches
- Multiphysics
 - Particle mater interaction: monte carlo
 - Secondary particles i.e. multi specis

Advanced Computing Modeling for Accelerators

Given an appropriate **physics model** it is necessary to combining state of the art **numerical methods** together with a **massively parallel implementation**.

Outline

Context of this Talk

2 Why not (yet) using a GPU?

Inside the Boxes

Plans for the Future

Why not (yet) GPU

History

- Connection Machine (Thinking Machines CM-2 .. 5) out of business: 1994:
 - was HPC leader ...
 - Lisp*,C* and "non standard" architecture/HW
- IBM Road Runner LANL
 - what would you do with a cell-code today ?

Why not (yet) using a GPU?

Why not (yet) GPU

History

- Connection Machine (Thinking Machines CM-2 .. 5) out of business: 1994:
 - was HPC leader ...
 - $\bullet~Lisp^*, C^*~and~"non~standard"~architecture/HW$
- IBM Road Runner LANL
 - what would you do with a cell-code today ?

Lessons Learned

- For a complex multi-physics code it is a big investment
- However, with the advent of languages such as CUDA etc. the risk is somewhat smaller.
- There is still the question, if the future, we really wants to deal with heterogenous architectures ...

Outline

Context of this Talk

2 Why not (yet) using a GPU?

Inside the Boxes

- OPAL
- FEMAXX
- Parallel I/O (H5hut) & Postprocessing (H5Root)

Plans for the Future

Outline

Context of this Talk

2 Why not (yet) using a GPU?

Inside the Boxes

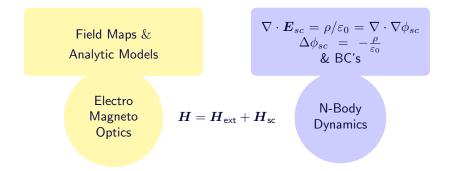
- OPAL
- FEMAXX
- Parallel I/O (H5hut) & Postprocessing (H5Root)

Plans for the Future

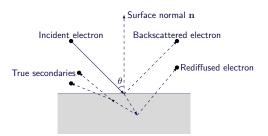
OPAL in a Nutshell

 $\rm OPAL$ is a tool for charged-particle optics in large accelerator structures and beam lines including 3D space charge and particle matter interaction

- OPAL is built from the ground up as a parallel application exemplifying the fact that HPC (High Performance Computing) is the third leg of science, complementing theory and the experiment
- $\bullet~\mathrm{OPAL}$ runs on your laptop as well as on the largest HPC clusters
- $\bullet~\mathrm{OPAL}$ uses the MAD language with extensions
- OPAL (and all other used frameworks) are written in C++ using OO-techniques, hence OPAL is very easy to extend.
- Documentation is taken very seriously at both levels: source code and user manual (http://amas.web.psi.ch/docs/index.html)
- Regression tests running evert day on the head of the repository

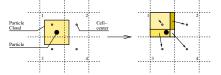

OPAL Architecture

- OPAL Object Oriented Parallel Accelerator Library
- IP²L Independent Parallel Particle Layer
- Class Library for Accelerator Simulation System and Control
- H5hut for parallel particle and field I/O (HDF5)
- OPAL and FEMAXX Parallel & Open Source Codes for Precise Particle Accelerator Modeling


Maxwell's Equation in the Electrostatic approximation

Particle Matter Interaction

- Energy loss -dE/dx (Bethe-Bloch)
- Coulomb scattering is treated as two independent events:
 - multiple Coulomb scattering
 - large angle Rutherford scattering
- Field Emission Model (Fowler-Nordheim)
- Secondary Emission Model ([Furman & Pivi] & [Vaughan])


- Phenomenological- don't involve secondary physics but fit the data.
- Model 1 developed by M. Furmann and M. Pivi
- Model 2 (Vaughan) is easier to adapt to SEY curves

A fast Direct FFT-Based PIC Poisson Solver

Solving for ϕ using $\phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int G(\mathbf{x}, \mathbf{x}') \rho(\mathbf{x}, \mathbf{x}') d\mathbf{x}'$ is expensive $\mathcal{O}(N^2)$ with N number of particles/grid-points.

- Let Ω be spanned by a Cartesian structured mesh of $l \times n \times m$ with $l = 1 \dots M_x$, $n = 1 \dots M_y$ and $m = 1 \dots M_z$. The mesh size is a function of time: $h_x(t), h_y(t)$ and $h_z(t)$.
- 2 Discretize $\rho \to \rho_h$ and $G \to G_h$ on a regular grid (PIC).

- Go to Fourier space $\rho_h \to \hat{\rho}_h$, $G_h \to \hat{G}_h$ and convert the convolution into a multiplication $\hat{\phi}_h = \hat{\rho}_h * \hat{G}_h$ in $\mathcal{O}(N \log N)$.
- Use a parallel FFT, particle and field load balancing.

A fast Direct FFT-Based PIC Poisson Solver

- \triangleright Assign (scatter) all particles charges q_i to nearby mesh points to obtain ρ
- \triangleright Lorentz transform to obtain ρ in beam rest frame \mathbf{S}_{beam} .
- \triangleright Use FFT on ρ and G to obtain $\widehat{\rho}$ and \widehat{G}
- \triangleright Determine $\widehat{\phi}$ on the grid using $\widehat{\phi} = \widehat{\rho} \cdot \widehat{G}$
- \triangleright Use inverse FFT on $\widehat{\phi}$ to obtain ϕ
- $\triangleright \text{ Compute } \mathbf{E} = -\nabla \phi$
- \triangleright Lorentz back transform to obtain \mathbf{E}_{sc} and \mathbf{B}_{sc} in laboratory frame \mathbf{S}_{lab}
- \triangleright Interpolate (gather) **E**, **B** at particle positions **x** from **E**_{sc} and **B**_{sc}

Charge assignment and electric field interpolation are related to the interpolation scheme. If e_i is the charge of a particle, we can write the density at mesh point \mathbf{k}_m as

$$\rho(\mathbf{k}_m)^D = \sum_{i=1}^N e_i \cdot W(\mathbf{q}_i, \mathbf{k}_m), \ m = 1 \dots M$$
(1)

where \boldsymbol{W} is a suitably chosen weighting function.

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 20 / 54

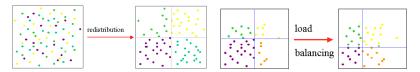
A fast Direct FFT-Based PIC Poisson Solver

OPAL Parallel Scaling on Cray XT5 (FFT Solver)

- Tracking 10^8 Gaussian distributed particles
- 3D FFT on a 1024^3 grid 110 1 100 90 parallel efficiency (%) 80 0.7 ⁷.6. .6. **Darticles pushed** 70 60 50 40 30 20 10 0.2 1024 2048 4096 8192 cores Particle Pushed Tota] Integration1

Integration2

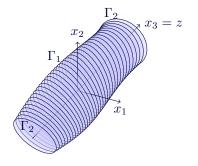
OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling


Self Fields

A fast Direct FFT-Based PIC Poisson Solver Load Balancing

Logically we can divide OPAL into three sections:

- Initialisation: create distribution and set-up accelerator
- Initial Load balancing using spatial layout
- Tracking
 - 1 If necessary, dynamic load balancing



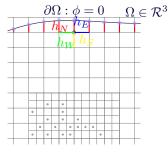
Iterative Poisson Solver SAAMG-PCG

Boundary Problem

$$\begin{split} \Delta \phi &= -\frac{\rho}{\varepsilon_0} \text{, in } \Omega \subset \mathbb{R}^3, \\ \phi &= 0 \text{, on } \Gamma_1 \\ \frac{\partial \phi}{\partial \mathbf{n}} + \frac{1}{d} \phi &= 0 \text{, on } \Gamma_2 \end{split}$$

- $\Omega \subset \mathbb{R}^3$: simply connected computational domain
- ε_0 : the dielectric constant
- $\Gamma = \Gamma_1 \cup \Gamma_2$: boundary of Ω
- *d*: distance of bunch centroid to the boundary

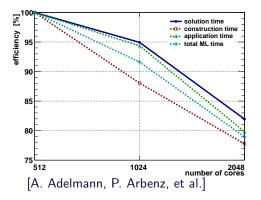
- Γ_1 is the surface of an
 - elliptic beam-pipe
 - arbitrary beam-pipe element



Iterative Poisson Solver SAAMG-PCG cont.

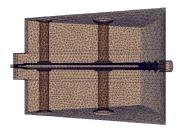
We apply a second order finite difference scheme which leads to a set of linear equations

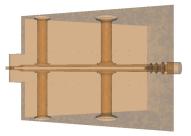
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
,


where **b** denotes the charge densities on the mesh.

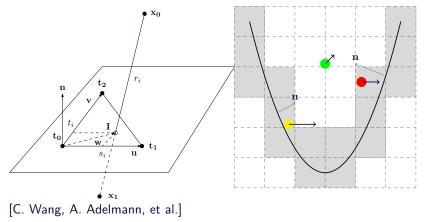
- solve anisotropic electrostatic Poisson PDE with an iterative solver
- reuse information available from previous time steps
- achieving good parallel efficiency
- irregular domain with "exact" boundary conditions
- easy to specify boundary surface

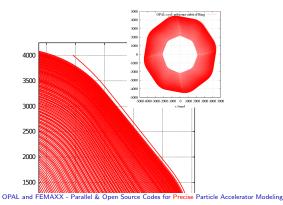
SAAMG-PCG Parallel Efficiency

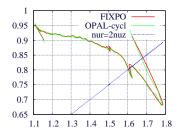



- obtained for a tube embedded in a $1024 \times 1024 \times 1024$ grid
- construction phase is performing the worst with an efficiency of 73%
- influence of problem size on the low performance of the aggregation in ML

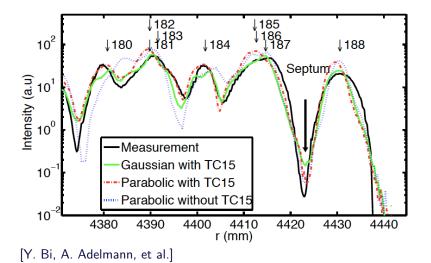
3D Geometry Handling Capability of OPAL


- Read in surface mesh generated by Heronion or GMSH
- Triangulated surface representation of geometry

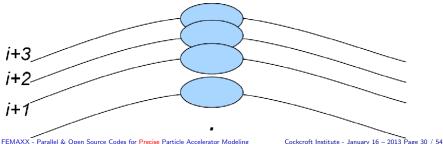

- Triangle-line segment intersection
- Boundary bounding box to speedup the collision tests
- We can handle arbitrary structure as long as it is closed



PSI 590 MeV Ring - last 8 turns @ 2.2 mA

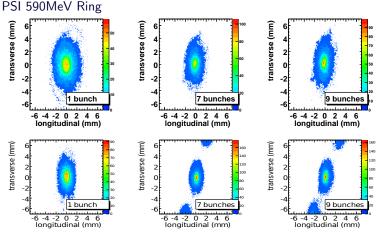

- initial conditions from 72 MeV transfer line simulation (OPAL-T)
- rf parameters from control room
- using measured mid-plane field and analytic trim-coil (tc15)
- single particle run to verify tun numbers and tunes

PSI 590 MeV Ring - last 8 turns @ 2.2 mA



Neighboring Bunch Effects- Multi Bunch Model

In the model, the injection-to-extraction simulation is divided into two stages:


- First stage, big $\Delta r \Rightarrow$ single bunch tracking
- 2 Second stage, small $\Delta r \Rightarrow$ multiple bunches tracking
- Full 3D
- Energy bins & re-binning
- Large grids needed

Neighboring Bunch Effects- Multi Bunch Model

Single bunch and multiple bunches at turn 80 and 130

[J. Yang, A. Adelmann, et al.]

Dark Current & Multipacting Simulations

(Dark Current)

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 32 / 54

Outline

Context of this Talk

2 Why not (yet) using a GPU?

Inside the Boxes

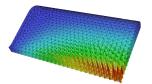
- OPAL
- FEMAXX
- Parallel I/O (H5hut) & Postprocessing (H5Root)

Plans for the Future

FEMAXX overview

Joint project PSI/ETH (Prof. P. Arbenz)

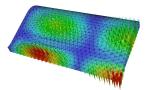
- Solves 3D electric field vector wave equation
- Finite element method (FEM) with unstructured tetrahedral mesh
- Model arbitrary geometry or material property
- The parallel nature allows us to model largest structures


Compute electromagnetic fields in accelerator cavities, i.e. some of the lowest eigenfrequencies and corresponding eigenfields.

FEMAXX overview

Joint project PSI/ETH (Prof. P. Arbenz)

- Solves 3D electric field vector wave equation
- Finite element method (FEM) with unstructured tetrahedral mesh
- Model arbitrary geometry or material property
- The parallel nature allows us to model largest structures


Compute electromagnetic fields in accelerator cavities, i.e. some of the lowest eigenfrequencies and corresponding eigenfields.

FEMAXX overview

Joint project PSI/ETH (Prof. P. Arbenz)

- Solves 3D electric field vector wave equation
- Finite element method (FEM) with unstructured tetrahedral mesh
- Model arbitrary geometry or material property
- The parallel nature allows us to model largest structures

Compute electromagnetic fields in accelerator cavities, i.e. some of the lowest eigenfrequencies and corresponding eigenfields.

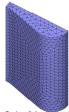
Available Solvers

Eigensolver	Problem Type	Application
JDSYM	Generalized real symmetric EVP	lossless resonant cavities
		[R. Geus]
JDQZ	Generalized non-Hermitian & quadratic EVP	dielectric & ohmically lossy material [H. Guo]
NLJD	Nonlinear EVP	cavities with finite conductivity [H. Guo]

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 35 / 54

- $\bullet\,$ We are interested in the resonant behaviour of a cavity $\Omega,$ thus we work in frequency domain
- Reformulating Maxwell's equations, eliminating H and using a time harmonic ansatz for $\mathbf{E}(\mathbf{x},t)$ we obtain


$$\begin{aligned} \nabla \times \nabla \times \mathbf{e}(\mathbf{x}) &- \lambda \mathbf{e}(\mathbf{x}) &= 0 \quad \forall \mathbf{x} \in \Omega, \quad \lambda = \omega^2/c^2 \\ \nabla \cdot \mathbf{e}(\mathbf{x}) &= 0 \quad \forall \mathbf{x} \in \Omega \\ \mathbf{e}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}) &= \mathbf{0} \quad \forall \mathbf{x} \in \Gamma \end{aligned}$$

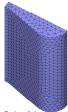
 $\mathbf{e}(\mathbf{x})$ is the amplitude of the eigenfield at location $\mathbf{x}.$

• Tetrahedral meshes, exploiting symmetries

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 36 / 54

- \bullet We are interested in the resonant behaviour of a cavity $\Omega,$ thus we work in frequency domain
- Reformulating Maxwell's equations, eliminating H and using a time harmonic ansatz for E(x, t) we obtain


$$\begin{aligned} \nabla \times \nabla \times \mathbf{e}(\mathbf{x}) - \lambda \mathbf{e}(\mathbf{x}) &= 0 \quad \forall \mathbf{x} \in \Omega, \quad \lambda = \omega^2/c^2 \\ \nabla \cdot \mathbf{e}(\mathbf{x}) &= 0 \quad \forall \mathbf{x} \in \Omega \\ \mathbf{e}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}) &= \mathbf{0} \quad \forall \mathbf{x} \in \Gamma \end{aligned}$$

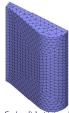
 $\mathbf{e}(\mathbf{x})$ is the amplitude of the eigenfield at location $\mathbf{x}.$

• Tetrahedral meshes, exploiting symmetries

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 36 / 54

- \bullet We are interested in the resonant behaviour of a cavity $\Omega,$ thus we work in frequency domain
- Reformulating Maxwell's equations, eliminating H and using a time harmonic ansatz for ${f E}({f x},t)$ we obtain


$$\begin{aligned} \nabla \times \nabla \times \mathbf{e}(\mathbf{x}) - \lambda \mathbf{e}(\mathbf{x}) &= 0 \quad \forall \mathbf{x} \in \Omega, \quad \lambda = \omega^2 / c^2 \\ \nabla \cdot \mathbf{e}(\mathbf{x}) &= 0 \quad \forall \mathbf{x} \in \Omega \\ \mathbf{e}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}) &= \mathbf{0} \quad \forall \mathbf{x} \in \Gamma \end{aligned}$$

 $\mathbf{e}(\mathbf{x})$ is the amplitude of the eigenfield at location $\mathbf{x}.$

• Tetrahedral meshes, exploiting symmetries

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 36 / 54

Mathematical model of JDSYM FEM discretisation

We use the weak formulation proposed by Kikuchi (1987)

$$\frac{\operatorname{Find} (\lambda, \mathbf{e}, p) \in \mathbb{R} \times H_0(\operatorname{\mathbf{curl}}; \Omega) \times H_0^1(\Omega)}{\operatorname{such that} \mathbf{e} \neq \mathbf{0} \text{ and}} \\
(a) \quad (\nabla \wedge \mathbf{e}, \nabla \wedge \Psi) + (\nabla p, \Psi) \\
\quad = \lambda(\mathbf{e}, \Psi), \quad \forall \Psi \in H_0(\operatorname{\mathbf{curl}}; \Omega) \\
(b) \quad (\mathbf{e}, \nabla q) = 0, \quad \forall q \in H_0^1(\Omega)$$
(2)

Here, p is a Lagrange multiplier.

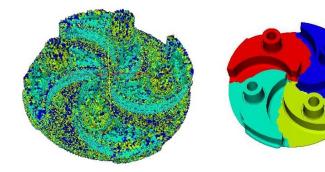
FEM discretisation

We discretize the field e in (2) by quadratic edge elements proposed by Nédélec (1980) and the Lagrange multiplier p by quadratic node elements. This yields a large sparse constrained matrix eigenvalue problem of the form

$$A\mathbf{x} = \lambda M \mathbf{x} \qquad C^T \mathbf{x} = \mathbf{0}.$$
 (3)

where A is symmetric positive semidefinite and M is symmetric positive definite. C has full rank. The number of columns of C, i.e. the number of constraints, is about one eighth of the order of A and M! However, with this peculiar finite element discretization we have

$$C^T \mathbf{x} = \mathbf{0} \iff \mathbf{x} \perp_M \mathcal{N}(A).$$
 (4)


This means that the eigenvalues of (3) are equal to the positive eigenvalues of

$$A\mathbf{x} = \lambda M \mathbf{x}.$$
 (5)

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 38 / 54

Mesh partitioning using ParMETIS

Purpose

- Load balancing: Each processor gets the same number of tetrahedra
- Minimise solver communication: Minimise the size of the interprocessor boundary
- Crucial for efficient parallel execution

Implementation

- ParMETIS: Parallel library for graph partitioning
- Heuristic multilevel algorithm
- Parallel I/O with H5hut

Parallel solver algorithms using Trilinos framework

Solver algorithms

Distributed objects

Distributed matrices and vectors provided by Epetra.

Inner solver

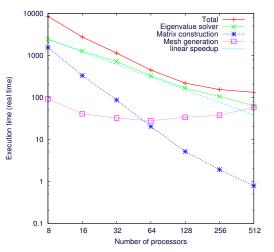
Parallel implementation of the QMRS iterative linear solver.

Eigensolver

Parallel implementation of Jacobi-Davidson method (JDSYM), R. Geus

Preconditioners

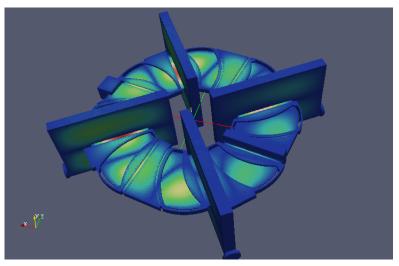
- Incomplete factorisation (IFPACK)
- Algebraic Multigrid (ML & SuperLU)


Experimental results obtained on Cray XT3 (Horizon)

What was computed

- 5 lowest eigenvalues with eigenvectors of the COMET cavity
- Ist order elements used
- LDL^T preconditioner
- 1.4 million DOFs
- Post-processing not included

Observations


- The code scales well to large number of cpus
- Computation takes only 4 minutes on 512 cpus
- Enables shape optimization

Glow Discharge in the PSI ring

This problem needs it all ... (not solved yet)

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

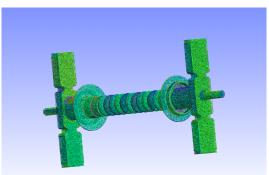
Cockcroft Institute - January 16 - 2013 Page 42 / 54

Outline

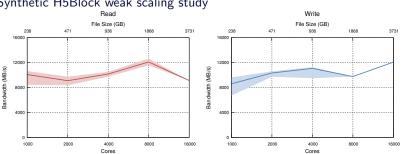
Context of this Talk

2 Why not (yet) using a GPU?

Inside the Boxes

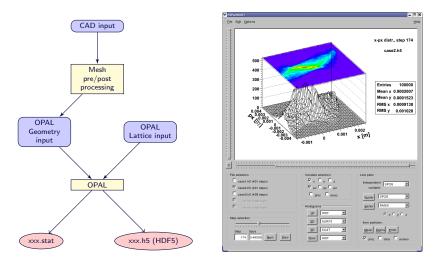

- OPAL
- FEMAXX
- Parallel I/O (H5hut) & Postprocessing (H5Root)

Plans for the Future


Aim of H5hut

- H5Part, H5Block & H5Fed [M. Howison, A. Adelmann, et al.]
- Handle very large files (16k cores Franklin, 3.7TB)
- Platform independent processing of the same data
- integrated into state of the art analysis & visualization tools (Visit, ParaView & Root)

Performance: Results


Synthetic H5Block weak scaling study

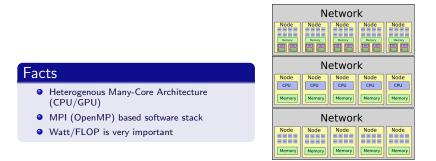
- Weak scaling to 16,000 cores on Franklin and 3.7TB of data.
- Read times include a halo exchange, to transmit a ghost region of cells among neighboring blocks.
- The solid line shows the mean bandwidth, shaded region minimum and maximum.

Parallel I/O (H5hut) & Postprocessing (H5Root)

[T. Schietinger A. Adelmann, et al.]

Outline

Context of this Talk

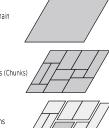

2 Why not (yet) using a GPU?

Inside the Boxes

Hardware & Software Development is not working for us

Works well ...

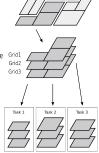
if you have an isolated Kernel that needs to be optimized


OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Cockcroft Institute - January 16 - 2013 Page 48 / 54

A Complex Application: OPAL

Global Domain



Subdomains (Chunks)

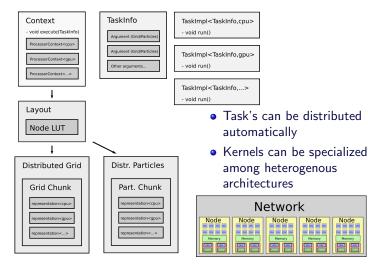
MPI Domains

Single MPI Node Grid Grid2 Grid'

Local Tasks

Ax = b

- PDE & Monte-Carlo
- Complicated boundary conditions ۰
- Adaptivity


This does not fit per se ...

- complicated data structures (not Array)
- need good load balancing → dynamic data structures

A Parallel Hybrid Particle Mesh Framework

A prototype exists (ETH BSc Thesis A Parallel Hybrid Particle Mesh Framework, J. Progsch)

OPAL and FEMAXX - Parallel & Open Source Codes for Precise Particle Accelerator Modeling

Node

Memory

Node

Memory

A new Architecture that avoids one level of complexity!

Lets have a look at a very simple but powerful (new) architecture - Intel Xeon/PHI (MIC):

- it is a x86-compatible co-processor (60 cores)
- multi-threaded
- can compile my existing SW-Stack out of the box
- The Xeon Phi 5110P will be capable of 1.01 teraflops of double precision floating point instructions
- 320GB/sec memory bandwidth
- 225 W (The latest Green500 list announced the National Institute for Computational Sciences "Beacon" system as the world's most energy-efficient supercomputer)

Conclusions

- Using the High Performance Computing (HPC) technology will enable us to speedup computations while increasing the accuracy of the used models
- HPC is an enabler of new modeling capabilities: 3D space charge & secondary effects in large structures & EVP in large and complicated structures
- State-of-the-art numerical methods and adequate **software technology** are mandatory
- New Major Capabilities for OPAL in the near future are:
 - Multiobjective Optimization (Ph.D ETH/PSI/IBM to be defended in 1Q 2013) [Y. Ineichen, A. Adelmann, et al.] PRACE Award 2013
 - Adaptive Mesh Refinement (PSI-FELLOW post doc start 1. March 2013)
 - FFAG modeling capabilities (Ch. Rogers & S. Sheehy)
- \bullet Active OPAL collaborations with CIAE, LANL, Cornell, LBL, Rutherford and ETH
- OPAL & FEMAXX are open software tools, please join!

The OPAL & FEMAXX framework combines essential factors

- physics modeling
- numerical mathematics and
- high performance computing
- multidisciplinary community efforts (open source)

which enables us to enter into new regimes of precise accelerator modeling and control.

References

- A. Adelmann, P. Arbenz, et al., J. Comp. Phys, 229 (12): 4554 (2010)
- M. A. Furman and M. Pivi, Phys. Rev. STAB 5, 124404 (2002)
- Y. Bi, A. Adelmann et al., Phys. Rev. STAB 14(5) 054402 (2011)
- J. Yang, Adelmann et al., Phys. Rev. STAB 13(6) 064201 (2010)
- J. R. M. Vaughan, IEEE Transactions on Electron Devices 40, 830 (1993)
- C. Wang, A. Adelmann, et al., arXiv:1208.6577

R. Geus ETH-Diss 14734, 2001

H. Guo ETH-Diss 20947, 2012

M. Howison, A.Adelmann et al., IEEE CLUSTER WORKSHOPS, 2010 doi:10.1109/CLUSTERWKSP.2010.5613098

T. Schietinger A. Adelmann, et al., http://amas.web.psi.ch/tools/H5root/index.html

Y. Ineichen, A. Adelmann, et al., Computer Science - Research and Development, pp. 1-8. Springer, Heidelberg, 2012.

OPAL developers: Achim Gsell, Christof Kraus, Yves Ineichen (PSI), Steve Russell (LANL), Yuanjie Bi, Chuan Wang, Jianjun Yang (CIAE), Hao Zha (Thinghua University) Mayes Christopher (Cornell), Ch. Rogers & S. Sheehy (Rutherford)