Integrating HPC into the
ATLAS Distributed
Computing environment

Doug Benjamin
Duke University



HPC Boundary conditions I@

. Therlg are many scientific HPC machines across the US and the
world.

o Need to design system that is general enough to work on
many different machines

« Each machine is independent of other

o The “grid” side of the equation must aggregate the
information

« There several different machine architectures

o ATLAS jobs will not run unchanged on many of the
machines

o Need to compile programs for each HPC machine

o Memory per node (each with multiple cores) varies from
machine to machine

« The computational nodes typically do not have connectivity to
the Infernet

o connectivity is through login node/edge machine

O Pil%’r jobs typically can not run directly on the computational
nodes

o TCP/IP stack missing on computational nodes




Introduction I@]

* My take on comparison between HPC and HTC(grid)

HTC — goes fast and steady

Goes really fast
Similar but different



D

1

Additional HPC issues ) (2 |

Each HPC machine has its own job management
system

Each HPC machine has its own identity
management system

Login/Interactive nodes have mechanisms for
fetching information and data files

HPC computational nodes are typically MP|
Can get a large number of nodes

The latency between job submission and completion
can be variable. (Many other users)



Work Flow I@

« Some ATLAS simulation jobs can be broken up into 3
components
(Tom LeCompte’s talked about this in greater detail)

1. Preparatory phase - Make the job ready for HPC
o Forexample - generate computational grid for Alpgen
o Fetch Database files for Simulation
o Transferinput files to HPC system

2. Computational phase — can be done on HPC
o Generate events
o Simulate events

3. Post Computational phase (Cleanup)
o Collect output files (log files, data files) from HPC jolbos

o Verify output
o Unweight (if needed) and merge files




HTC->HPC->HTC )

« ATLAS job management system (PANDA) need noft run
on HPC system
o This represents a simplification
o Nordu-grid has been running this way for a while

« Panda requires pilot jobs
« Autopy factory is used to submit Panda pilots

» Direct submission of pilots to a condor queue works well.
o Many cloud sites use this mechanism - straight forward to use
« HPC portion should be coupled but independent of HTC
work flow.

o Use messaging system to send messages between the domains
o Use grid tools to move files between HTC and HPC



HTC (“Grid side”) Infrastructure I@

APF Pilot factory to submit pilots
Panda queue — currently testing an ANALY QUEUE
Local batch system

Web server 1o provide steering XML files to HPC
domain

Message Broker system to exchange information
between Grid Domain and HPC domain

Gridftp server to transfer files between HTC domain
and HPC domain.

o Globus Online might be a good solution here (what are the
CcCostse)

ATLAS DDM Site - SRM and Gridftp server(s).



HPC code stack I@&

 Work done by Tom Uram - ANL
 Work on HPC side is performed by two components

o Service: Interacts with message broker to retrieve job descriptions, saves jobs in local
database, notifies message broker of job state changes

o Daemon: Stages input data from HTC GridFTP server, submits job to queue, monitors
progress of job, and stages output data to HTC GridFTP server

» Service and Daemon are built in Python, using the Django
Object Relational Mapper (ORM) to communicate with
the shared underlying database

o Djangois a stable, open-source project with an active community
o Django supports several database backends

« Current implementation relies on GridFTP for data transfer
and the ALCF Cobalt scheduler

« Modular design enables future extension to alternative
data transfer mechanisms and schedulers



Message Broker system I@

System must have large community support beyond
just HEP

Solution must be open source (Keeps Costs
manageable)

Message Broker system must have good
documentation

Scalable
Robust
Secure
Easy to use

Must use a standard protocol (AMQP 0-9-1 for
example)

Clients in multiple languages (like JAVA/Python)



RabbitMQ message broker I@

ActiveMQ and RabbitMQ evaluated.
Google analytics shows both are equally populor

'eb Search Interest: rabbitmgq, activemq. Worldwide, Past 12 months. -
Trends Web Search Interest: rabbit ti Worldwide, Past 12 month el
Explore trends Interest over time -

Hot searches Th el e peak search intere

Search terms -

xI rabbitmgq

* I activemq
+ Add term

» Other comparisons

L A R . o013 Aor
L itt A Jul 2012 Ot 2012 Jan 2013 Ape 2013
-El'lhsﬂ

Web Search

 Bench mark measurements show that RabbitMQ
server out performs ActiveMQ

« Found it easier to handle message routing and our
work flow

» Pika python client easy to use.



Basic Message Broker design I@

« Each HPC has multiple permanent durable queues.

o One queue per activity on HPC

o Grid jobs send messages to HPC machines through these queues
o Each HPC will consume messages from these queues

o Routing string is used to direct message to the proper place

 Each Grid Job will have multiple durable queues
One queue per activity (Step in process)

Grid job creates the queues before sending any message to HPC queues
On completion of grid job job queues are removed

Each HPC cluster publishes message to these queues through an
exchange

o Routing string is used to direct message to the proper place
o Grid jobs will consume messages the messages only on its queues.

» Grid domains and HPC domains have independent
polling loops

* Message producer and Client code needs to be
tweaked for additional robustness

O O O O



| "2\

Open issues for a production &Y

system

Need a federated ldentfity management

o Grid identify system is not used in HPC domain
o Need to strictly regulate who can run on HPC machines

Security-Security (need | say more)

What is the proper scale for the Front-End grid

clustere

o Now many nodes are needed?
o How much data needs to be merged?

Panda system must be able to handle large

latencies.

o Could expect jobs to wait a week before running
o Could be flooded with output once the jobs run.

Production task system should let HTC-HPC system

have flexibility to decide how to arrange the task.

o HPC scheduling decisions might require different Task geometry to get the
work through in an expedient manner



Conclusions I@

Many ATLAS MC jobs can be divided into a Grid
(HTC) component and a HPC component

Have demonsirated that using existing ATLAS tools
that we can design and build a system to send jobs
from grid to HPC and back to Grid

Modular design of all components makes it easier to
add new HPC sites and clone the HTC side if needed
for scaling reasons.

Lessons learned from Nordugrid Panda intfegration
will be helpful

A lightweight yet powerful system is being
developed.




