

Event Service

Torre Wenaus, BNL

Thanks to K. De, P. Calafiura, T. Maeno, D. Malon, P. Nilsson, V.
Tsulaia, P. Van Gemmeren, R. Vitillo et al for input

ADC TEG Meeting, Tokyo

May 16, 2013

Opportunistic resources: an important means
of expanding our computing throughput

• HLT during LS1, and opportunistically after LS1

• Allocations on supercomputers (HPC)

– Over-engineered for us but we can soak up free cycles
opportunistically

• In the US for example our funding agencies are insistent that we
do so – we are high-profile science

– Free research clouds, commercial clouds

• More/cheaper resources available if we can be highly
opportunistic (e.g. Amazon spot market)

• Others we haven’t explored yet

– e.g. ‘ATLAS@Home’ via BOINC?

– By one estimate, BOINC = ~500k volunteer computers, ~7 Petaflops,
~$5M/hour in ‘Amazon EC2 dollars’

• (from Eric Lancon heard at a FR-cloud meeting in Beijing)

Torre Wenaus 2

Leveraging opportunistic resources

• Common characteristic to these opportunistic resources:
we have to be agile in how we use them

– Quick onto them (software, data and workloads)
when they become available

– Quick off them when they’re about to disappear

– Robust against their disappearing under us with no
notice

– Use them until they disappear – don’t allow holes
with unused cycles, fill them with fine grained
workloads

• Means of enabling agile use of opportunistic resources:
an event service

Torre Wenaus 3

Event Service

• JEDI brings event-level workflow management

– Event server support is part of the JEDI design

• Tasks and jobs are managed in terms of events processed/to
be processed

• Invites allocating work to pilots that way, rather than
allocating work in bulk (input files or big chunks of input files)

• Serve pilots/payloads a steady stream of events, and send
outputs back in a steady stream

– Well suited to opportunistic resources: no heavy data
prestaging, and we can make a hasty exit, losing almost
nothing

• Predicated on workable event streaming: effective WAN data
access is essential, preferably buffered by async caching

Torre Wenaus 4

Event Service and Core Software

• Just as JEDI is an enabler for the event server scheme
on the grid side, athenaMP and associated I/O
developments and optimizations are enablers on the
core sw side

– Queueing and streaming events to be consumed
by workers

– I/O optimizations making event reading over WAN
practical

– Asynchronous pre-fetch to remove network
latencies from processing workflow

• Event server support being actively worked by core
services/event I/O experts

Torre Wenaus 5

Other event service advantages

• Avoid idle cores in athenaMP processing – if parallel
threads process events in large chunks (files), cores
can sit idle while the slowest one completes

• DDM simplification – no DDM involvement on input
or output

• Output merging flexible and simple: file size is
tunable, aggregation of outputs to merge site
proceeds concurrently with processing, JEDI knows
when to trigger merge

• A crash doesn’t lose the job, only a few events which
will be re-dispatched

Torre Wenaus 6

Developing the scheme

Torre Wenaus 7

• Initial scheme from Borut and
Andrej, 6/2011

• Agreed to be integral to
Prodsys2 design at Ljubljana
meeting 6/2012

• Informal discussions in
subsequent months: ADC, core
framework, event I/O

• Design V1 sketched out at 3/13
S&C week

• Subsequently elaborated,
latest discussion last week

Data

sources

Event
Server

Event header/data
Fetch N Events/

headers

AthenaMP

Data
sources

Worker
Out

Data sink

Event data pull with
 read-ahead if possible

N events

Pilot Event server schematic V2
May 2013

http/get to event server
Returns:
Bytestream: events
Other: event header tokens

Event
cluster
staging

Job
payload

Athena
evReader

File
Merge
PanDA

job

WN Remote

N events
complete

notification

JEDI JEDI
Event table

Event list
Request

Event list
Dispatcher

http/get to dispatcher

JEDI creates
merge job

yampl

Asynchronous
event queue

Push events
onto queue

WebDav?

Pass event list for header/data fetch

Event
list

Async
output
stager

SE

SE

Worker Worker

Output aggregation site

Data
sources

SE

Event index

Prototype Status (reported last week)

Torre Wenaus 9

V. Tsulaia, R. Vitillo, P. Van Gemmeren

Prototype Status

• Prototype of the event reader and the event server web service

• Event reader reads (currently) bytestream events

• Web server is stateless Apache python/WSGI service with
RESTful API

• At startup the event reader creates a YAMPL (message passing)
channel to the event server web service, listening for requests

• When request is received from web service, it reads the
requested event data from file and constructs a buffer sent over
YAMPL to the web service, and thence to the requestor (pilot)

• Pilot client is emulated by curl

Torre Wenaus 10

V. Tsulaia, R. Vitillo, P. Van Gemmeren

Issues – How to send events

• Send full events (as in prototype) or just event
addresses (headers/tokens) from the event server?

– Full events makes for fewer client/server
interactions. But…

– Increases substantially the scaling requirements
for the event server (moving MBs instead of kB)

– Loses opportunity for dispersing data retrieval for
scalability, and leveraging direct access (FAX)

• For now at least, agreed to send event addresses;
events will be retrieved from the client
(pilot+athena) in a subsequent step

Torre Wenaus 11

Issues – Scope/scale/role of event server

• Event reader has to resolve an event ID from JEDI into
headers/tokens rendering the event retrievable

• Obvious (current) way is for event reader to read the
actual file (so should be colocated with the data or will
expose WAN latencies in ID->token resolution)

• Colocation is rather a big demerit – would be preferable
to have many fewer event service instances than there
are data repository Ses

• Colocation & file open unnecessary if we have an Event
Index

– Direct, remote, fast ID->token resolution

– Lookup could even be done by the pilot, eliminating
need for event reader service?

Torre Wenaus 12

Issues – Managing outputs

• Outputs must be managed in a near real time, granular way just as inputs
are, in order to reap full benefits

– Minimal losses in case of sudden eviction from or disappearance of
opportunistic resource

– Output aggregation and monitoring can proceed concurrently with
task processing

• Present concept:

– athenaMP workers write few-event files to WN output directory

– Watching monitor thread picks up event files and sends them to
(webDAV?) aggregation point associated with the WN’s CE (may not be
local; e.g. may be at T1). On successful transfer, notifies JEDI that
those events are processed; JEDI so records in the bookkeeping

– JEDI knows state of completion and decides when to submit PanDA job
for merging of event files

Torre Wenaus 13

Issues – Pilot aspects

• Adapt present ‘job dispatch’ stage to retrieve the job
configuration to be used (determining what sort of event
processing athenaMP is to be configured for)

– A given pilot+payload will not be reconfigurable for a
different processing type, at least initially

• New ‘event dispatch’ stage to iteratively request events

– A runEvent module analogous to existing runJob

• Adapt RunJob to new event consumer role

• Output watcher/completion reporter as a new ‘monitoring’
thread parallel to payload execution

• Need testing scheme – HC jobs + dev pilot?

Torre Wenaus 14

Prototype next steps (Vakho, Roberto)

1. Agree on message content, format between JEDI, event server for
communicating event IDs, e.g. include file ID in the request

2. Start implementing a new AthenaMP tool, which will work with events
received from the pilot and pass the events to the workers
– NB! Presently we cannot run Athena job with no input file. This

would require serious cleanup/modifications in various places.
– So, for the time being the AthenaMP job will be given some input

RAW file only to start, initialize and then switch to the "waiting”
mode for events from the pilot

3. Look at some scalability aspects of the event server/reader
– Currently the Apache server dynamically tunes the number of

processes, which encapsulate the web service, based on the number
of pending requests. We need to see how this scales for hundreds or
thousands of requests

– Will need to see how many reader applications we can afford
running simultaneously. Just one reader serving thousands of
services will clearly create a bottleneck, running thousands of
readers accessing disk simultaneously is not going to work either.
[Considerations that make using Event Index attractive.]

Torre Wenaus 15

Conclusion

• Prodsys2 is designed to enable efficient & flexible resource
usage in the (even more) heterogeneous computing
environment we’re entering – multicore, serial, opportunistic,
HPC, …

• Together with concurrency-directed core software work, it
enables event servers for efficient use of these resources

• Leverages existing work in athenaMP, event I/O optimization,
and FAX

• Effective WAN direct access to data is an enabler and a
prerequisite

• Prototyping and development under way (as other priorities
permit)

• Plenty of issues to address (only a subset discussed here)

Torre Wenaus 16

More Information

• “ADC issues in concurrent processing and maximizing
computing throughput”, T. Wenaus, March 2013 S&C
Week

Torre Wenaus 17

Supplemental

Torre Wenaus 18

Torre Wenaus 19
Borut, Andrej 6/2011

Genesis 6/2011

Somewhat crazy idea (2)

Torre Wenaus 20
Borut, Andrej 6/2011

Genesis 6/2011

