
JEDI-alpha
status and plans

Tadashi Maeno

(BNL)

2

JEDI

Making the system more task-oriented

–

Tasks are submitted to the system
–

JEDI optimizes job parameters and generates jobs on
behalf of users

–

Task-level scheduling
•

retry, rebrokerge, merging, …

Beneficial to users
–

Users are interested in tasks rather than jobs

–

Simplify client tools and centralize user’s functions
–

Can use computing resources optimally without detailed
knowledge on the entire system

JEDI-α = Alpha version of JEDI
–

Minimum (limited) functions

–

Focused on production
–

Co-exist with the current workflow

•

AKTR

converter DEFT DB JEDI-α

Panda
•

AKTR

prodDB

 Bamboo

Panda
–

To have an early prototype with real workload for
incremental development of JEDI

3

Design Concepts for JEDI 1/3

Structural Partitioning

–

Source
•

Production/analysis/test/…
–

VO

•

atlas/cms/ams/…
–

Function

•

Discussed later

Logical partitioning in each structural partition

–

Production
•

Cloud
•

Work Queue
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/PandaJEDI#Work_queues

–

Analysis
•

User

multiprocessing rather than multi-threading

–

NA

worker processes for partition A, NB worker processes for
partition B, …

–

Each worker process runs independently for a partition but
processes share connections to DDM and DB

Strict control over the number of connections to DDM and DB
–

Connection pools composed of multiple daemons

–

Worker processes communicate with connection daemons

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/PandaJEDI#Work_queues

4

Design Concepts for JEDI 2/3

Configurability
–

panda_jedi.cfg
•

Written in the style of RFC822
to be readable using the
standard python ConfigParser

 module

•

Easy to add new module/class
without changing JEDI core

VO:nProcesses:ModueName:ClassName
 Can define how each VO accesses

their DDM system

5

Design Concepts for JEDI 3/3

Plug-in architecture

–

Traditional interface + factory pattern
–

Factories instantiate concrete objects using
panda_jedi.cfg

where module and class names for

the objects are specified
•

Module/class names are not hardcoded

–

Concrete objects and communication channels are
instantiated in separate processes if necessary

•

Easy to have multi-processing structure
•

Worker processes share the interface
–

Invocation of an interface method is transparently
converted to an IPC request and sent to a concrete object
through a communication channel

•

The number of concrete objects is under control
–

The idea is to generalize the system to support
multiple VOs

6

Workflow of JEDI

TaskTask

Input dataset

InFile

1InFile

1 22 33 44 55

jobjob

jobjob

jobjob
JEDIJEDI

PanDA

server

1. Task is submitted to the
system

2. Dataset contents are
retrieved from DDM

3. JEDI registers output
dataset

4. JEDI splits input and
generates jobs

5. Jobs are submitted to
panda server

6. Files are added to output
dataset

7. Task is complete when all
input files are
processed

8. Output dataset is frozen

DDMDDM

OutFile

1OutFile

1 22 33

Output dataset

7

Minimum Functions for JEDI-α

Task Refiner

–

Gets and parses task parameters from DEFT to fill JEDI
tables

Contents Feeder
–

Retrieves dataset contents from DDM

Job Generator
–

Throttles job submission if there are enough jobs in Panda

–

Selects site candidates using several matchmaking
–

Splits input

–

Generates jobs
–

Sends jobs to Panda

Job Status Synchronizer
–

Updates JEDI tables when job status is changed in Panda

Post Processor
–

Optimizes job parameters using scout job metrics

–

Makes job avalanche once scout jobs finish
–

Finishs

tasks once all files are processed

8

DEFT gives a schema-less object to
JEDI as task parameters

–

Written in JSON

Why schema-less

–

Task parameters could heavily depend on
task types
•

Production vs

analysis

•

Special tasks. E.g. tasks for lost file recovery
could give only a list of lost files as a task
parameter

–

Flexibility and easy maintenance
•

Overkill to add new columns to DB every time
new parameters are needed

Parsing of Task Parameters 1/2

9

Parsing of Task Parameters 2/2

JEDI selects an appropriate parser to
fill JEDI tables based on VO, source,
task type

Example of task parameters
https://twiki.cern.ch/twiki/bin/viewauth/Atl

 as/DeftJedi#Task_Parameters

Extendability

–

Parsers are plugins

in TaskRefiner
–

Just add a new plugin

for a new usecase

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/DeftJedi#Task_Parameters
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/DeftJedi#Task_Parameters

10

Interactions with DDM

Decouple DDM interactions from the
main body of JEDI

–

One connection pool with several daemons
is spawned for each VO

–

Worker processes communicate with
daemons using IPC

Each daemon imports a DDM client
module for a VO in own memory space

–

DDM modules don’t conflict if JEDI
works for multiple VOs

For DQ2

Rucio

migration, just
replace daemons

11

Job Generation 1/2

Brokerage is done at the start in the
new workflow

–

Old
•

Splitting

Job Generation

Submission

 Brokerage
–

New
•

Brokerage Splitting

Job Generation

 Submission
–

To optimize splitting to utilize
CPU/memory/disk resources efficiently
at the assigned site

–

This is already the case for analysis
•

Done on the client side now will be done on
the server side

12

Job Generation 2/2

Scout jobs give the following job metrics
per file and per event for tasks with file-

 level and event-level splitting, respectively
–

Memory consumption (R)

–

Output size (O)
–

Scratch disk usage (W)

–

Execution time (T)

Input is split to meet the following
conditions

–

R < schedconfig.memory
–

(W+O) x Nfile

or event

+ input size <
schedconfig.maxdir

–

T x Nfile

or event

< schedconfig.walltime

13

Current Status and Plans

14

Current Status

Minimum functions of JEDI-α listed in page
6 have been implemented

–

The whole task workflow with file-level splitting
and event-level splitting

–

Special treatment for DBR
–

Support for secondary datasets (min-bias,
cavern, …)

–

The scout avalanche chain
–

Single master + multiple workers

Scalability test of JEDI-α on INTR + 1
SLC6 vobox

–

Successfully scheduled 1.5 million jobs per day

Dmitry Golubkov

has developed an app to

convert AKTR

DEFT.task_params

15

Near Term Development Plans

Improve splitting to be more intelligent
–

E.g., taking lumi

block boundaries into account

Implement task brokerage
–

Currently clouds for tasks have to be
preassigned

Analysis task

Event Server

–

See Torre’s talk

Support for variable number of output files
for AthenaMP

–

Next slide

16

Variable Number of Output Files 1/3

ATLAS A-team people have requested this
functionality for AthenaMP-2

–

AthenaMP-2 has a flexibility to skip the merging
step

one job produces multiple output files

Two options
–

Give a list of output filenames to AthenaMP

 before the job gets started
•

The number of filenames would be the same as the
number of cores

•

Essentially no deference from current reco

jobs which
produces ESD,AOD,TAG,NTUPs…

•

Some changes are required in AthenaMP

and TRF
–

Give a pattern to AthenaMP

to produce files

accordingly, and then the system regards files
matting the pattern as outputs

•

Preferable to A-team

17

Variable Number of Output Files 2/3

Essentially job definition is changed
when job finishes

There is the same request for analysis
–

Currently the –-output option allows
wildcards, e.g., “--output blah.root.*”

–

Files (blah.root.*) are save into a single
archive (tar.tgz) and the archive is added
to DQ2

–

Some people want to have root files
instead of tgz

files since the former is

convenient for subsequent jobs

18

Variable Number of Output Files 3/3

Required changes to the system

–

Introduce “outpattern”

to JEDI as an output
type

–

Change the panda sever to be aware of
outpattern

–

outpattern

is implanted in jobPrams
•

E.g, outputHitsFile=HITS.XYZ._001.pool.root

 outputHitsFile=HITS.XYZ._001.*.pool.root
–

AthenaMP

or trf

produces a json

which contains

the list of output files mathing

the pattern
–

The pilot extract file info from the json

to add

them to output XML and sends it to the panda
server

–

The panda server inserts file records to
pandaDB

and registers them to DDM

–

The file info is propagated to JEDI

19

Migration Plan 1/2
1.

Change the panda server for job.taskID

Cannot make FK between job tables and
JEDI_Tasks

table for taskID

Could introduce a new column to job tables
2.

Add several changes to existing Panda

database tables

See Gancho’s

talk
3.

Add JEDI tables and define workQueues

in

JEDI_WorkQueue
4.

Change Bamboo to fill job.workQueue_ID

The number of queued or running jobs can be
calculated per workQueue

 Throttling can work

for each workQueue

20

Migration Plan 2/2
5.

Set job.lockedBy=jedi

in JEDI

Bamboo ignores JEDI jobs since it sees
jobs with lockedBy=bamboo

6.

Change the Panda server to use new
columns added in step.2 when
job.lockedBy=jedi

7.

Change schedconfig.fairsharepolicy
 from type=??,group=??:?? to

type=??,type=??,id=??:??

Panda brokerage or dispatcher ignores
“id=???”

while JEDI uses only “id=???”

8.

JEDI can send jobs

21

Test Plan

Using real tasks

Will be discussed this afternoon

	JEDI-alpha�status and plans
	JEDI
	Design Concepts for JEDI 1/3
	Design Concepts for JEDI 2/3
	Design Concepts for JEDI 3/3
	Workflow of JEDI
	Minimum Functions for JEDI-α
	Parsing of Task Parameters 1/2
	Parsing of Task Parameters 2/2
	Interactions with DDM
	Job Generation 1/2
	Job Generation 2/2
	Current Status and Plans
	Current Status
	Near Term Development Plans
	Variable Number of Output Files 1/3
	Variable Number of Output Files 2/3
	Variable Number of Output Files 3/3
	Migration Plan 1/2
	Migration Plan 2/2
	Test Plan

