
A parallel differential algebra code:
tackling an apparently linear problem with
openMP.

David Brett, University of Manchester/ Cockcroft Institute
with Robert Appleby, University of Manchester/ Cockcroft Institute

1

Aim

• Introduce the concept of differential
algebra codes.

• Introduce the use of openMP for a
calculation that apparently seems linear.

2

Contents

• Introduce the purpose of a differential
algebra code and variety of applications
relevant to accelerator physics.

• Discuss why MPI isn’t a good method of
parallelizing this problem.

• Introduction to openMP.

• openMP usage in a differential algebra code.

• Example results.
3

• All variables are handled as truncated power series
of the unassigned initial values.

• Numerous competing codes that all do very
similar things with regards DA:

• COSY INFINITY (origins found in SixTrack)
developed by Martin Berz.

• MARYLIE developed by Alex Dragt.

• MADX in particular subroutines in PTC
developed by Etienne Forest.

Differential algebra codes

4

Differential algebra codes

• Matrix code = 1D differential algebra code.

• R and T matrix calculations= 2D differential
algebra code.

• Natural expansion is N D differential
algebra code, where as N tends to infinity
the results tend towards the real result
assuming no other assumptions made.

5

Differential algebra codes

• A few applications:

• One turn maps.

• Single element integration (Both magnets
and RF cavities) for use in tracking codes.

• Space charge effects

6

Differential algebra codes

• All codes handle each variable as an array of
coefficients relating to the power series.

• Linear operations and calculus operations are able
to be performed on these variables.

• An additional operation is a mapping operation
which is very time consuming.

where

7

Single threaded code

• Written in C++.

• Essentially a class with very optimized
operations assuming that the array of
coefficients is very sparse.

• Use of STL library:

• Fixed size vectors to handle
coefficients. (same speed as pointer
double arrays, less leaks).

• Filled array addresses stored as map
variable. Allowing for easy
optimization with sparse array
assumptions.

• Avoids the ridiculously large heap
allocations required by fortran
codes.

8

Single threaded code -
Application of class

Integration steps of 2nd order
Robin-Forest-Wu integration}

Mapping operation, mapping doubles
onto DA variables to give a single
particle track

Coefficient of power
series describing vector
potentialLoop through length

of integration

9

Single threaded optimization

• Before even considering parallelizing code:

• Consider where things are being calculated
multiple times. For example multiple power
series will say need Y x X calculating multiple
times. Store results to memory and reuse.

• Fix array lengths where possible.

• Consider required numerical precision. No point
in going to high precision to output to file to 8
sf.

x

4 = x⇥ x⇥ x⇥ x = (x⇥ x)2

10

MPI and openMP

• Two major methods for parallelizing C++ codes on
single machines with many cores.

• MPI works on many iterations of the same code
which communicate variables (limited to standard
type and not classes), can run on very large
clusters.

• openMP runs on single machine with multiple
cores. Single code which can use multiple threads.

11

Why not use MPI?

• MPI’s lack of support for communicating
classes means that the communication time
could be long defeating the point of running
parallel.

• The memory required to be passed between
machines would be large.

• Only sections of the code can be parallelized
leaving to a large amount of optimization
required to reduce unnecessary
communication.

12

openMP

• Mission statement

• openMP is implemented with an
additional make flag and lines are
added to a single threaded code
to enable parallelization of
sections.

The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all
architectures, including Unix platforms and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors,
OpenMP is a portable, scalable model that gives shared-memory parallel
programmers a simple and flexible interface for developing parallel applications
for platforms ranging from the desktop to the supercomputer.

Master thread

Sub
thread

Sub
thread

Sub
thread

Master thread

Basic code model

13

openMPopenMP

Start with single threaded
code.

All openmp statements
begin with #pragma

Additional code interaction
with threads found in omp.h

parallel creates
number of threads
default max cpus.

for loop distributes each
loop among threads as
previous thread finishes

critical prevents two threads
writing to the same memory
block at the same time

14

openMP

• Application to DA code choice of
how deep to implement the
parallelization.

• Lower down the code = lower
amount of memory locks +
higher amount of threads
required.

• Choice made to apply to the map
operation and each step of the
integration as at intermediate level.

Integration loop

Integration Step

Functions involving DA

DA operators

Parallelization

D
ep

en
de

nc
y

of
 o

pe
ra

tio
n

15

openMP - for loops
Memory designation, either private or shared between
each thread.

Declaration of
parallel section

Protection from multiple threads
writing on the same block of

memory at the same time

Nested for loop

Thread distribution across cpus, dynamic in case
some finish faster than others

16

openMP - forks
Declaration of
parallel section

Declaration of forks

Independent calculations

17

Results

• Code is easy to edit and runs without leaks or
warnings.

• Approximate speed up about 12 times when given
access to 48 cores, reducing 600 cpu hours
calculation down to 2 days.

• This then allows the possibility of going to higher
orders or higher number of variables with the
intention of avoiding the known symplecticity
issues of lower order truncations.

18

Results
• We can produce very higher order

maps with relative ease currently
highest map produced is 7
variables, 12th order truncation
with 50388 terms in each series.

• This allows the Taylor series error
to fall to similar to that of
numerical precision.

• Even though that many terms
would be ineffective to use in a
tracking code it is possible to wait
terms by the contribution to a
particle at the edge of a bunch.

0 500 1000 1500 2000

!20

!15

!10

!5

0

Coefficient No.

Lo
g 1
0!"c

on
tr
ib
ut
io
n
to
fin
al
va
lu
e" Variable con tribution by ranked con tribution

x
px
y
py
z
∆

20 40 60 80 100
!14

!12

!10

!8

!6

No. coefficien ts

Sy
m
pl
ec
tic
er
ro
rl
og

10
!J!1 SJ

!
S! Symplectic error with ranked terms

0 2 4 6 8
!14

!12

!10

!8

!6

!4

!2

0

Taylor series order

Lo
g 1
0
Co
nt
ri
bu
tio
n

To
ta
lv
al
ue

x
px
y
py
z
∆

19

Conclusion

• The use of STL and openMP allow for a
highly optimized and hpc differential algebra
application.

• openMP allows for the code to run on any
machine with any number of cores.

• openMP allows problems which are on the
face of it linear to be parallelized.

20

