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Outline

compressible Navier-Stokes equation win the

same Ansatz, some part of the solutions, traveling wave analysis

Summal’y & OUtIOOk more EOS & viscosity functions



Physically important
solutions of PDEs

- Travelling waves:
arbitrary wave fronts
ulx,t) ~ ,
- Self-similar




The non-compressible Navier-
Stokes equation

3 dimensional cartesian coordinates,
e\ F uler description
e S S V Velocity field, p pressure, a external field
E kinematic viscosity, @
Newtonian fluid

l||'__J

Consider the most
general case
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0

y + utty + vty + wiy, = v(tpy + Uyy + Uss) — Pz
L . u P
. Ty

U + Uuvy + vUy + W, = V(Vpp + Vyy + Vzz) — Py - -
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p all the coordinates




My 3 dimensional Ansatz

u(z,y,z,t) =t "f ( - =

ulz,t) =t f(z/ %)

A more general function does not
work for N-S

Geometrical meaning:

all v components with
coordinate constrain x+y+z=0
lie in a plane = equivalent

The final applied forms

. . fr+y+ 2 _ ., o [Tyt
u(z,y, z,t) =1t “f ( 1: ) , vl(zy,zt)=t g ( 1:: )

w(z,y, z,t) =t"°h ( - +: - ) , plry,z,t) =t (

The graph of the x + y + z = 0 plane.
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The obtained ODE system

flw)+g W) +h(w) =0
I'(w)
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w(z,y, z,t) = t_l"'lgh.ll:.::.,-':l: plx,y, z,t) = f_lfl[.::.::]:

Continuity eg. helps us to get an
additional constraint:

f(w) (W) + h(w) =c, and f"(w) "(w)+ A" (w) =0 .
Jw)+glw)+hlw)=ec and fiw)+g'(w)+h(w) c is prop. to mass flow rate




Solutions of the ODE

1 = i P 3 c
a single Eq. remains EZECEECERINOETHOES

, 1 1 (w+c)? 1 1 (w+e)?
f(w) = ¢1 - KummerU (—1: 3 %) + ¢3 - Kummer M (_1: 2’ %

|
The KummerM(—1/4,1/2, (w + ¢)?/6r) function The KummerU(—1/4,1/2, (w + ¢)? /6r) function for
for c=1 and v =0.1. c=1and v =01
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Solutions of N-S

e R RS ey S CETALIEELMY  analytic only for one
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+t_“h |:{1 Kumme rI'»I(_ 4 %w + 'i‘ veIOCity component @
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Naver-Stokes makes a getting a multi-valued surface

. dynamics of this plane
all v components with

coordinate constrain x+y+z=0
lie in a plane = equivalent

Fig. 5 The implicit plot of the self-similar solution
Eq. (17). Only the KummerU function is presented for
t=1lci1=1,c2=0,a=0,c=1,and v =0.1.
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Other analytic solutions

Without completeness, usually from Lie algebra studies

W. 1. Fushchich, W. M. Shtelen and S. L. Slavutsky J. Phys. A: Math. Gen. 24 (1990) 971.

Presented 19 various solutions
one of them is:

V. Grassi, R.A. Leo, G. Soliani and P. Tempesta, Physica 286 (2000) 79 Ansatz: Uy =Y (y)T(z)P(1).

JOURNAL OF MATHEMATICAL PHYSICS 50, 083101 (2009) SOIut’onS are K”mmer funCtIOHS as Well

Analytical solutions to the Navier-Stokes equations “Only” Radial solution _ f(ria(t)) alr)
with density-dependent viscosity and with pressure for 2or 3D plt.r)=——7—. ult.r)=—70rr,
2b) Ansatz: a(t) alt)

Ling Hei Yeung™® and Yuen Manwai

Nonlinear Instability of the Solutions of the Navier-Stokes
Equations: Formulas for Constructing Exact Solutions
i Ansatz:

Institute for Problems in Mechani emy of Sciences, Moscow, Russia
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Sedov, stationary N-S,
Ukrainian Mathematical Journal, Vol. 49, No. 9, 1997 - H {I}E + E lff:l . on Iy t h e an g u I ar p art

ON NAVIER-STOKES FIELDS WITH LINEAR VORTICITY .
U-==—F(9).
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G. V. Popovich and R. O. Popovich



The compressible Navier-Stokes eq.

pu+ div(pv) = 0

) , Vg . o .
plvi + (VV)v] = riAv + T)G'?‘{I.t;i divv — Vp + a; EOS p = kp"
f V'V, 3 ¢ I I i

3 dimensional cartesian coordinates,
EU|er description, NEWtonian fIUid, p0|itl‘0pic EOS (these can be changed later)

v velocity field, p pressure, a external field
MR viscosities, @ density

Consider the most
general case: v(z,y,z,t) =u(z,y, 2,t),v(x,y, 2, t), w(x,y, 2,t)

Just write out
all the coordinates:

pi + peu + pyv + pow + p(u, +v, +w,) =0

. . L9 . _

pluy + uty + vy + W] — vy (Ugg + Uy + Usz) — o (Uga + Vay + Waz) + K0P" 1o, =0
)
/9

P [:L"t. T UV + vy, + -3_1__1-1;;___:] — “11'.1 + Uyy T Vs J - ._{ Ugy + Uyy + Wy ] T Knp n_lp y — 0

°( bz + Uyz T Wy, } + "“:ﬂ'pﬂ_lp.ﬂ: = 0.

plwe + vw, + vw, +ww,] — vy (Wey + Wy, + w,,)




The applied Ansatz &
Universality Relations

A more general function does not work for N-S

r+yr+z

15 ) =t"f(n) u(z,y,zt)=t"g(n),

plz,y.z,t) =t *f (

o(@,y,2,6) = th(n), wlz,y, 1) = ti(n).

Where all the exponents a, /3, d, €, w are real numbers.

as constraints we got for the exponents:

universality relations

Note, that n remains
free, presenting some
physics in the system,
polytropic EOS




The obtained ODE system

The most general case, n is free A —

aff +fn = fllg+h+i + flg + 1 +i] afn=flg+h+i+eco

. : n—1 pl | V3 . -
fl[=0g —ang + g¢' + hg +ig] = —knf" ' f +3v1¢" + T%[QH + h" +i"]

f[—06h — anh’ + gh’ + hh' +ib'] = —knf™ ' f + 3 h" + V—E g+ h" 41"
. / ( 3

- . . . . .. rri—1 p p o /2 ' i .
fl=0i —ami' + gi' + hi' +ii'] = —knf" ' f + 30" + Z[g" + B+ "]

e N-S can be intergated once, after some algebra
= getting an ODE of:

A ! Q- £3 2 —nT] — 414 ‘-. "I‘? — (]
vegf'+3kf° + fol—con —4v + i) + 5 f =0 This is for the density

where v = 1y = 15 and ¢4 18 a new constant

No analytic solutions exist , but the direction
field can be investigated for reasonable
parameters
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The propert

r+y—+ =z
f-

From the universality relations the global
properties of the solutions are known
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just spreading in time

has decay & spreading
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General properties of the
solutions for other exponents

L (THYy+z ey
plr,y, z,t) =1t "f (*) =t " f(n)

i-_ i)

There are different regimes for different ns

n > 1 all exponents are positive decaying,
spreading solutions for speed and density
n =1 see above
-1 < n < +1 decaying and spreading
density & enhancing velocity in time
n=-1]
n < -1 sharpening and enhancing density &
decaying and sharpening velocity

Relevant physics is for n >1 the analysis is in progress to see the shape functions
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we may try t

As a second Ansatz

where C is the wave
velocity
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After some algebra the next ODE

(for n

can be obtained

Detailed analysis is in progress



Summary &

The self-similar Ansatz is presented as a tool for non-linear
PDA

The non-compressible & comfressible N-S eq. is investigated
and the results are discusse

pseudoplastic fluids or shear-thinning fluids
Newronian fluid
dilatant or shear-thickening fluids-
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