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Motivation of studies

● Study of quark-gluon plasma produced in Pb-Pb collisions

● Confirmation of hydrodynamics predictions for quark-gluon 
plasma

● Verification of HBT radii scaling not only for pions, but also for 
heavier particles like kaons  and protons.
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Correlation function
Size of emitting source can be investigated using correlation of two
particles:

C ( p⃗a , p⃗b)=
P2( p⃗a , p⃗b)

P1( p⃗a) P2( p⃗b)

Relation between correlation function and emission function 
is given by:

C ( p⃗a , p⃗b)=∫S ab( p⃗a , x⃗a , p⃗b , x⃗b)∣Ψ ab∣
2
d

4
x⃗a d

4
x⃗ b

                        – emission function –  generalized density function 
of the source or  a probability density of emission of the particle 
pair with momenta       ,       from space-time points       ,     .

Sab( p⃗a , x⃗a , p⃗b , x⃗b)

x⃗a x⃗bp⃗a p⃗b

S ab(⋅)

Probability to observe a
particle with momentum       if
a particle with momentum     

was observed
Probability to observe a particle

with given momentum independently

p⃗a

p⃗a
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Pair wave function
● In general          includes all types of interactions between two 

particles: Coulomb, strong and symmetrization or 
antisymmetrization of wavefunction

● Effects coming from Coulomb and strong interaction are difficult 
to calculate and analyse, especially in 3D. That is why currently 
experimental analysis for heavy particles is limited to 1D

● But in simulation we can simplify the analysis and take into account 
only effects of quantum statistics. This makes the analysis easier, 
less time consuming and enables 3D analysis

∣Ψab∣
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Correlation function
Source emission function is assumed to be a 3D gaussian distribution:

Solution for provided emission function:

1D correlation function:

C (qO , qS , qL)=1+λ exp (−Rout
2 qO−R side

2 qS
2
−R long

2 qL
2
)

S ( r⃗ )∼exp(− rout
2

Rout
2 −

rside
2

Rside
2 −

rlong
2

R long
2 )

C (q)=1+λ exp(−Rinv
2

∣q∣2)

λ→1
λ→−0,5

for π-π and K-K
for p-p

LCMS

PRF

p⃗a

p⃗b

k⃗

q⃗= p⃗a− p⃗b

C ( p⃗a , p⃗b)=∫S ab ( p⃗a , x⃗a , p⃗b , x⃗b)∣Ψ ab∣
2
d

4
x⃗a d

4
x⃗ b

symmetrization

¼ symmetrization 
+ ¾ antisymmetrization

k⃗ T
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Correlation function
theoretical π-π correlation function – 
including only wavefunction symmetrization

theoretical π-π correlation function – 
including wavefunction symmetrization and  
coulomb interaction

theoretical p-p correlation function – including 
wavefunction anti- and symmetrization (QS), 
coulomb(COUL) and strong interaction (SI)
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              scaling for identical particles
Hydrodynamics predicts femtoscopic radius scaling:                                  

Relation between radii in PRF and LCMS:

Conversion from LCMS to PRF causes the increase of       which has two 
effects: the overall radius of the system increases and the particle source 
becomes non-gaussian. The interplay of the two effects can be accounted 
for with an approximate formula:

Assuming                 , an approximate formula to recover a scaling 
behaviour from         is proposed: RLCMS∼Rinv /[(√γ+2)/3]1/2

γ=(1−
kT

2

mT
2 )

−1/2

mT=√k T
2 +m2

mT
RLCMS ∼ mT

−1/2

Rinv

Rinv=√(Rout
2

√γ+R side
2 +R long

2 )/3

Rout=R side=Rlong

RLCMS=√(Rout
2 +Rside

2 +Rlong
2 )/3

Rout
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Results

● Analysis was performed for data generated using three different 
models for Pb-Pb collisions at                                   : 

– Therminator: hydrodynamics, resonances, statistical 
hadronisation, no interaction between final state 
hadrons

– hHKM: hydrodynamics, UrQMD hadronic cascade

– EPOS: multiple rescattering with hydrodynamics, 
hadronic cascade

● To the          proposed scaling factor was applied to test scaling 
hypothesis and recover transverse mass scaling. For all of the 
results following equation was fitted:

√sNN=2.76 TeV

Rinv

R=αmT
−γ
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Scaling factor influence
Without scaling factor: With scaling factor:



11

Therminator b = 2 fm - LCMS
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Therminator b = 2 fm - LCMS
Scaling quality:
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Therminator  b = 11.9 fm - LCMS
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Therminator  b = 11.9 fm - LCMS
Scaling quality:
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Therminator - all centralities – LCMS & PRF
PRF radii divided by scaling factor

LCMS
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Therminator - all centralities – LCMS & PRF
PRF

LCMS

Scaling quality:
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Therminator - all centralities – LCMS & PRF
PRF radii divided by scaling factor

LCMS
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Therminator - all centralities – LCMS & PRF
PRF

LCMS

Scaling quality:
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hHKM 0-5% - LCMS
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hHKM 0-5% - LCMS
Scaling quality:
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hHKM 30-40% - LCMS
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hHKM 30-40% - LCMS
Scaling quality:
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hHKM - all centralities – LCMS & PRF
PRF radii divided by scaling factor

LCMS
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hHKM - all centralities – LCMS & PRF

LCMS

Scaling quality: PRF
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EPOS 0-5% - LCMS
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EPOS 0-5% - LCMS
Scaling quality:



27

EPOS 30-40% - LCMS
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EPOS 30-40% - LCMS
Scaling quality:
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EPOS - all centralities – LCMS & PRF
PRF radii divided by scaling factor

LCMS
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EPOS - all centralities – LCMS & PRF

LCMS

Scaling quality: PRF
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Summary

● Simulation agrees with experimental data:   π  obey         
scaling predicted by hydrodynamics, this also applies to 
K and p .

● Scaling of          can be recovered by dividing by proposed 
factor:

● Scaling works well in Therminator model within 10% 
range.

● For the hHKM and EPOS models scaling works within 
20% range.

[(√γ+2)/3]
1 /2

mT

Rinv
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Backup slides
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EPOS model

Energy conserving quantum mechanical multiple scattering 
approach based on:

● binary parton-parton interactions

● off-shell remnants

● splitting of parton ladders

It includes:

● 3+1 dimensional hydrodynamic evolution

● hadronic cascade procedure after hadronization
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hHKM

Hybrid hydrokinetic model is HKM with UrQMD hadronic cascade. 
hHKM is based on:

● hydrodynamical expansion of the system

● dynamical decoupling described by escape probabilities

This method corresponds to a generalized relaxation time (         ) 
approximation for the Boltzmann equation applied to 
inhomogeneous expanding systems; at small         allows one to 
catch the viscous effects in hadronic component – hadron-
resonance gas.

τrel

τrel
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Therminator model

Therminator:

● Performs generation of stable particles and unstable resonances at 
chosen freeze-out hypersurface based on statistical distribution 
factors

● Provides subsequent space-time evolution and decays of hadronic 
resonances in cascades

● 3+1 D viscous hydrodynamic freeze-out hypersurface was used

● No interaction between final state hadrons
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pa , long=− pb , long

p⃗a=− p⃗b=k⃗ ∗

Longitudinal Co-Moving System – a 
system where the pair longitudinal 
momentum vanishes: 

LCMS and PRF

p⃗a

p⃗b

k⃗

q⃗= p⃗a− p⃗bPair Rest Frame – a system where the 
center of mass rests:

Pair wave function is most easily expressed and calculated in PRF. 
The 1D analysis is also performed in PRF.

The 3D analysis gives more information about the system and is 
usually made in LCMS. The scaling predicted by hydrodynamics is 
also in LCMS.

k⃗ T
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Spherical harmonics representation
The 3D space is converted into infinite set of 1-dimensional functions:  

Advantages:       

● Symmetries in correlation function reduces necessary amount of data 
to be stored

● Saves memory at the cost of computation time

Y l
m(θ ,ϕ)

full solid angle
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Spherical harmonics representation
A full femtoscopic information is stored only in four l,m components:

Symmetries in 3D correlation function of identical particles causes 
spherical harmonics with odd values of l and m disappear.

For non-identical particles information about emission asymmetry 
between particle of different mass is stored in          component.

ℜC 0
0
=N∫C (q ,cos (θq) ,ϕq)d θq d ϕq →RLCMS

ℜC1
1 →space−time emission asymmetry

ℜC 2
0=N∫C (q ,cos (θq) ,ϕq )(3 cos2(θq)−1)d θq d ϕq →

Rlong

RT

ℜC 2
2
=N∫C (q ,cos (θq) ,ϕq )sin

2
(θq)cos(2ϕq)d θq d ϕq →

Rout

R side

RT=√(Rout
2

+R side
2

)/ 2 RLCMS=√(Rout
2

+Rside
2

+Rlong
2

)/3

ℜC1
1
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