Accelerator Simulations
- Issues and Challenges

Chris Prior
ASTeC-RAL




What do we want to use codes for?

Codes to generate
basic lattices

Codes to examine
specific processes

Codes to model specifc
items of hardware

Paraxial tracking, high-
order tracking, with/
without space-charge

Codes to handle different kinds of I

particles, neutralised beams etc.
B

Thursday, 17 January 2013



Why are Codes Important?

» Generate the basic underlying machine design
— sets of self-consistent parameters
— optimised for performance
— avoid resonances, instabilities, minimise non-linear effects

» Establish likely machine performance

— predict effect and correction of failure mechanisms

— bracket allowable errors

— control/reduce beam loss

— identify beam properties on exit (e.g. to a target)

— quantify output energy, emittance & halo at full current

* |ndicate whether novel ideas are feasible
» Develop commissioning strategies
* The codes themselves must be “certified” at some level
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Availability, Sophistication, Limitations

* Availability: Many useful beam dynamics codes
exist for simulation of linacs and rings

— the variety is good but comes with redundancy

— much effort on benchmarking different codes

e Sophistication: a lot of them are pretty sophisticated
— 3D External and Space-Charge fields

— Parallel codes: simulation of actual number of particles in beam
bunch, 109, 10127

— Detailed machine error simulations and correction

* Limitations: still far from reproducing experimental
data to make them reliable for supporting real-time
machine operation

— Efforts at SNS, J-PARC, GSI; long-term goal for ESS
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The Codes

* Beam Optics codes
> Transform envelope with analytical space charge
> Used as basis for most tuning algorithms
* PIC Dynamics codes
> Linacs: Parmila, Parmela, Tracewin, Dynamion ....
Rings: Orbit, Simpsons, Simbad, OPAL....
106to 10° particles, with 3-D space charge
Matrix/map based, thin lens+drift, direct integration
» Do a good job on core simulations; not so well on halo
~ Agree at few % level with experiments
* Integrating dynamics codes
> Impact, Track, Tstep (Parmela)
- Ray-tracing codes
~ Zgoubi, G4beamline...
- Can now integrate ~10° particles through field maps

v

v

v
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Beam Optics Codes v. Beam Tracking

Beam optics codes Beam dynamics codes

(example: Trace-3D) (example: TRACK, IMPACT)
B Matrix based, usually first order B Particle tracking, all orders included
B Hard-edge field approximation B 3D fields including realistic fringe fields
B Space charge forces approximated B Solving Poisson equation at every step
B Beam envelopes and emittances B Actual particle distribution: core, halo ...
B Fast, Good for preliminary studies B Slower, good for detailed studies including
m Simplex optimisation: Limited number of fit  ©frors and beam loss |

parameters B | arger scale optimisation possible

» Optimisation via optics codes + added terms for specific effects
> But it is more appropriate to use beam dynamics codes:

— More realistic representation of the beam especially for high-intensity and multiple
charge state beams (3D external fields and accurate SC calculation).

— Include quantities not available from beam optics codes: minimise beam halo formation
and beam loss.

— Now possible with faster PC’s and parallel computer clusters.
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Code Limitations

Main issues when modelling real machines:

* An accurate 6-D description of the initial beam particle
distribution
>~ beam characterisation, need plenty of diagnostics

* Magnets and their alignment can be accurately mapped

* An accurate description of the fields is needed.:
>~ The axial RF field distribution in RFQ’s is not measurable

>~ The RF field distribution in SC cavities at operating temperature may not
be known

» RF phase & amplitude errors are transient

« Some diagnostic measurements are not accurate enough for the
codes
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Codes can agree well qualitatively
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Courtesy: John Galambos, SNS

Beam Loss Monitor #
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Code Benchmarking
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Benchmarking: Agreement at few % level

SNS DTL-1 99% Emittance.
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Codes Differ in the Details

SNS Radial Distribution at 7.5 MeV
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Simulations may provide more information
than diagnostics can measure

Schematic set-up of the experiments Comparison: 3 Codes vs experiments
» Beam Current Measurement o, = 35° o, = 60° o, = 90°
» Beam Profile Measurement m
Matching to DTL | |- Phase Probes 3
\ J i <> g'
From A1 l A2a A2b l A3 l A4 g
HSI Alvarez DTL Section
O
Beam Emittance Measurement (trans.) s é Int / Int_max [%]
Gas Stripper % 0-5
40Art+ — 40Ar10+ rms-bunch length measurement = 5-10
10-20
Initial Distribution: Measured in front of DTL > 20 — 40
Reconstructed and Input to Simulations = 40 -100
ey
tl 20 E ( 546 E
T -y :_., i A m w> g
& o
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Horizontal

Horizontal phase space plots at the DTL exit.
Left: 0o =35-; centre: 0o =60-; right: co =90-.
The scale is £ 24 mm (horizontal axis)

+ 24 mrad (vertical axis)

EU-FP7 HIPPI Comparison

The 6D Distribution is parameterized to
reproduce the measured 2D projections on
phase space planes
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Simulation with ~10° Particles

- With super-fast computers and parallel processors can now simulate a
large number of particles: actual number if possible

» Suppress noise from the PIC method: enough particles/cell

» More detailed simulation: better statistics, better characterisation of beam
halo

Final Longitudinal Phase Space Distribution w/o SC and CSR
(Using 10M and 1B particles)
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Simulation with ~10° Particles

- With super-fast computers and parallel processors can now simulate a
large number of particles: actual number if possible

» Suppress noise from the PIC method: enough particles/cell
» More detailed simulation: better statistics, better characterisation of beam

halo
Longitudinal Tracking of the SNS RFQ
4 I
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Phase space plots

M. =  fOr 8.65x108 protons

after 30 cells in the
SNS RFQ.
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Simulation with ~10° Particles

- With super-fast computers and parallel processors can now simulate a
large number of particles: actual number if possible

» Suppress noise from the PIC method: enough particles/cell

» More detailed simulation: better statistics, better characterisation of beam

halo
Even 1 billion particles may not

provide enough detail

x' (mrad)

MERT D06 [t

4.5 0 0.5

x (cm)
TRACK(, 109 SNS measurement
particle simulation in MEBT

Courtesy: Mustapha, ANL Courtesy: Jeon, SNS
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The Role of Codes in Machine Tuning

» Steering strategies, model-based v. empirical
* Matching strategies, model-based v. empirical
* Combined with beam measurements
~ profiles & halo
>~ emittance
> beam loss
> longitudinal measurements
* Good developments in the use of tracking codes during

machine operation (e.g. how to compensate for failed K
cavities)

pli b
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Dynamic Compensation for Failed RF Cavities

XT-ADS superconducting linac (J-
L Biarotte, D. Uriot)

New simulation tool, mixes
transient behaviour with full 6D
description of beam dynamics via
TRACEWIN. (PRST-AB, Vol 11,
072803, 2008)

Simulation of 10 ms of linac
operation takes ~22 hrs with
10,000 particles and 1 Gb memory

Includes feedback loops

Modelling suggests that fast
returning system can be devised
without interrupting the beam.
<10% emittance growth, no beam
loss after 3 ms.

d, . Time integration step
&, : Time envelope step
&, : Time multiparticle step
d; 1 Time storage step

Nominal Settings of the EUROTRANS design

3,

v (Pcav Vcav

Cavity nominal settings

!

+ &,

Data storage

4 (Pcav vcav

1 Envelope | Beamidynamics

_ calculations

1 Multipariicle

Beam

Yy v
Cavity model including :
- Power max
I - Field max
- Beam loading, riQ(Bueam)
- Lorenz detuning
- Microphonic perturbations

4 St | ety J

Cavity 1

Cavity 2

Cavity N

((Pcav Vcav)1 ton ((pcav Vcav)1 ton
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Response of Beam to Failed RF Cavity (CEA-ADS)
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Chinese ADS Linac Compensation
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Limitations with Rings Codes

* Need to track particles for many turns
— convergence issues, build up of errors

— With fast parallel processors, can manage ~10% turns (FAIR requires
~109, probably impossible at the present time)

— Sometimes resort to analytical field models
— Halo modelling more difficult (less reliable) than in linacs.

— Instabilities hard to model (treatment via impedances, approximations)
- important issue

Leapfrog

Y

RK—4"

- i

dddidoiiiadasaaiaaaadassnisnnonhonooiooindaiiil

Need for : : .
symplectic e | Ye oo
- 5 N AN A
algorithms ; | : : :
L L L, L. L, L.,

Step length must be chosen to allow plasma
oscillations to be represented (w,h/fc <K 2)
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Example Code: IMPACT

« IMPACT=Integrated Map and Particle Accelerator Tracking

* Models beam dynamics with space charge in linacs; MARYLIE-IMPACT is a
development to include rings.

« Key features:
» map generation capabilities
3D parallel Poisson solvers

v

detailed treatment of RF cavities (c.f. quads + fringe fields)

v

v

computes trajectory and maps around that trajectory
particle manager to reduce communication and obtain high performance

v
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Example Code: IMPACT

« IMPACT=Integrated Map and Particle Accelerator Tracking

* Models beam dynamics with space charge in linacs; MARYLIE-IMPACT is a
development to include rings.

4 N
Philosophy:

Do not take tiny steps to push 100m particles

Do take tiny steps to compute maps; then push particles
with maps

g j‘[zg_[ext j"[ :j'[;c
j"[ =~7—[ext+ 5_[5c

Split-operator methods

Magnetic

Multi-particle

Optics simulation

M=M o+ M(t)zmext(t/Z) - M (t) - Mext(t/Z)‘/‘O(tg) M=M;,
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Components of a typical Beam Modelling
ackage

Setup and solve
Poisson equation

nce positions " Advance positions
omenta a half #*Charge deposition » & momenta a half

ep using H,, on grid step using He,

——
\
s

analysis
tools

(HField solution on

®Field interpolation at
particle positions

Advance momenta using
H ||

space charge

| mxyzptlk/
| beamline
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Components of a typical Beam Modelling
Package

Synergia

|1 wrapper i
.‘{l/” | Fo‘“a

/ IMPACT

[
|
/
!

N mxyzptlk/
Scientific Computing Infrastructure beamline
CCCA>  CPETSe>  CNumpy>  CMaplofib>  CPyTables

Numerical Computing Infrastructure Generic Computing Infrastructure
CFFIW > < HDF5 > Python™> < Boost >
CATLAS >  (_GSL > < Flex > < Bison >

Synergia: Fermilab code, P. Spentzouris
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Rings Codes: Typical Inventory

* Single particle transport through various types of lattice elements
* Magnet Errors, Closed Orbit Calculation, Orbit Correction

* Charge exchange injection foil and phase space painting

* RF and acceleration

* Longitudinal impedance and 1D longitudinal space charge

* Transverse impedance

* 2.5D space charge with or without conducting wall beam pipe
* 3D space charge

* Field maps

* Feedback for Stabilisation

* Apertures and collimation

* Study of mechanism for instabilities including Electron Cloud Model

* Suite of routines for beam diagnostics.

Science & Technology
@ Facilities Council
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& Vilasov Solvers

Vlasov

-

e High intensity beams modelled using Vlasov’s equation for
the distribution function f(x,v,t):

g—f—v-vxf—i—i(E—i—v/\B)-va:O,
ot m

generally coupled with Poisson’s and Maxwell’s equations.

e Numerical simulations performed using PIC methods.

~

J

e Important noise in PIC methods especially in poorly popu-

lated regions of phase-space makes it hard to see phenomena
like

— particle trapping (strong Landau damping) in plasmas

— halo formation in beams

e Computers now powerful enough to do realistic physics using
a grid in 4D and 6D phase space.

e Provides alternative to PIC code for benchmarking

\

Vlasov solver. 100 mA proton
beam in alternating hard-
edged electric quadrupole
channel.
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ldeally codes should include:

« Any type of RF resonator (3D fields)

« Static ion optics devices (3D fields)

« Radio-frequency quadrupoles (RFQ)

 Drift Tube Linacs (DTL)

« Couple Cavity Linacs (CCL)

 Different types of RF cavity (spokes, elliptical, CH-mode etc)
« Solenoids with fringe fields (model and 3D fields)

« Bending magnets with fringe fields (model and 3D fields)
» Electrostatic and magnetic multipoles

* Multi-harmonic bunchers (MHB)

« Axial symmetric electrostatic lenses

« Entrance and exit of HV decks

« Accelerating tubes with DC voltage

* Transverse beam steering elements

 Stripping foils, films for heavy ion beams

« Collimators: horizontal and vertical jaw slits
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Codes should be capable of:

« A wide range of E-M elements with 3D fields

« End-to-end simulations from source to target

« Simultaneous tracking of multiple charge states

 Interaction of beams with strippers

« Automatic transverse and longitudinal beam tuning

« Error simulations for all elements: static and dynamic errors

» Realistic correction procedure: transvers and longitudinal

« Simulation with large number of particles for large number of seeds
« Beam loss analysis with exact location of particle loss

« Possibility of fitting experimental data: beam profiles etc

« H- stripping; black body radiation, residual gas, Lorentz stripping
 Inclusion of particle decays

« Accurate non-linear tracking

« Bunch-bunch interaction

« Development to parallelised version in order to simulate actual number of
beam particles.
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Topical Issues

* Modelling FFAGs with space-charge.
* Modelling accelerators with fully 3D field maps.

 Discrepancies between commonly used codes (e.q.
TraceWin and Impact for linacs).

* Improved codes/mechanisms for operational
simulation (e.g. react to RF breakdown).

» Use of codes to help develop high reliability
machines.

* Development of a 3D Vlasov solver.

* Treatment of interacting bunches with different
energies (no common rest-frame for Poisson solver)
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Treatment of Beams in RF Cavities

“Orbit Separated Cyclotron” (OSC)

« 3-10 MW, 1-1.5 GeV, cw driver for ADSR
» Spiral magnet system with each “ring” / \
requiring different combined function

magnet designs

« Separated magnet arcs but common rf

cavities \
 Beam dynamics similar to linacs (trying to \

model with TraceWin and IMPACT)

* Modelling with “standard” codes
suggested design is valid; modelling with
off-axis rf fields written in suggests all
beam lost,

triplets
d

« R&D needed over beam behaviour in off-
axis rf fields

26
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Do we need a Titan for Accelerator Studies?

* How good are designs done on a laptop

« Do we really need to model 10° particles or is 1000
enough?

* Reminder: the MUON1 project at RAL uses many
more processors than Hartree.

Science & Technology
@ Facilities Council
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Other comments:

* |s the advent of fast, high-performance
computers at the expense of “proper”
programming?

—do they make clever numerical analysis
techniques redundant?

—does it matter how equations are coded?

* Could we do just as well on a desktop with
careful coding?

Science & Technology
@ Facilities Council
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Summary

« Many codes, some specific, some general, with different levels of
complexity and sophistication.

» Codes often demonstrate how poor is our understanding of how
our machines work.

« Perhaps we put too much emphasis on how well codes should
predict beam behaviour

> Machines are never built exactly like our computer models say they should
be.

» There are always unknown errors introduced during fabrication & assembly
> We never know the exact initial conditions

 We can come close, and the codes will give a good indication of
what the beam will look like

* |tis important to to show how the beam will change with machine
parameters (errors, cavity failure etc)

« Simulations can predict much more than diagnostics can achieve

* Despite huge advances in computer power and availability, there
IS still a great deal to address
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