
Creating and Improving Multi-Threaded Geant4
Xin Dong, Gene Cooperman (Northeastern Univ.)
John Apostolakis, Andrzej Nowak, Sverre Jarp (CERN)
Makoto Asai, Daniel Brandt (SLAC)

Introduction
The Geant4 toolkit is used in large scale detector simulation in many High Energy Physics experiments, Space Engineering and Medical Physics applica-
tions. To adapt Geant4 to the current era of multi-core computing, we created a prototype multithreaded version of Geant4 (Geant4MT) which employs
event-level parallelism. We describe the source code transformation techniques by which Geant4 MT is created. This method is currently also used to port
new releases of sequential Geant4 to Geant4MT. After this, tools are used to check that the changes are correct and complete, so that the results of an
event are bit-compatible between sequential and MT versions. We present an overview of the design of Geant4MT, and the speedup results achieved. A
CPU time overhead was found in Geant4MT with one-worker. We identify key causes of this overhead, and describe how to reduce them significantly.

Aim & requirements
Geant4MT aims to reduce the
memory footprint by sharing the
largest data structures in Geant4.
This will allow the use of tens of
threads, while using one a few times
the memory of a sequential job.

Key requirements for Geant4MT
include:
• bit-level compatibility of results
with the sequential version - given
the same starting state of a pseudo
Random Number Generator (pRNG)
for each event;
• simple porting of applications;
• efficient use of multi-core and
many-core hardware though good
scaling of performance.

1. Separate All Data
To create G4MT source from G4 the
first source transformation is to:
1) Make all objects thread local by

“Transformation for Thread
Safety” - threads share only read-
only objects.

2) Each thread has its own instance
of a pseudo random number
generator (pRNG).

This is a ‘baseline’ for G4MT, and
must give exactly the same results
as a set of runs of the sequential
program with the same seeds for the
pRNG.
Each thread has a separate instance
of the geometry and all processes at
this point.
We now change this, to share the
largest data structures.

2. Share Large Data
1) Identify data structures which are

read-only after initialization. Use
Transformation for Memory
Footprint Reduction (TMR) to
share between threads the
• Geometry
• Physics tables (σ, dE/dx, ρ)

2) Split classes with read-only and
writable parts. A Particle Type has:
• Invariant properties: q0, m0
• Nthread Process Managers (one
per thread, each with a full set of
processes for the particle.)

3) Revised Physics Table classes to
separate a Read-Write part which
“cache” the last value.

Create extra code to initialize all
objects in a worker thread from
corresponding objects in the master

3. Check one worker
We compare a Geant4MT program,
running with 1 worker thread and its
original sequential Geant4. We use
the temporal debugger URDB [3] to
record each program’s full state at
regular intervals, in bisimulation
model.
When a difference is observed
between the versions, we use the
tool to roll back execution of both
programs, until we find its cause.

28
C

H
A

P
T

E
R

3.
S
T

O
C

T
-B

A
S
E

D
P
A

R
A

L
L
E

L
IZ

A
T

IO
N

Figure 3.3: Bisimulation Tool User Interface

40
C

H
A

P
T

E
R

4.
C

A
S
E

S
T

U
D

Y
:
G

E
A

N
T

4
M

U
LT

IT
H

R
E

A
D

IN
G

Figure 4.1: Geant4MT Split Classes

1. G. Cooperman et. al, Proc of CHEP 2000, arXiv:hep-ph/0001144.
2. X. Dong et al. “Multithreaded Geant4: Semi-Automatic Transformation into Scalable Thread-

Parallel Software”. In: Proc. of Euro-Par’2010, 2010.
3. A. M. Visan et. al., in Software Engineering (2009) and arXiv:0910.5046v1.

4. P. Canal (FNAL), private communication.
5. U. Drepper “Elf Handling for Thread-Local Storage” http://www.akkadia.org/drepper/tls.pdf
6. A. Oliva and G. Araujo, “Speeding Up Thread-Local Storage Access in Dynamic Libraries”, in

GCC Developers’ Summit 2006, 2006, pp. 159-178.

Resources and further reading

4. Check Data Races
In case results with several threads
are different from one thread results,
we must identify which shared data
is changed during the simulation.

To do this we extended the selective
memory protection technique from
TMR to monitor the runtime
correctness - with a new tool, the
Data Race Coordinator (DRC).

This can be used in two modes:
• check mode, which flags a
problem and exits;

• correction mode, which creates
separate memory in case of
unexpected sharing.

The run time overhead is small -
proportional to the number of errors
detected.

5. Fix Performance
Sharing objects initially increased
CPU time. The causes was large
number of mutex calls due to:
1) Allocation of per-thread local

objects by common allocator;
scaling restored by introducing
per-thread allocator.

2) Updating of shared variables - for
printing - was suppressed.

After these issues were addressed,
good performance is obtained, as
seen in the figure above.

Note: significant effort was required
to identify the causes in each case,
due to the primitive nature of the of
the tools that were available.

7.Thread Overhead
Comparing time per event on
sequential version with 1-worker
version, identified an overhead of
30% [4].

Two sources have been identified:
1) calls to identify the thread,

required in order to resolve the
address of thread-local data;

2) extra indirection added to split
objects.

By changing the model for Thread
Local Storage [5] from “init” to
“gnu2” [6] the overhead was
reduced to 18%.

8. Porting Applications
To port a stand-alone application to
G4MT a user must change its main
program to use G4MTRunManager,
and to review all User Actions
classes: Stepping, Event and Run
Actions. (Hit classes are unchanged,
as hits are collected per event.) We
estimate that this will take 0.5 to 2
days, including first tests.

9. Porting Geant4MT
Today we port Geant4MT to a new
G4 version redoing each stop of this
process: applying TTS and TMR,
porting the “extra” G4MT code and
checking with URDB and DRC. The
effort required is of the order of one
week. We plan to incorporate key
changes into Geant4 in 2012-13.

Figure 1: Design of Geant4
MT: private, split and shared
classes.

Classes in which large
amount of data is stored are
shared (“Sharable”): e.g.
Physics-Table.

To enable this some classes
have one part shared, and
another private (“Split
Shareable”): e.g. a Particle-
Definition (G4Particle) which
shares properties and has a
separate Process-Manager
per thread.

The remaining classes are
replicated for each thread
(“Thread Private”), including
all physics processes and all
classes dealing with tracking,
event and run management.

Figure 2: CPU time for
Geant4 MT running on a
40-core system with
Westmere EX CPUs.

Details :
Geant4 MT based on
Geant4 9.4.patch 01 (pre-
release version.)

gcc 4.3.4, 64-bit,
128 GB memory

Ran 100 events per thread.
Each event consists of one
300 GeV pion.

The setup is a model of the
full CMS geometry - which
was obtained in 2008 (and
is imported from a GDML
file.)

Efficiency = Time (N
workers) *

Consequences of
Geant4MT’s design

Classes which are split (“Split
Shareable”) must be re-
engineered to separate all
thread-private parts into one
(or more) separate objects.
Each thread is given an
instance of each new
subobject; all code references
to these data members must
be changed in the class
implementation.

When a worker thread is
created, Geant4MT must
create a copy of all objects
necessary for a separate
simulation to start:
•new instances of all Thread
Private objects, including
the managers for run, event,
and tracking;

•separate instances of the
non-shared parts of “Split”
objects.

6. Scaling
Comparing against
the time for the 1
worker + 1 master,
we observe good
scaling on systems
with up to 40 cores.

No sequential
bottleneck is seen for
40 or 80 workers.

Hyper-Threading
adds 20% to the
throughput.

HyperThreading
Regime

http://arxiv.org/abs/0910.5046v1
http://arxiv.org/abs/0910.5046v1
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf

