Investigating m_{T} dependence of HBT radii in hydrodynamic models

Mateusz Gałażyn
Warsaw University of Technology
Faculty of Physics

Outline

\rightarrow Correlation function - theory
\rightarrow Transverse mass scaling in identical particles correlations
\rightarrow Results
\rightarrow Summary

Motivation of studies

- Study of quark-gluon plasma produced in $\mathrm{Pb}-\mathrm{Pb}$ collisions
- Confirmation of hydrodynamics predictions for quark-gluon plasma
- Verification of HBT radii scaling not only for pions, but also for heavier particles like kaons and protons.

Correlation function

Size of emitting source can be investigated using correlation of two particles:

$$
C\left(\vec{p}_{a}, \vec{p}_{b}\right)=\frac{P_{2}\left(\vec{p}_{a}, \vec{p}_{b}\right)}{P_{1}\left(\vec{p}_{a}\right) P_{2}\left(\vec{p}_{b}\right)}
$$

Probability to observe a particle

Probability to observe a particle with momentum \vec{p}_{a} if a particle with momentum \vec{p}_{a} was observed with given momentum independently

Relation between correlation function and emission function $S_{a b}(\cdot)$ is given by:

$$
C\left(\vec{p}_{a}, \vec{p}_{b}\right)=\int S_{a b}\left(\vec{p}_{a}, \vec{x}_{a}, \vec{p}_{b}, \vec{x}_{b}\right)\left|\Psi_{a b}\right|^{2} d^{4} \vec{x}_{a} d^{4} \vec{x}_{b}
$$

$S_{a b}\left(\vec{p}_{a}, \vec{x}_{a}, \vec{p}_{b}, \vec{x}_{b}\right)$ - emission function- generalized density function of the source or a probability density of emission of the particle pair with momenta \vec{p}_{a}, \vec{p}_{b} from space-time points \vec{x}_{a}, \vec{x}_{b}.

Pair wave function

- In general $\left|\Psi_{a b}\right|$ includes all types of interactions between two particles: Coulomb, strong and symmetrization or antisymmetrization of wavefunction
- Effects coming from Coulomb and strong interaction are difficult to calculate and analyse, especially in 3D. That is why currently experimental analysis for heavy particles is limited to 1D
- But in simulation we can simplify the analysis and take into account only effects of quantum statistics. This makes the analysis easier, less time consuming and enables 3D analysis

Correlation function

Source emission function is assumed to be a 3D gaussian distribution:

$$
S(\vec{r}) \sim \exp \left(-\frac{r_{\text {out }}^{2}}{R_{\text {out }}^{2}}-\frac{r_{\text {side }}^{2}}{R_{\text {side }}^{2}}-\frac{r_{\text {long }}^{2}}{R_{\text {long }}^{2}}\right)
$$

$$
C\left(\vec{p}_{a}, \vec{p}_{b}\right)=\int S_{a b}\left(\vec{p}_{a}, \vec{x}_{a}, \vec{p}_{b}, \vec{x}_{b}\right)\left|\Psi_{a b}\right|^{2} d^{4} \vec{x}_{a} d^{4} \vec{x}_{b}
$$

Solution for provided emission function:

$$
C\left(q_{o}, q_{S}, q_{L}\right)=1+\lambda \exp \left(-R_{\text {out }}^{2} q_{o}-R_{\text {side }}^{2} q_{S}^{2}-R_{\text {long }}^{2} q_{L}^{2}\right)
$$

symmetrization
$\Delta_{\lambda \rightarrow 1}$ for $\pi-\pi$ and $K-K$
$1 / 4$ symmetrization
$+3 / 4$ antisymmetrization

- $\lambda \rightarrow-0,5$ for $p-p$

1D correlation function:

LCMS

Correlation function

theoretical $\pi-\pi$ correlation function including only wavefunction symmetrization

theoretical $p-p$ correlation function - including wavefunction anti- and symmetrization (OS), coulomb(COUL) and strong interaction (SI)

theoretical $\pi-\pi$ correlation function including wavefunction symmetrization and coulomb interaction

m_{T} scaling for identical particles

Hydrodynamics predicts femtoscopic radius scaling: $R_{\text {LCMS }} \sim m_{T}^{-1 / 2}$
Relation between radii in PRF and LCMS:

$$
R_{\text {LCMS }}=\sqrt{\left(R_{\text {out }}^{2}+R_{\text {side }}^{2}+R_{\text {long }}^{2}\right) / 3}
$$

$$
\begin{aligned}
& R_{\text {out }}^{*}=R_{\text {out }}\left\langle\gamma_{t}\right\rangle, \\
& R_{\text {side }}^{*}=R_{\text {side }}, \\
& R_{\text {long }}^{*}=R_{\text {long }},
\end{aligned}
$$

Conversion from LCMS to PRF causes the increase of $R_{\text {out }}$ which has two effects: the overall radius of the system increases and the particle source becomes non-gaussian. The interplay of the two effects can be accounted for with an approximate formula: $\quad R_{\text {inv }}=\sqrt{\left(R_{\text {out }}^{2} \sqrt{\gamma}+R_{\text {side }}^{2}+R_{\text {long }}^{2}\right) / 3}$
Assuming $R_{\text {out }}=R_{\text {side }}=R_{\text {long }}$, an approximate formula to recover a scaling behaviour from $R_{\text {inv }}$ is proposed: $R_{\text {LCMS }} \sim R_{\text {inv }} /[(\sqrt{\gamma}+2) / 3]^{1 / 2}$

$$
\gamma=\left(1-\frac{k_{T}^{2}}{m_{T}^{2}}\right)^{-1 / 2} \quad m_{T}=\sqrt{k_{T}^{2}+m^{2}}
$$

Results

- Analysis was performed for data generated using three different models for $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$:
- Therminator: hydrodynamics, resonances, statistical hadronisation, no interaction between final state hadrons
- hHKM: hydrodynamics, UrQMD hadronic cascade
- EPOS: multiple rescattering with hydrodynamics, hadronic cascade
- To the $R_{i n v}$ proposed scaling factor was applied to test scaling hypothesis and recover transverse mass scaling. For all of the results following equation was fitted: $R=\alpha m_{T}^{-\gamma}$

Scaling factor influence

Without scaling factor:

With scaling factor:

Therminator $b=2 \mathrm{fm}-$ LCMS

Therminator $b=2 \mathrm{fm}-$ LCMS

Scaling quality:

Therminator $b=11.9 \mathrm{fm}-$ LCMS

Therminator $b=11.9 \mathrm{fm}-$ LCMS

Scaling quality:

Therminator - all centralities - LCMS \& PRF

PRF radii divided by scaling factor

LCMS

Therminator - all centralities - LCMS \& PRF

Scaling quality:

PRF

LCMS

Therminator - all centralities - LCMS \& PRF PRF radii divided by scaling factor

LCMS

Therminator - all centralities - LCMS \& PRF

hHKM 0-5\% - LCMS

hHKM o-5\% - LCMS

Scaling quality:

hHKM 30-40\% - LCMS

hHKM 30-40\% - LCMS

Scaling quality:

hHKM - all centralities - LCMS \& PRF
 PRF radii divided by scaling factor

LCMS

hHKM - all centralities - LCMS \& PRF

Scaling quality:

LCMS

EPOS 0-5\% - LCMS

EPOS 0-5\% - LCMS

Scaling quality:

EPOS 30-40\% - LCMS

EPOS 30-40\% - LCMS

Scaling quality:

EPOS - all centralities - LCMS \& PRF

PRF radii divided by scaling factor

LCMS

EPOS - all centralities - LCMS \& PRF

Scaling quality:

PRF

LCMS

Summary

- Simulation agrees with experimental data: π obey m_{T} scaling predicted by hydrodynamics, this also applies to K and p.
- Scaling of $R_{\text {inv }}$ can be recovered by dividing by proposed factor: $[(\sqrt{\gamma}+2) / 3]^{1 / 2}$
- Scaling works well in Therminator model within 10\% range.
- For the hHKM and EPOS models scaling works within 20\% range.

Backup slides

EPOS model

Energy conserving quantum mechanical multiple scattering approach based on:

- binary parton-parton interactions
- off-shell remnants
- splitting of parton ladders

It includes:

- 3+1 dimensional hydrodynamic evolution
- hadronic cascade procedure after hadronization

hHKM

Hybrid hydrokinetic model is HKM with UrQMD hadronic cascade. hHKM is based on:

- hydrodynamical expansion of the system
- dynamical decoupling described by escape probabilities

This method corresponds to a generalized relaxation time ($\tau_{\text {rel }}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\tau_{\text {rel }}$ allows one to catch the viscous effects in hadronic component - hadronresonance gas.

Therminator model

Therminator:

- Performs generation of stable particles and unstable resonances at chosen freeze-out hypersurface based on statistical distribution factors
- Provides subsequent space-time evolution and decays of hadronic resonances in cascades
- 3+1 D viscous hydrodynamic freeze-out hypersurface was used
- No interaction between final state hadrons

LCMS and PRF

Longitudinal Co-Moving System - a Transverse system where the pair longitudinal momentum vanishes:

$$
p_{a, \text { long }}=-p_{b, \text { long }}
$$

Pair Rest Frame - a system where the outward center of mass rests:

$$
\vec{p}_{a}=-\vec{p}_{b}=\vec{k}^{*}
$$

Pair wave function is most easily expressed and calculated in PRF. The 1D analysis is also performed in PRF.

The 3D analysis gives more information about the system and is usually made in LCMS. The scaling predicted by hydrodynamics is also in LCMS.

Spherical harmonics representation

The 3D space is converted into infinite set of 1-dimensional functions: $Y_{l}^{m}(\theta, \varphi)$
Advantages:

- Symmetries in correlation function reduces necessary amount of data to be stored
- Saves memory at the cost of computation time

$$
\begin{gathered}
C(\mathbf{q})=\sum_{l, m} C_{l}^{m}(q) Y_{l}^{m}(\theta, \phi), \\
C_{l}^{m}(q)=\int_{\Omega} C(q, \theta, \phi) Y_{l}^{m}(\theta, \phi) d \Omega
\end{gathered}
$$

full solid angle

Spherical harmonics representation

A full femtoscopic information is stored only in four l, m components:

$$
\begin{array}{ll}
\mathfrak{R} C_{0}^{0}=N \int C\left(q, \cos \left(\theta_{q}\right), \varphi_{q}\right) d \theta_{q} d \varphi_{q} & \rightarrow R_{\text {LCMS }} \\
\mathfrak{R} C_{1}^{1} \rightarrow \text { space- time emission asymmetry } & \\
\mathfrak{R} C_{2}^{0}=N \int C\left(q, \cos \left(\theta_{q}\right), \varphi_{q}\right)\left(3 \cos ^{2}\left(\theta_{q}\right)-1\right) d \theta_{q} d \varphi_{q} & \rightarrow \frac{R_{\text {long }}}{R_{T}} \\
\mathfrak{R} C_{2}^{2}=N \int C\left(q, \cos \left(\theta_{q}\right), \varphi_{q}\right) \sin ^{2}\left(\theta_{q}\right) \cos \left(2 \varphi_{q}\right) d \theta_{q} d \varphi_{q} & \rightarrow \frac{R_{\text {out }}}{R_{\text {side }}} \\
R_{T}=\sqrt{\left(R_{\text {out }}^{2}+R_{\text {side }}^{2}\right) / 2} & R_{\text {LCMS }}=\sqrt{\left(R_{\text {out }}^{2}+R_{\text {side }}^{2}+R_{\text {long }}^{2}\right) / 3}
\end{array}
$$

Symmetries in 3D correlation function of identical particles causes spherical harmonics with odd values of l and m disappear.

For non-identical particles information about emission asymmetry between particle of different mass is stored in $\mathfrak{R} C_{1}^{1}$ component.

