

Argonne LCF Status

Tom LeCompte
High Energy Physics Division
Argonne National Laboratory

Tom Uram, Venkat Vishwanath
Argonne Leadership Computing Facility
Argonne National Laboratory

Doug Benjamin
Department of Physics
Duke University

2

Strategic Thoughts

 On the ATLAS side, Simulation is “Where the money is”
– This is something like ~60% of our grid use

– Event generation is well-suited for HPC, but is < 10-15% or so
• This will be helpful, of course, but it’s a smaller piece

 On the HPC side, large (>500K core computers) are “Where the money is”
– 1/3 of the Top 500 computational capacity is in four computers (Titan, Mira, Sequoia, K)

– 1/2 of the Top 500 computational capacity is in 21 computers

 We want a “run-anywhere” design
– More total resources

– More flexibility in utilizing them

– Protects us against future changes

“Why do you rob banks?” “Because that’s where the money is.”
Attributed to Willie Sutton

If we offload a cycle from the grid, we can
use the recovered cycle any way we want.

3

Consequences

 We need to adapt to run on a rather spartan architecture
(typical for these giant computers)

– No/little/slow TCP/IP (=no/little/slow database access)

– Relatively little memory per core

– Some use non x86-instruction sets

 We need to connect this to the grid – otherwise it’s worthless

 We are solving both problems with an x86-based front end

– Lives on the grid – looks like a fast Tier-2

– Receives jobs

– Adapts them to the supercomputer

– Sends the output to a grid SE

Looks a lot like a
many-core
architecture for
future PCs.

4

How it Works (Alpgen example)

 User sends a prun job to the front-end with an Alpgen input file and a number of
events

 The front-end then

– Runs a “warmup job” to create the .grid1,.grid2 files

– Creates a “purely computational” job for the HPC

– Notifies the HPC that there is a job waiting

– Polls the HPC to see when it is done

– Collects the HPC output

– Runs an “unweighting” job

– Places the output on the grid

 Output can be found here:

– user.lecompte.000072._00003.alpout.unw in dataset
user.lecompte.ANALY_ANLASC.001/ (BG/P)

– user.lecompte.000072._00006.alpout.unw in dataset
user.lecompte.ANALY_ANLASC.001/ (BG/Q)

Logically similar to
fetching database
files for simulation

Logically similar to a
final format fix-up

for simulation

5

ALCF Resources

 Intrepid

– BlueGene/P based (PowerPC 450 cores) – 2006-vintage technology

– 163,840 cores (40960 nodes x 4 cores/node @850 MHz)

– Each core is 1/3 to 1/5 the speed of a typical x86

– 470 MB per core

– Ideal job sizes: 512-4096 nodes, 6 hours or less

• About 100-1000 x86-days

– Two small development systems (Challenger and Surveyor)

 Mira

– BlueGene/Q based (PowerPC A2 cores) – Intrepid’s successor

– 786,432 cores (49152 nodes x 16 cores/node @1.6 MHz)

– Each core is comparable to the speed of a typical x86

– 1 GB per core

– Ideal job sizes: 512-4096 nodes, 6 hours or less

• About 2000-15000 x86-days

– Two “small” development systems (Cetus and Vesta)

• These are Top500 #139 and #140

6

Other Possibilities

 We have 1M hours allocated on Mira, and 0.5M on Intrepid

 I have a handshake agreement that we can go beyond this, plus

– Access to 1M hours on Hopper (at NERSC, at LBNL): x86 with 156,213 cores

 There are additional US supercomputers outside of the National Labs, at institutes
with some affiliation to ATLAS

– Examples: Stampede at Texas, Blue Waters at Illinois

 There are some worldwide computers with similar architectures

– SAKURA is a BG/Q system, for example, like Mira

7

Code Issues

 Everything we have seriously tried runs: Geant4, Root, Alpgen, Sherpa
– Haven’t tried Athena, just the foundational code above

 Code changes are minor
– There’s a gcc bug that has to be programmed around in Alpgen

• (bug exists, but is not triggered, on an x86)

– We use MPI to ensure unique random number seeds

– G4 & Root require no changes

– Rolf warns us that there is an “is this an x86?” in one spot in the ATLAS repository

 Build environment issues are more substantial
– Geant4’s build environment makes some x86-based assumptions in paths

– Freetype2 (a Root dependence) is complicated

 Optimization
– Effects are large and not-simple

• Enabling one FPU on the BG/P almost doubles the speed

• Enabling the second one slows it down by ~8%

– We decided not to spend a lot of time on this: the strategy is to get going first, and improve things
second

8

Status

 We have accepted an Alpgen grid job (4-vectors), run it on BG/P
(and also BG/Q) and placed the output on the grid.

– Technically, we could go into production immediately

• One person no longer has to sit there entering passwords from her cryptocard non-stop.

• Politically, this needs some discussion

– The communication between systems that lets us do this automatically works, but could
use some more development

• In particular, better error-checking and robustness should be in place before entering a
production mode.

• Developed at ALCF, usable anywhere

 Sherpa-MPI is an obvious next target

 After that – maybe showering of Alpgen 4-vectors?

 We will be evolving the HPCs (multiple) x86 negotiation

– Include allocation quotas, expected time to complete, allow failed jobs to restart…

9

The Future

 Today, at submission time, a job specifies a
machine and a number of cores. The hooks are in
place to make this dynamic.

 We want to be able to select computers at run-time, based on

– Estimated completion time

– Quota available

– Upcoming jobs (we don’t want to start a job that will block a later one)

 We want to dynamically alter the “shape” of a job

– Recast a 1000-core 2-hour job as a 2000-core 1-hour job

 The vision is to be able to run opportunistically, in the “nooks and crannies”

– There is a lot (by our standards) of CPU available this way

– It tends to be available at certain days and times (Sunday nights) – accepting longer
latencies will enable us to do this

10

Thoughts In Lieu of Conclusions

 We’re using prun now – should we continue this in the future?
– Maybe there should be a “phpc” mode in addition to prun and pathena

 Accepting longer (10 days?) job latencies would help

 ATLAS tries very hard in several places to make the jobs x86-sized.
– This is ~1000x smaller than we would like.

– Random number seed starvation is a concern. Alpgen (for example) asks for two five-digit seeds.
The second seed is made unique across nodes, so we burn through seeds 10’s of thousands of times
faster.

 Validation of Alpgen 4-vectors is taking longer than we would like (delivered 21 Feb)
– Single-core runs can be compared bit-for-bit with x86 (OK with Alpgen)

– Multi-core runs can’t (different seeds)

– We need to think about this systematically

 A well-designed single event server may make running ATLAS Simulation easier
– Especially if it can send events via MPI as well as TCP/IP

 An integrated simulation framework may make running ATLAS Simulation harder

