
Integrating HPC into the
ATLAS Distributed

Computing environment
Doug Benjamin

Duke University

HPC Boundary conditions
• There are many scientific HPC machines across the US and the

world.

o Need to design system that is general enough to work on
many different machines

• Each machine is independent of other

o The “grid” side of the equation must aggregate the
information

• There several different machine architectures

o ATLAS jobs will not run unchanged on many of the
machines

o Need to compile programs for each HPC machine

o Memory per node (each with multiple cores) varies from
machine to machine

• The computational nodes typically do not have connectivity to
the Internet

o connectivity is through login node/edge machine
o Pilot jobs typically can not run directly on the computational

nodes

o TCP/IP stack missing on computational nodes

Introduction

• My take on comparison between HPC and HTC(grid)

HTC – goes fast and steady

Goes really fast
Similar but different

Additional HPC issues

• Each HPC machine has its own job management

system

• Each HPC machine has its own identity

management system

• Login/Interactive nodes have mechanisms for

fetching information and data files

• HPC computational nodes are typically MPI

• Can get a large number of nodes

• The latency between job submission and completion

can be variable. (Many other users)

Work Flow

• Some ATLAS simulation jobs can be broken up into 3

components

 (Tom LeCompte’s talked about this in greater detail)

1. Preparatory phase - Make the job ready for HPC

o For example - generate computational grid for Alpgen

o Fetch Database files for Simulation

o Transfer input files to HPC system

2. Computational phase – can be done on HPC

o Generate events

o Simulate events

3. Post Computational phase (Cleanup)

o Collect output files (log files, data files) from HPC jobs

o Verify output

o Unweight (if needed) and merge files

HTC->HPC->HTC

• ATLAS job management system (PANDA) need not run

on HPC system

o This represents a simplification

o Nordu-grid has been running this way for a while

• Panda requires pilot jobs

• Autopy factory is used to submit Panda pilots

• Direct submission of pilots to a condor queue works well.

o Many cloud sites use this mechanism – straight forward to use

• HPC portion should be coupled but independent of HTC

work flow.

o Use messaging system to send messages between the domains

o Use grid tools to move files between HTC and HPC

HTC (“Grid side”) Infrastructure

• APF Pilot factory to submit pilots

• Panda queue – currently testing an ANALY QUEUE

• Local batch system

• Web server to provide steering XML files to HPC

domain

• Message Broker system to exchange information

between Grid Domain and HPC domain

• Gridftp server to transfer files between HTC domain

and HPC domain.

o Globus Online might be a good solution here (what are the

costs?)

• ATLAS DDM Site - SRM and Gridftp server(s).

HPC code stack

• Work done by Tom Uram - ANL

• Work on HPC side is performed by two components
o Service: Interacts with message broker to retrieve job descriptions, saves jobs in local

database, notifies message broker of job state changes

o Daemon: Stages input data from HTC GridFTP server, submits job to queue, monitors
progress of job, and stages output data to HTC GridFTP server

• Service and Daemon are built in Python, using the Django

Object Relational Mapper (ORM) to communicate with

the shared underlying database
o Django is a stable, open-source project with an active community

o Django supports several database backends

• Current implementation relies on GridFTP for data transfer

and the ALCF Cobalt scheduler

• Modular design enables future extension to alternative

data transfer mechanisms and schedulers

Message Broker system

• System must have large community support beyond
just HEP

• Solution must be open source (Keeps Costs
manageable)

• Message Broker system must have good
documentation

• Scalable

• Robust

• Secure

• Easy to use

• Must use a standard protocol (AMQP 0-9-1 for
example)

• Clients in multiple languages (like JAVA/Python)

RabbitMQ message broker
• ActiveMQ and RabbitMQ evaluated.

• Google analytics shows both are equally popular

• Bench mark measurements show that RabbitMQ

server out performs ActiveMQ

• Found it easier to handle message routing and our

work flow

• Pika python client easy to use.

Basic Message Broker design

• Each HPC has multiple permanent durable queues.
o One queue per activity on HPC

o Grid jobs send messages to HPC machines through these queues

o Each HPC will consume messages from these queues

o Routing string is used to direct message to the proper place

• Each Grid Job will have multiple durable queues
o One queue per activity (Step in process)

o Grid job creates the queues before sending any message to HPC queues

o On completion of grid job job queues are removed

o Each HPC cluster publishes message to these queues through an
exchange

o Routing string is used to direct message to the proper place

o Grid jobs will consume messages the messages only on its queues.

• Grid domains and HPC domains have independent
polling loops

• Message producer and Client code needs to be
tweaked for additional robustness

Open issues for a production
system

• Need a federated Identity management
o Grid identify system is not used in HPC domain

o Need to strictly regulate who can run on HPC machines

• Security-Security (need I say more)

• What is the proper scale for the Front-End grid

cluster?
o Now many nodes are needed?

o How much data needs to be merged?

• Panda system must be able to handle large

latencies.
o Could expect jobs to wait a week before running

o Could be flooded with output once the jobs run.

• Production task system should let HTC-HPC system

have flexibility to decide how to arrange the task.
o HPC scheduling decisions might require different Task geometry to get the

work through in an expedient manner

Conclusions

• Many ATLAS MC jobs can be divided into a Grid

(HTC) component and a HPC component

• Have demonstrated that using existing ATLAS tools

that we can design and build a system to send jobs

from grid to HPC and back to Grid

• Modular design of all components makes it easier to

add new HPC sites and clone the HTC side if needed

for scaling reasons.

• Lessons learned from Nordugrid Panda integration

will be helpful

• A lightweight yet powerful system is being

developed.

