Y
er

The Universit
of Manchest

MANCHESTER ®
1824 ¢>

The Cockceroft Institute

of Accelerator Science and Technology

A parallel differential algebra code:
tackling an apparently linear problem with
openMP.

David Brett, University of Manchester/ Cockcroft Institute
with Robert Appleby, University of Manchester/ Cockcroft Institute




Aim

® |ntroduce the concept of differential
algebra codes.

® |ntroduce the use of openMP for a
calculation that apparently seems linear.




Contents

® |ntroduce the purpose of a differential
algebra code and variety of applications
relevant to accelerator physics.

® Discuss why MPI isn’t a good method of
parallelizing this problem.

® |ntroduction to openMP.
® openMP usage in a differential algebra code.

® Example results.




Differential algebra codes

® All variables are handled as truncated power series
of the unassigned initial values.

® Numerous competing codes that all do very
similar things with regards DA:

® COSY INFINITY (origins found in SixTrack)
developed by Martin Berz.

® MARYLIE developed by Alex Dragt.

¢ MADX in particular subroutines in PTC
developed by Etienne Forest.




® Matrix code = |D differential algebra code.

® R and T matrix calculations= 2D differential
algebra code.

® Natural expansion is N D differential
algebra code, where as N tends to infinity
the results tend towards the real result
assuming no other assumptions made.




Differential algebra codes

® A few applications:

Proceedings of the 2001 Particle Accelerator Conference, Chicago J

Symplectic Map Tracking for the LHC i

® One turn maps.

D.T. Abell, BNL,

*——E"E_‘"mh and F. Schmidt, CERN
® Single element integration (Both magnets

and RF cavities) for use in tracking codes.

BEAM DYNAMICS IN NS-FFAG EMMA WITH DYNAMICAL MAPS *

Y.Giboudot', R Nilavalan, Brunel University, Uxbridge, UK. i
R.Edgecock, STFC Rutherford Appleton Laboratory, Didcot, UK. |

A.Wolski. University of Livernool, Liverngol TTK ?.
® Space charge effects

Differential Algebralc Descnptlon and Analys1s of 1
Trajectories in Vacuum Electronic Devices
Including Space-Charge Effects




Differential algebra codes

® All codes handle each variable as an array of
coefficients relating to the power series.

® |inear operations and calculus operations are able
to be performed on these variables.

® An additional operation is a mapping operation
which is very time consuming.

[(X,Y,Z) — f(z,y,2)
where X — X(:E,y, )
Y(z,y,2)
A )

'/'E7y7'z




Single threaded code

class DAobject

Written in C++, {
private:
vector<double> coeffs;
. . . . //double *xcoeffs;
Essentially a class with very optimized int order;
. . int vgrlabtes;
int :
OPeratIons assumlng that the array Of m2p<:%§?:vector<;nt>,int> filled;
i H friend std:: & -ator<<(std:: &os, st DAobj &DA) ;
CoefﬁC|entS is Ver)’ Sparse. prl;[C:ler std::ostream & operato s ostream &os, const DAobject

//Default constructor
DAobject();
. . DAobject(int N);
Use Of STL Ilbrar)l' DAobject(const DAobject &DA);
~DAobject(){ filled.clear();}

® Fixed size vectors to handle oy P e s

void set(double value,int v[6]);

coefficients. (same speed as pointer bl ek Cint o [e]) somete
map<std::vector<int>, int> getmap() const {return filled;};
dOUbIe arra)'S, IeSS IeakS). void setmap(map<std::vector<int>,int> input){filled = input;}

void clearmap(){filled.clear();}
int getorder() const {return order;}
int mapsize(){return (int)filled.size();}

® Filled array addresses stored as map

//Operators

variable. Allowing for easy DAobject operator=(const DAobject &DA);
. . . . DAobject operator=(const double &val);
optimization with sparse array DAobject operators=(const DAobject &DA);
. DAobject operator+(const DAobject &DA) const;
assumpt|ons. DAobject operatorx(const DAobject &DA) const;

DAobject operator-(const DAobject &DA) const;
DAobject operator+(const double &val) const;
DAobject operatorx(const double &val) const;

o Avoids the ridiCUIOUSI)’ Iarge heap DAobject operator/(const double &val) const;
. . DAobject operator-(const double &val) const;
allocations required by fortran RE
codes.




Single threaded code -
Application of class

L09p thl"Ol.Jgh Iength/
of integration

84
85
86
87
83

100
101
102
103
104
105
106
107
108
109
110
111

113
114
115

ofstream out("outcrab.dat");

ofstream out2("outcrabmap.dat");
s=-0.35;

cout<<" sickmiickiiopiork' <<end 1 ; series describing vector
hile (s<=0.35) { .
//Integration potential

W

}

Coefficient of power

H4(X,s, ds,CoeffY);
H3(X,s, ds,CoeffX);
H4(X,s, ds,CoeffY);
H2(X,s, ds,CoeffZ);
H4(X,s, ds,CoeffY);
H3(X,s, ds,CoeffX);
H4(X,s, ds,CoeffY);
H1(X,s,ds);

H4(X,s, ds,CoeffY);
H3(X,s, ds,CoeffX);
H4(X,s, ds,CoeffY);
H2(X,s, ds,CoeffZ);
H4(X,s, ds,CoeffY);
H3(X,s, ds,CoeffX);

Integration steps of 2nd order
Robin-Forest-Wu integration

H4(X,s, ds,CoeffY); Mapping operation, mapping dot
//0UTPUT TRACK onto DA variables to give a sing
for (int i=0; i<6; i++) { i
XT2 [1i)=MAPAPPLY(X[i],XT); partlcle track
}
out<<s<<"\t"<<XT2[0]<<"\t"<<XT2[1])<<"\1t"<<XT2[2] <<"\t"<<XT2[3] <<"\t"<<XT2[4]-
XT2[5]<<endl;
coute<s<<"\t"<<XT2[0] <<"\t"<<XT2 [1] <<"\t"<<XT2 [2] <<"\t"<<XT2 [3] <<"\t"<<XT2 [4
XT2[5]<<endl;

cout<<"Writing map to file"<<endl;
out2<<X[0]$§X[1]<<X[2]<<X[3]<<X[4]<<X[5]<<end1;

ibles
e




Single threaded optimization

® Before even considering parallelizing code:

® Consider where things are being calculated
multiple times. For example multiple power
series will say needY x X calculating multiple

times. Store results to memory and reuse.

rt=rxrxzrxzr=(rxz)

® Fix array lengths where possible.

® Consider required numerical precision. No point
in going to high precision to output to file to 8

sf.

10



MPIl and openMP

® Two major methods for parallelizing C++ codes on
single machines with many cores.

® MPI works on many iterations of the same code
which communicate variables (limited to standard
type and not classes), can run on very large
clusters.

® openMP runs on single machine with multiple
cores. Single code which can use multiple threads.

11



Why not use MPI?

® MPI’s lack of support for communicating
classes means that the communication time
could be long defeating the point of running
parallel.

® The memory required to be passed between
machines would be large.

® Only sections of the code can be parallelized
leaving to a large amount of optimization
required to reduce unnecessary
communication.

12



openMP

® Mission statement

The OpenMP Application Program Interface (API) supports multi-platform Master thread
shared-memory parallel programming in  C/C++ and Fortran on all
architectures, including Unix platforms and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors,
OpenMP is a portable, scalable model that gives shared-memory parallel
programmers a simple and flexible interface for developing parallel applications Sub Sub Sub
for platforms ranging from the desktop to the supercomputer. thread | thread ] thread

® openMP is implemented with an
additional make flag and lines are
added to a single threaded code
to enable parallelization of
sections.

Master thread

Basic code model

13



openMP

Start with single threaded

code. T

#include <iostream>
#include <vector>
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <omp.h>

Additional code interaction
with threads found in omp.h

#include <math.h>

All openmp statements

parallel creates
number of threads
default max cpus.

for loop distributes each
loop among threads as
previous thread finishes

}

using namespace std;

int main(int argc, const char % argvl(])

begin with #pragma {

\#p ragma omp parallel
{

//Define number of test
const long int N=100000000;
long int count=0;

srand(int(time(NULL)) ~ omp_get_thread_num());

#pragma omp for

for (long int i=0; i<N; i++) {
double x=double(2.xrand()/double(RAND_MAX)-1.);
double y=double(2.xrand()/double(RAND_MAX)-1.);
if(sgrt(pow(x,2)+pow(y,2))<=1.)

{
oreane et = —critical prevents two threads
count++; . .
} writing to the same memory
} .
- block at the same time
double pi=4.x*double(count)/double(N);
cout<<"PI = "<<pi<<endl;

14



openMP

® Application to DA code choice of
how deep to implement the
parallelization. Poallezation

Integration loop

=

—>

® | ower down the code = lower
amount of memory locks +
higher amount of threads
required.

® Choice made to apply to the map
operation and each step of the
integration as at intermediate level.

Functions involving DA

DA operators

Dependency of operation

15



openMP - for loops

Declaration of Memory designation, either private or shared between
parallel section each thread.

AY void AXFIELD(const vector<DAobject> K, const double &s, vector< vector <double> > coeff, DAobject &Ax2, DAobject &
DYIAXDX2, DAobject &DZIAXDX2, fonst double &V)
{

QAobject_Ax;
int ss= int((s+0.35)/0.01); Thread distribution across cpus, dynamic in case

#pragma omp parallel shared(Ax) .
{ some finish faster than others

673
674 #pragma omp for schedule(dynamic)
@75' fgplint x=0; x<6; x++) {
&76 for (int y=0; y<6; y++) {
DAobject Ax_p;
Nested for IOOP DAobject tmp=Power(DAobject(1),x)=Power(DAobject(3),y);
679 Ax_p=Ax_p+(tmpxcoeff[ss] [x+6xy]);
680 @ #pragma omp critical
681
682 Ax=Ax+AX_p;
683 }
684 }
685 }
686 }
687 DAobject TiﬁePart =Sin(DAobject(5)=omega/c)*cos(omegax(s+2.35)/c+phi@®)+Cos(DAobject(5)*omega/c)*sin({omega=(s+0.35)/c+
phi@);

688 =Ax*TimePart=form*Vx(1.e+6x1.6e-19/omega/pd);
689 Ax2=MAPAPPLY(Ax]X);
690

Protection from multiple threads
writing on the same block of
memory at the same time




openMP - forks

Declaration of
parallel section

220 voXd H4( vector<DAobject> &X, double &s, const double &ds,const vector< vector <double> > coeffy, const double &V)
g1 {

822 Aobject DXIAYDY2, DZIAYDY2, AY2;

222 AYFIQYD( X, s, coeffy, AY2, DXIAYDY2, DZIAYDY2,V);

824| #pragma omp parallel

825

826 || #pragma c{>mp sections & Declaration of forks

827

828 B} #pragma omp section

829 X[1]=X[1]-DXIAYDY2;

830 8 #pragma omp section

831 X[3]1=X[3]-AY2; <= Independent calculations
832 0 #pragma omp section

833 X[5]1=X[5]-DZIAYDY2;

834 }

835 }

836 DAobject DP = X[5]*(-1.)+Power(X[5],2)-Power(X[5],3)+Power(X[5],4)-Power(X[5],5)+1.;
837 X[2]1=X[2]+X[3])*DP*ds/8. ;

838 X[4]=X[4]-DPxDP*X [3]*X[3]*ds/8./2.;
8320




Results

® (Code is easy to edit and runs without leaks or
warnings.

® Approximate speed up about |2 times when given
access to 48 cores, reducing 600 cpu hours
calculation down to 2 days.

® This then allows the possibility of going to higher
orders or higher number of variables with the
intention of avoiding the known symplecticity
issues of lower order truncations.

18



)

Contribution
Total value

Results

L0g10(

O“‘2“‘4“‘6“‘8

® We can produce very higher order Taylor serics order
o . Variable contribution by ranked contribution
maps with relative ease currently )
highest map produced is 7
variables, | 2th order truncation
with 50388 terms in each series.

® This allows the Taylor series error | |
to fall to similar to that of [
oefticient No.
numerical precision.

Log,,(% contribution to final value)

Symplectic error with ranked terms

B _g
® Even though that many terms % T e,
would be ineffective to use in a E Gl
tracking code it is possible to wait R R e s
terms by the contribution to a P
particle at the edge of a bunch. S
20 40 60 80 100

No. coefficients

19



Conclusion

® The use of STL and openMP allow for a
highly optimized and hpc differential algebra
application.

® openMP allows for the code to run on any
machine with any number of cores.

® openMP allows problems which are on the
face of it linear to be parallelized.




