
MERLIN computation needs for the HL-LHC
upgrade.

J. Molson

University of Manchester, Cockcroft Institute

16th January, 2013

J. Molson Workshop on Advanced Computing for Accelerators 1/20



What is Merlin?

C++ Accelerator physics library

Provides a set of useful functions for accelerator modelling

Initially used to simulate ground motion in the ILC BDS and
linac

Later the ILC damping rings

Written by Nick Walker et al (DESY)

Now adapted for large scale proton collimation simulations by
Manchester and Huddersfield

Three main sections of the library:

Accelerator lattice loading/creation and storage

Tracker

Physics processes

Modular design - easy to modify and extend

J. Molson Workshop on Advanced Computing for Accelerators 2/20



Physics processes

Additional physics on top of tracking to be applied at selected
elements and positions

Can be enabled or disabled as required - processes are
attached to trackers

Examples: Synchrotron radiation, collimation, wakefields, etc

Easy to create, template examples exist

Trackers manage stepping within processes - inputs are the
AcceleratorComponent and bunch

J. Molson Workshop on Advanced Computing for Accelerators 3/20



The Large Hadron Collider (LHC)

7 TeV proton-proton synchrotron, 26.65km length

Beams collide at 4 experimental regions - (ATLAS, ALICE,
CMS, LHCb)

2 collimation regions

Additional regions for RF, and the beam dump

Injection at 450 GeV, ramp to up 7000 GeV (Currently
running at 4000 GeV)

Superconducting magnet system, 1.9K, 8.33T dipoles

High stored beam energy!

J. Molson Workshop on Advanced Computing for Accelerators 4/20



Why do we need to collimate

360MJ stored beam energy.

4.5mW /cm3 will quench a magnet at top energy!

J. Molson Workshop on Advanced Computing for Accelerators 5/20



Collimation

J. Molson Workshop on Advanced Computing for Accelerators 6/20



Collimation Layout

J. Molson Workshop on Advanced Computing for Accelerators 7/20



Collimator Images

J. Molson Workshop on Advanced Computing for Accelerators 8/20



Simulation running

Tracking and collimation is independent on a per-particle
basis, so do not need any parallel computers - just lots of
CPU hours.

Currently run on grid systems and lxbatch in addition to local
machines.

Typical run involves ∼1000 cores for ∼hours - we want to
simulate billions of particles.

Want to probe down to low loss levels - e.g. to find possible
areas that could suffer from radiation damage.

And then re-run on different optics and collimator
configurations.

Simulation will expand to fill all available computing resources.

J. Molson Workshop on Advanced Computing for Accelerators 9/20



OpenMP

Minimal work can be done to get this to run in ”parallel”.

Use OpenMP in a loop over all particles in the bunch.

#pragma omp parallel for

for(size_t i = 0; i<bunch.size(); i++)

{

amap->Apply(bunch.GetParticles()[i]);

}

J. Molson Workshop on Advanced Computing for Accelerators 10/20



Example run

J. Molson Workshop on Advanced Computing for Accelerators 11/20



Loss map results comparison (Sixtrack plots from LHC
collimation group (R. Bruce))

J. Molson Workshop on Advanced Computing for Accelerators 12/20



Loss map Results IR7

J. Molson Workshop on Advanced Computing for Accelerators 13/20



Parallel running

Wish to run large simulations - very cpu heavy - use MPI

Must use multiple physical machines with interconnects

Run multiple copies of the same binary that can communicate
with each other

Tracking, collimation, etc, are all independent on a
per-particle basis, do not need any knowledge about other
particles

Collective effects such as space charge and wakefields do
require this information

Functions exist such as parallel bunch moment calculations
(mean, standard deviation) in addition to the ability to move
particles between computers

Parallel running is implemented at a per process algorithm
level

J. Molson Workshop on Advanced Computing for Accelerators 14/20



Parallel running

J. Molson Workshop on Advanced Computing for Accelerators 15/20



Naive example

Given some variable x, we wish to calculate the mean: x̄ = 1
n

n∑
n=1

x

Sum all the x values on a single process.

Share the sum values between all processes.

Share the number of x values per process between all
processes (n).

Sum all x values and sum all n values.

Divide to get the mean.

J. Molson Workshop on Advanced Computing for Accelerators 16/20



Psedocode

//Some array of values

doubleInputArray[NMAX];

double sum = 0;

for(size_t i = 0; i < NMAX; i++)

{

sum += InputArray[i];

}

Allreduce(MPI_IN_PLACE, &sum, 1, MPI_DOUBLE, MPI_SUM);

Allreduce(MPI_IN_PLACE, &NMAX, 1, MPI_DOUBLE, MPI_SUM);

double mean = sum/NMAX:

J. Molson Workshop on Advanced Computing for Accelerators 17/20



Example: collimator resistive wall wakes

Collimator jaws are placed very close to the beam (≤ 5σ).

Resistive wall effect leads to beam emittance growth.

Good conducting materials aren’t always good for collimation.

Want new collimation layouts that can use different ”novel”
materials that allow collimators to sit further from the beam
core.

J. Molson Workshop on Advanced Computing for Accelerators 18/20



Algorithm

Slice the bunch longitudinally into n slices - each node must
agree on where to do the slicing from the mean and standard
deviation of the bunch distribution.

Calculate the kicks on each node due to the charge
contribution from each slice.

Sum the kicks from each slice over the full simulation and
distribute to all nodes.

Apply the wakefield using the distributed contributions.

J. Molson Workshop on Advanced Computing for Accelerators 19/20



Conclusions

We are developing the code Merlin to operate with proton
machines for high energy collimation simulations.

Simulations of the HL-LHC upgrade at CERN are progressing
well.

Different physics problems require different computing
methods.

We will always need more computing power.

Would like to have access to a xeon phi to test.

Always looking for new victims/code users.

J. Molson Workshop on Advanced Computing for Accelerators 20/20


